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Key Points:8

• We introduce a new approach to distinguish stratocumulus and shallow cumulus9

regimes over tropical oceans based on cloud cover.10

• The ‘too-few, too bright’ tropical low-cloud problem persists in twelve CMIP6 mod-11

els within stratocumulus and shallow cumulus regimes.12

• Most CMIP6 models underestimate (overestimate) the relative frequency of oc-13

currence of stratocumulus (shallow cumulus).14
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Abstract15

Low clouds over tropical oceans reflect a great proportion of solar radiation back to space16

and thereby cool the Earth, yet this phenomenon has been poorly simulated in several17

previous generations of climate models. The principal aim of the present study is to em-18

ploy satellite observations to evaluate the representation of marine tropical low clouds19

and their radiative effect at the top of the atmosphere in a subset of latest climate mod-20

els participating in CMIP6. We strive for regime-oriented model validation and hence21

introduce a qualitative approach to discriminate stratocumulus (Sc) from shallow cumu-22

lus (Cu). The novel Sc-Cu categorization has a conceptual advantage of being based on23

cloud properties, rather than relying on a model response to a cloud-controlling factor.24

We find that CMIP6 models underestimate low-cloud cover in both Sc- and Cu-regions25

of tropical oceans. A more detailed investigation of cloud biases reveals that most CMIP626

models underestimate the relative frequency of occurrence (RFO) of Sc and overestimate27

RFO of Cu. We further demonstrate that tropical low cloudiness in CMIP6 models re-28

mains too bright. The regime-oriented validation represents the basis for improving pa-29

rameterizations of physical processes that determine the cloud cover and radiative im-30

pact of Sc and Cu, which are still misrepresented in current climate models.31

Plain Language Summary32

Similar as white snow and ice caps, bright low clouds have a high shortwave albedo,33

reflecting a huge amount of sunlight back to space and thereby helping us counteract global34

warming. The shadowing effect of bright low clouds is especially pronounced over trop-35

ical oceans, since equatorial regions of our planet receive most sunshine, which is in clear36

skies otherwise practically entirely absorbed within the contrastingly dark ocean. Cli-37

mate models had traditionally struggled simulating these clouds by underestimating their38

areal extent and simultaneously overestimating their reflectivity. In other words, sim-39

ulated clouds were commonly found to be ‘too few’ and ‘too bright’ compared to obser-40

vations, which introduced a substantial uncertainty to climate projections. Herein we41

proposed a novel approach to proficiently decompose tropical low cloudiness into stra-42

tocumulus and shallow cumulus regime, which is essential to provide a proper guidance43

for climate model development. We subsequently showed that the newest generation of44

climate models still suffers from the ‘too few, too bright’ tropical low cloud problem within45

both stratocumulus and shallow cumulus regimes, which thus needs to be further tack-46

led with the greatest possible endeavor.47

1 Introduction48

Bright low clouds cover substantial areas of dark tropical oceans and play a crit-49

ical role in regulating the Earth’s radiative energy budget (Bony and Dufresne, 2005; Schnei-50

der et al., 2017; Cesana and Del Genio, 2021). They reflect a substantial portion of the51

incoming sunlight back to space and thus exert a profound cooling effect on the Earth’s52

climate. Climate models, however, have a longstanding problem simulating these clouds,53

which limits our ability to accurately predict the amount of global warming caused by54

rising greenhouse gas emissions (Bony and Dufresne, 2005; Sherwood et al., 2020).55

A major issue, which persisted in previous generations of climate models of the World56

Climate Research Programme’s Coupled Model Intercomparison Project (CMIP), is known57

as the ‘too-few, too bright’ tropical low-cloud problem (Nam et al., 2012). In brief, cli-58

mate models commonly underestimated the amount of tropical and subtropical low-level59

clouds (e.g., Teixeira et al. 2011; Cesana and Chepfer, 2012; Cesana and Waliser, 2016;60

Cesana et al., 2019c) and simultaneously overestimated their reflectance (e.g., Weare,61

