Association of corticosteroid inhaler type with saliva microbiome in moderate-to-severe pediatric asthma Background Metered dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs. Methods Saliva samples collected from 143 children (6-17 yrs) with moderate-to-severe asthma across four European countries (the Netherlands, Germany, Spain, and Slovenia) as part of the SysPharmPediA cohort were subjected to 16S rRNA sequencing. Microbiome was compared using global diversity (α and β) between two groups of participants based on inhaler devices (MDI (n=77) and DPI (n=65)) and differential abundance was compared using the Analysis of Compositions of Microbiomes with the Bias Correction (ANCOM-BC) method. Results No significant difference was observed in α-diversity between the two groups. However, β-diversity analysis revealed significant differences between groups using both Bray-Curtis and weighted UniFrac methods (Adjusted p-value=0.015 and 0.044, respectively). Significant differential abundance between groups, with higher relative abundance in the MDI group compared to the DPI group, was detected at the family level [Carnobacteriaceae (Adjusted p=0.033)] and at the genus level [ Granulicatella (Adjusted p=0.021) and Aggregatibacter (Adjusted p=0.011)]. Conclusion Types of ICS devices are associated with different saliva microbiome composition in moderate-to-severe pediatric asthma. The causal relation between inhaler types and changes in saliva microbiota composition needs to be further evaluated, as well as whether this leads to different potential adverse effects in terms of occurrence and level of severity.

Kian Fan Chung

and 15 more

Background. Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. Methods. Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data was analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). Results. α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and β-diversities were stable at one year. Conclusions. Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 Type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.