2004; Karlsson et al., 2008; Nam et al., 2012). In the present study we revisit the ‘too-62

few, too bright’ tropical low-cloud problem in latest climate models participating in phase63
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6 of CMIP (CMIP6; Eyring et al., 2016), which are currently being evaluated as a com-64

munity effort (Schuddeboom and McDonald, 2021; Tselioudis et al., 2021).65

Satellite observations have been regularly exploited to assess the fidelity of climate66

models (e.g., Pincus et al., 2008; Jiang et al., 2012; Cesana and Chepfer, 2012; Cesana67

et al., 2019c), being especially valuable due to their extensive coverage. Evaluating clouds68

(and other fields) simulated by global climate models (GCMs) using satellite observa-69

tions, however, is challenging, because satellite-borne instruments do not directly mea-70

sure meteorological quantities of interest as simulated by GCMs. In order to facilitate71

the comparison between observed and model-simulated fields, the Cloud Feedback Model72

Intercomparison Project (CFMIP) community introduced the CFMIP Observation Sim-73

ulator Package (COSP; Bodas-Salcedo, 2011; Swales et al., 2018). Given the atmospheric74

data provided by a GCM, the COSP software reproduces observations of multiple instru-75

ments on board of various satellite missions such as CloudSat (Stephens et al., 2002) and76

Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; Winker77

et al., 2010) within the A-train constellation (Stephens et al., 2002, 2018).78

To summarize, the objective of the present study is to employ satellite observations79

to evaluate tropical low clouds together with their radiative effect at the top of the at-80

mosphere (TOA) in a subset of CMIP6 models. In particular, we strive to assess model81

representation of individual low-cloud regimes commonly found in tropical areas of large-82

scale subsidence − namely the eastern ocean stratocumulus (Sc) and trade wind shal-83

low cumulus (Cu). These essentially contrasting cloud types are driven by a distinct in-84

terplay of small-scale processes within the moist marine boundary layer − convection,85

turbulence, radiation and cloud microphysics (Ackerman et al., 1993, 2000, 2009; Ack-86

erman and Toon, 1996; Stevens et al., 2001), which are often poorly and inconsistently87

parameterized across climate models (Randall et al., 2003; Stevens and Bony, 2013; Bony88

et al., 2015; Klein et al., 2017). A cloud-regime-oriented model evaluation would help89

identify shortcomings of physical parameterization schemes, which govern the formation90

and evolution of Sc and Cu clouds, and is thus a crucial first step towards more reliable91

climate change projections. Furthermore, Sc and Cu clouds exhibit a fundamentally con-92

trasting response to the change in their controlling meteorological factors such as rising93

sea surface temperature and low-level inversion strength and are associated with differ-94

ent feedbacks (Cesana and Del Genio, 2021), which highlights the importance of a regime-95

based investigation. Accurate representation of geographical distributions of Sc and Cu96

clouds is thereby essential for realistic low-cloud feedbacks (Cesana and Del Genio, 2021).97

To carry out such a cloud regime-oriented evaluation of climate models, however,98

one has to find a qualitative way to separate Sc from Cu, because CMIP diagnostics do99

not distinguish between stratiform and convective cloud covers. A classic way to sepa-100

rate Sc from Cu clouds in tropical and subtropical areas of large-scale subsidence is by101

means of the estimated inversion strength (EIS), which is known to be a good predic-102

tor of stratocumulus (Wood and Bretherton, 2006). Even though this approach gener-103

ally works well in the real world, it has limitations when applied to climate models which104

misrepresent EIS. An important aim of the present work is to introduce a novel Sc-Cu105

categorization, which can be utilized to reliably separate contributions from Sc and Cu106

clouds in both observations and climate models.107

The remainder of this paper is structured as follows. Section 2 presents observa-108

tional, reanalysis and CMIP6 data as well as various approaches to discriminate Sc from109

Cu. The evaluation of climate models using the Sc-Cu categorization introduced in this110

study is carried out in Section 3. A brief summary and concluding remarks are given in111

Section 4.112
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2 Data and Methods113

2.1 Satellite observations and reanalysis data114

We utilize low-cloud cover (LCC) observations from the GCM-Oriented CALIPSO115

Cloud Product version 2.9 (CALIPSO-GOCCP; Chepfer et al., 2010, Cesana et al., 2016),116

which was specifically designed to evaluate cloudiness simulated by GCMs using a lidar117

simulator. It is based on measurements taken by the CALIPSO Cloud-Aerosol Lidar with118

Orthogonal Polarization (CALIOP, Winker et al., 2010). We restrict our analysis to sub-119

sidence regimes over tropical and subtropical oceans (between 35S and 35N), where the120

pressure vertical velocity at 500 hPa exceeds 10 hPa day−1. In these regions the amount121

of high-cloud is small and hence generates less attenuation of the lidar signal, thereby122

reducing the high-cloud shielding effect.123

To discriminate Sc from Cu we use the recently created Cumulus And Stratocu-124

mulus CloudSat-CALIPSO Dataset (CASCCAD) described in detail by Cesana et al.125

(2019b). This unique algorithm considers cloud morphology to classify low cloudiness126

into several categories including Sc, Cu and various transitioning regimes (broken Sc, Cu127

under Sc, and Cu with stratiform outflow) at the orbital level. CASCCAD reports monthly128

values of cloud fraction over a 10-year period (2007−2017) and has a spatial resolution129

of 2.5 degrees in both latitudinal and longitudinal directions.130

The observed cloud-radiative effect (CRE) estimates at TOA are obtained from the131

Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled132

(EBAF) satellite product Ed. 4.1 (Loeb et al., 2018). Specifically, the CERES-EBAF133

clear-sky and all-sky radiative fluxes are employed to compute the CRE. We consider134

solely the short-wave (SW) CRE component, since low clouds contribute minorly to the135

long-wave TOA radiation budget.136

The middle-tropospheric pressure vertical velocity at 500 hPa, which is used to de-137

fine the subsidence regimes, is derived from averaging three reanalysis datasets includ-138

ing Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-139

2), the fifth generation of ECMWF reanalysis (ERA-5) and the NCEP Department of140

Energy Atmospheric Model Intercomparison Project reanalysis (NCEP-DOE R-2). The141

same three reanalysis datasets are employed to compute EIS. All data were regridded142

to the CASCCAD spatial grid.143

2.2 Climate models144

We analyze monthly mean output of CMIP6 climate model experiments, which re-145

late to the Atmospheric Model Intercomparison Project (AMIP) using a prescribed sea146

surface temperature. The CALIPSO lidar simulator (Chepfer et al., 2008) integrated in147

COSP is employed to consistently compare low cloudiness in observations and climate148

models. We investigate the realism of 12 model configurations stemming from different149

modeling centers given in Table 1, which provided the output of CALIPSO lidar sim-150

ulator. To address the atmospheric variability within a vast GCM grid column, the COSP151

instrument simulator operates on a multitude of homogeneous subcolumns to reproduce152

satellite pixel variability. These subcolumns are normally produced within COSP in ac-153

cordance with GCM’s assumptions for subgrid cloud structure utilizing the Subgrid Cloud154

Overlap Profile Sampler (Webb et al., 2001). A few GCMs from the analyzed set em-155

ploy COSP2 (Swales et al., 2018), whereby subcolumns can be adopted directly from a156

GCM, since they are often stochastically generated (Räisänen et al., 2004) within model’s157

radiation scheme such as the commonly employed McICA algorithm (Pincus et al., 2003).158

We employ 8 years of CMIP6 simulations (2007−2014), which overlap with the CASC-159

CAD temporal range and regrid them to the observational spatial grid.160
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Model acronym Modeling center Reference

NorESM2-LM Norwegian Climate Center, Norway Seland et al. (2020)

MIROC6 Center for Climate System Research, Japan Tatebe et al. (2019)

GISS-E2-1-G NASA Goddard Institute for Space Studies, USA Kelley et al. (2020)

BCC-CSM2-MR Beijing Climate Center, China Wu et al. (2019)

MRI-ESM2-0 Meteorological Research Institute, Japan Yukimoto et al. (2019)

GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory, USA Held et al. (2019)

IPSL-CM6A-LR Institute Pierre Simon Laplace, France Boucher et al. (2020)

CNRM-CM6-1 National Centre for Meteorological Research, France Voldoire et al. (2019)

CESM2 National Center for Atmospheric Research, USA Danabasoglu et al. (2020)

E3SM-1-0 US Department of Energy, USA Golaz et al. (2019)

HadGEM3-GC31-LL Met Office Hadley Centre, UK Andrews et al. (2020)

CanESM5 Centre for Climate Modeling and Analysis, Canada Swart et al. (2019)

Table 1. List of analyzed CMIP6 models.

2.3 Approaches to discriminate Sc from Cu161

As pointed out in the Introduction it is challenging to evaluate the representation162

of Sc and Cu in climate model output, since only a single low-cloud cover variable is archived163

in the CMIP database. In the following we first summarize the traditional approach to164

separate Sc from Cu based on environmental characteristics and subsequently present165

an alternative, new categorization.166

2.3.1 Categorization based on EIS167

A traditional approach to differentiate between individual low-cloud regimes in trop-168

ical and subtropical areas governed by large-scale subsidence is by means of some mea-169

sure of lower-tropospheric stability (e.g., Nam et al., 2012; Myers et al., 2021), since re-170

gions of the main stratocumulus decks off the west coast of the continents are associated171

with stronger atmospheric stability than shallow cumulus areas in the trade winds. A172

convenient parameter to describe low-level atmospheric stability is the estimated inver-173

sion strength (Wood and Bretherton, 2006) and an EIS threshold of 1 K − despite be-174

ing imperfect (Cesana and Del Genio, 2021) − was commonly employed in previous work175

to determine whether (model) grid box is classified as being either Sc- or Cu-dominated176

(e.g., Myers et al., 2021).177

This categorization has additional shortcomings when applied to climate models.178

Figure 1 (left) shows probability density of EIS in averaged renalysis (combining MERRA-179

2, ERA-5, NCEP data) and CMIP6 models. All analyzed models systematically under-180

estimate EIS implied by reanalyses, although they relatively well capture the shape of181

the EIS distribution. This large underestimation of EIS in CMIP6 models implies that182

the traditional Sc-Cu categorization utilizing a fixed EIS threshold of 1 K tends to al-183

locate an insufficient amount of LCC to the Sc component, while attributing an exces-184

sive amount of LCC to the Cu component in models.185

Figure 1 (right) additionally visualizes LCC as a function of EIS derived from ob-186

servations/reanalyses and CMIP6 models. Observed LCC increases with an approximately187

constant rate of about 5 % per K of EIS rise. Models have a differing ability to repro-188

duce the rate of this increase, whereby multiple models strongly misrepresent the LCC-189

EIS relationship, making EIS not the ideal choice for discriminating among cloud types.190
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Figure 1. Left: Probability density functions of estimated inversion strength in subsidence

regimes of tropical oceans derived from reanalyses and CMIP6 models. Right: Relationship be-

tween LCC and EIS in observations/reanalyses and CMIP6 models. The vertical dashed line at

EIS of 1 K marks the common threshold used to discriminate Sc from Cu.

2.3.2 Categorization based on LCC191

Herein we propose a new approach to discriminate Sc from Cu, which is based on192

cloud properties and thus alleviates the aforementioned problem. This categorization orig-193

inates from the idea that overcast Sc scenarios typically have larger cloud cover than bro-194

ken Cu cloud fields. In particular, we utilize the averaged LCC in tropical subsidence195

oceanic regions in each monthly time step to determine whether the grid box is domi-196

nated by Sc or Cu. The observed Sc- and Cu- cloud cover distributions derived from CASC-197

CAD exhibit a crossover at this threshold. It should be noted that throughout this work198

we incorporate CASCCAD transitioning regimes into the Sc component, whereby their199

contribution to Sc cloud cover is small (Cesana et al., 2019b). This action is further jus-200

tified by the fact that Sc-Cu transitioning categories (“broken Sc”, “Cu under Sc”, “Cu201

with stratiform outflow”) overall show a greater resemblance to the pure Sc- than to the202

pure Cu-category when comparing their morphological characteristics (Cesana et al., 2019b)203

as well as optical properties (Pincus et al., 1999).204

Figure 2 evaluates geographical distributions of Sc- and Cu-cloud cover created with205

the novel Sc-Cu categorization being applied to CALIPSO-GOCCP observations of LCC.206

The benchmark Sc- and Cu-cloud cover components are obtained from CALIPSO-GOCCP207

utilizing the relative frequency of occurrence (RFO) of a given cloud type derived from208

CASCCAD (e.g., RFOSc; whereby RFOCu = 1−RFOSc) to determine whether grid209

box is classified as being either Sc-dominated (RFOSc > 0.5) or Cu-dominated (RFOSc ≤210

0.5). Both reconstructed cloud-type distributions show a good match with their bench-211

mark counterparts derived from CASCCAD.212

Both Sc-Cu categorizations perform similarly well when applied to observational213

LCC dataset (Supplementary Text 1). There is indeed some ambiguity about the out-214

come of the two categorizations when employed in climate models. It should thereby be215

noted that we utilize a model-dependent LCC threshold when employing a new catego-216

rization in GCMs. We next proceed with a regime-oriented validation of CMIP6 mod-217

els using the new Sc-Cu categorization (Section 3). Finally, Supplementary Text 3 briefly218

compares the two categorizations in models.219
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Figure 2. Evaluation of reconstructed cloud-type distributions obtained with novel Sc-Cu dis-

crimination utilizing a dynamic LCC threshold, being applied to CALIPSO-GOCCP observations

of LCC. Benchmark Sc- and Cu- cloud cover components are derived from CASCCAD.

3 Results and Discussion220

3.1 Spatial patterns of LCC and shortwave CRE221

Figure 3 compares geographical distributions of low-cloud type climatology in sub-222

sidence areas of tropical oceans as simulated by the CMIP6 multimodel mean with CALIPSO-223

GOCCP observations. It is clear that latest climate models still struggle representing224

low cloudiness: on average, LCC in both Sc- and Cu-regions is strongly underestimated.225

The absolute bias reaches up to 30 % in Sc-regions and up to 15 % in Cu-regions. The226

CMIP6 models, on average, approximately capture geographical locations of the two regimes;227

namely stratocumulus decks off the west coast of the continents and shallow cumuli scat-228

tered further west over the open ocean. Nevertheless, the inspection of the relative fre-229

quency of occurrence of a given cloud type (e.g., RFOSc, Fig. 3; bottom row) reveals ar-230

eas where models simulate inadequate amount of a particular cloud type relative to low231

clouds compared to observations.232

Figure 4 compares the corresponding shortwave cloud-radiative effect at TOA as233

simulated by the CMIP6 multimodel mean with CERES observations. The negative CRE234

field implies a cooling effect of low clouds on climate throughout tropical oceans, although235

the pattern is by far not uniform. Instead, it markedly reflects the presence of individ-236

ual cloud regimes: it stems predominantly from Sc-regions, whereas it is smaller in Cu-237

regions. The CMIP6 models, on average, overestimate the magnitude of the observed238

negative CRE throughout the majority of tropical oceans. Figures S3 and S4 addition-239

ally show geographical distributions of LCC and CRE decomposed into Sc- and Cu-components240

as simulated by individual CMIP6 models.241

Figure 5 evaluates spatial patterns of simulated LCC and SW CRE against obser-242

vations with the aid of Taylor diagrams (Taylor, 2001). They concurrently display mul-243

tiple metrics including normalized standard deviation and spatial correlation coefficient,244

whereby the anomalies are computed relative to the total mean (8-year period). It is ap-245

parent that CMIP6 models struggle capturing geographical distributions of LCC and CRE246

in both Sc- and Cu-regions of tropical oceans. Nevertheless, the correlation coefficient247

between the modeled and observed field is mostly higher in Sc-regions than in Cu-regions,248

which is evident for both LCC and CRE. Noteworthy, all models underestimate the ob-249

served variability of LCC in both Sc- and Cu-regions, with the exception of IPSL-CM6A-250

LR, which is in closest agreement with observations. The variability of simulated CRE251
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Figure 3. Geographical distributions of low-cloud type in CALIPSO-GOCCP observations

and CMIP6 multimodel mean. Bottom left and middle panels visualize RFOSc: regions shaded

red are dominated by Sc, while regions shaded blue are dominated by Cu. The right column

shows the corresponding difference between the CMIP6 multimodel mean and observations.
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Figure 4. Geographical distributions of SW CRE associated with each low-cloud regime in

CERES observations and CMIP6 multimodel mean as well as the corresponding difference.

generally shows a better match with observations, whereby normalized standard devi-252

ations commonly lie in the range between 0.8 and 1.2. The most noticeable outlier is MIROC6,253

which significantly overestimates the variability in both Sc- and Cu-regions. We iden-254

tify further contrasting findings for Sc- and Cu-regimes, whereby models mostly under-255

estimate the observed variability of CRE in Cu-regions, whereas they tend to overesti-256

mate it in Sc-regions. These results exemplify there are other factors than LCC which257

profoundly affect the CRE bias.258

3.2 Relationship between LCC and shortwave CRE259

Figure 6 (top) additionally displays probability density functions (PDFs) of LCC260

in subsidence regimes of tropical oceans. The division of the latter into Sc- and Cu-components261

reveals that models simulate strongly biased LCC distribution within each of the two262

regimes. Specifically, the observed PDF peaks at approximately 55 and 35 % within Sc-263

and Cu-regions, respectively. Contrarily, model PDFs generally peak in the range be-264

tween 20 and 40 % in Sc-regions, whereas they predominantly peak between 5 and 30 %265

in Cu-regions. We further note that the shape of simulated distributions is highly vari-266

able across the CMIP6 ensemble. The best-performing model is CanESM5, which fairly267
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Figure 5. Taylor diagrams evaluating simulated LCC (left) and SW CRE (right) in Sc- and

Cu-regions of tropical oceans.

well captures the observed distributional peak and shape in Sc- and Cu-regions. Figure268

S5 offers an alternative visualization of these results.269

We next investigate the relationship between LCC and SW CRE shown in Fig. 6270

(bottom). As expected the observed amount of reflected sunlight and hence the mag-271

nitude of negative SW CRE increases with increasing LCC. Noteworthy, the observed272

rate of increase is larger in Sc- than in Cu-regions. The observed nonlinear relationship273

between LCC and CRE is generally attributed to the increasing liquid water path with274

increasing LCC. Črnivec and Mayer (2019), as an illustration, investigated a shallow cu-275

mulus cloud field rising into stratocumulus and showed that both cloud cover and liq-276

uid water path concurrently increase with the simulation time.277

Remarkably, all climate models overestimate the magnitude of negative SW CRE278

at a given LCC (by up to a factor of 2 to 3), which is evident throughout the entire range279

of LCC. This is consistent with findings of Nam et al. (2012) and implies that tropical280

low cloudiness in CMIP6 models remains too bright. The latter bias might be attributed281

to the inappropriate amount of averaged liquid water content, which is thus likely over-282

estimated in models, as well as to other factors such as the parameterization of subgrid283

cloud variability and optical properties within the radiation scheme. CanESM5, which284

best captures the observed PDF of LCC, also exhibits the smallest bias in reflectance285

within both Sc- and Cu-regions. This is again in line with Nam et al. (2012), who pointed286

out that previous version of the Canadian GCM (CanAM4) incorporating proficient pa-287

rameterizations of subgrid cloud structure, was the model that minimized the overesti-288

mation of negative CRE among their set of analyzed CMIP5 members. BCC-CSM2-MR289

exhibits the largest CRE bias in Sc-regions, while in Cu-regions MIROC6 shows the largest290

discrepancy from observations. Studies exploiting a rich combination of measurements291

(Pincus et al., 1999) and large-eddy-simulations (Črnivec and Mayer, 2020, 2021) reveal292

that Sc and Cu own distinct internal inhomogeneity characteristics. The contrasting het-293

erogeneity of stratiform and convective clouds is not yet properly addressed within ra-294

diation schemes of current GCMs.295
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Figure 6. Top: Probability density functions of LCC derived from observations and CMIP6

models in subsidence regimes of tropical oceans as well as separately in regions dominated by Sc

and Cu. Bottom: The corresponding mean 2D histograms of LCC and SW CRE.

3.3 LCC error decomposition296

To gain further insight into cloud biases it is convenient to decompose overall LCC297

model error of a specific cloud regime (r) into various components as follows (e.g., Schud-298

deboom and McDonald, 2021):299

δLCCr = LCCobs
r ∆RFOr +RFOobs

r ∆LCCr + ∆LCCr∆RFOr, (1)

where the relative frequency of occurrence RFOr is the rate at which given cloud regime300

occurs; ∆RFOr = RFOmod
r −RFOobs

r and ∆LCCr = LCCmod
r −LCCobs

r capture the301

difference between model and observations. Thus the three terms on the right-hand side302

of Eq. 3.3 represent the error due to RFO, the error due to mean LCC magnitude (LCC)303

and finally the error covariance term.304

Figure 7 shows results of the overall LCC error decomposition according to Eq. 3.3305

within each of the two regimes (Sc, Cu), highlighting the complex nature of cloud biases306

among individual CMIP6 ensemble members. As anticipated the error covariance is gen-307

erally small, therefore solely RFO and LCC errors are discussed in the following. De-308

spite the fact that each model is subjected to its unique problematics, it is possible to309

draw several interesting conclusions.310

The majority of models underestimate RFO of Sc, whereas they overestimate RFO311

of Cu (MRI-ESM2-0, GISS-E2-1-G, BCC-CSM2-MR, HadGEM3-GC31-LL, CESM2, GFDL-312

CM4, NorESM2-LM). The apparent outlier in this regard is MIROC6, which is in line313

with Williams and Tselioudis (2007), who showed that two previous versions of MIROC6314

also considerably overestimated RFO of tropical stratocumulus and simultaneously lacked315

shallow cumulus regime. There are a few models where the RFO error of both Sc and316

Cu is essentially zero (particularly CanESM5, IPSL-CM6A-LR, CNRM-CM6-1).317
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Figure 7. The LCC error in subsidence areas of tropical oceans within Sc- and Cu-regions

decomposed into errors stemming from RFO, LCC and covariance.

Remarkably, all models underestimate LCC within Sc- and Cu-regions (except IPSL-318

CM6A-LR, which however exhibits a negligible bias in Sc-region). Climate models that319

most strongly underestimate the mean Sc- and Cu-cloud cover are BCC-CSM2-MR, CNRM-320

CM6-1, CESM2, GFDL-CM4, GISS-E2-1-G and NorESM2-LM. In this subset of mod-321

els the LCC error exceeds 10 % within either of the two regimes.322

In the following discussion we strive to provide some physical explanations for the323

aforementioned erroneous model behavior. Climate models frequently lack the inclusion324

of realistic moist processes within their planetary boundary layer (PBL) parameteriza-325

tions (e.g., Cesana et al., 2019a), which affects their ability to sustain low clouds. As an326

illustration, the problem with the lack of Sc in GISS-E2-1-G was largely resolved in the327

next iteration of the GISS model, whereby the moist turbulence scheme of Bretherton328

and Park (2009) was newly implemented. One should also keep in mind that the under-329

estimation of low cloudiness can partially stem from the shielding effect of high clouds,330

which might be overestimated in some models compared to observations, although we331

filter subsidence regimes to minimize this problem.332
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The best performing model overall is CanESM5, which exhibits a zero bias in RFO333

and only a minor bias in LCC within both Sc- and Cu-regions. Recall that CanESM5334

remarkably well matches the observed relationship between LCC and EIS (Fig. 1). The335

IPSL-CM6A-LR model, moreover, has a negligible error in RFO and LCC within the336

Sc-regime. This is in agreement with Madeleine et al. (2020) who showed that the rep-337

resentation of low-level clouds (and their reflectance) in the IPSL-CM6 model has con-338

siderably improved compared to the previous model version participating in CMIP5. How-339

ever, it is important to bear in mind that this apparent model improvement could be a340

consequence of model tuning, whereby the same observational datasets of LCC and CRE341

employed for the present model validation were used at IPSL to adjust free model pa-342

rameters in an attempt to match the observed fields of clouds and radiation (Hourdin343

et al., 2019). Figure 1 indeed reveals that in the IPSL-CM6A-LR model LCC grows too344

strongly with EIS, which acts to offset the great lack of EIS in this model, so that the345

LCC error is eventually small.346

We furthermore revisited a question, whether the McICA noise could lead to no-347

table LCC biases in climate models containing the McICA radiation scheme (NorESM2-348

LM, GFDL-CM4, CESM2, E3SM-1-0, HadGEM3-GC31-LL, CanESM5). We found no349

evidence that the random noise generated by McICA is responsible for a notable under-350

estimation of LCC, which is consistent with previous work examining older generation351

of GCMs (e.g., Barker et al., 2008). We also found no relationship between low-cloud352

biases in the present-day climate and equilibrium climate sensitivity.353

4 Summary and conclusions354

Low clouds are ubiquitous in the tropics and intensely cool the Earth’s climate, thus355

it is of tremendous importance to properly capture this effect in climate models. The356

overall objective of this study was to employ satellite observations to evaluate the rep-357

resentation of marine tropical stratocumulus and shallow cumulus and their impact on358

the Earth’s radiation budget in a subset of latest climate models in the present-day cli-359

mate. To that end, we first introduced a new approach to discriminate Sc from Cu based360

on a dynamic LCC threshold. The new Sc-Cu categorization proved to work well when361

applied to CALIPSO-GOCCP observations of LCC, validated against proper Sc- and Cu-362

components derived from the Cumulus And Stratocumulus CloudSat-CALIPSO Dataset.363

Compared to the traditional approach for establishing low-cloud regimes utilizing a fixed364

threshold of EIS, the new Sc-Cu categorization is more reliable when analyzing climate365

models, since the latter systematically underestimate EIS implied by multiple reanal-366

ysis datasets and generally misrepresent the relationship between EIS and LCC.367

Utilizing the newly proposed Sc-Cu categorization we then assessed models’ fidelity368

to represent Sc and Cu together with their radiative effect at the top of the atmosphere369

in the present-day climate. We thereby analyzed a suite of twelve state-of-the-art climate370

models stemming from various modeling centers participating in phase 6 of CMIP. We371

restricted our analysis on subsidence regimes over tropical oceans, where low clouds are372

not obscured by mid- and high-level clouds. We found that CMIP6 models underesti-373

mate the cloud cover in both Sc- and Cu-dominated regions of tropical oceans. A more374

detailed inspection of cloud biases revealed that most climate models underestimate RFO375

of Sc and overestimate RFO of Cu. We further showed that tropical low cloudiness in376

CMIP6 models remains too bright.377

The results of the present study are in line with a recent work by Konsta et al. (2022),378

who demonstrated that low-level marine tropical clouds in six CMIP6 models are too379

few and too bright, but also too compact and too homogeneous. The present study ex-380

tends the results of Konsta et al. (2022) by evaluating twelve CMIP6 models and by dis-381

criminating stratocumulus and shallow cumulus regimes. All in all, these findings im-382
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ply that contemporary climate models are still subjected to notable biases in clouds and383

radiation, which should fuel further climate model development.384

5 Open Research385

The CASCCAD dataset is available at GISS website (https://data.giss.nasa.gov/clouds/casccad/).386

CERES-EBAF 4.0 shortwave TOA radiative fluxes were downloaded from the CERES387

website (https://ceres.larc.nasa.gov/data/#energy-balanced-and-filled-ebaf). ERA5 data388

were downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-389

era5-single-levels-monthly-means?tab=form and https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-390

era5-pressure-levels-monthly-means?tab=form. NCEP-DOE R2 data were downloaded391

from the NOAA ESRL Physical Sciences Division website (http://www.esrl.noaa.gov/psd/data/).392

The CMIP6 output was downloaded from the ESGF (https://esgf-node.llnl.gov/search/cmip6/).393
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