CONFLICT OF INTERSET
Authors declare that they have no competing interests.
DATA ACCESSIBILITY STATEMENT
We are willing to upload our experimental data to Dryad Digital Repository, if our manuscript are accepted.
References:
Aldezabal, A., Moragues, L., Odriozola, I., & Mijangos, I. (2015). Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecololgy , 96 , 251-260.
Averill, C., Anthony, M. A., Baldrian, P., Baldrian, P., Finkbeiner, F., van den Hoogen, L., … & Crowther, T. W. (2022). Defending Earth’s terrestrial microbiome. Nature Microbiology .
Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature , 515 , 505-511.
Byrnes, R. C., Eastburn, D. J., Tate, K. W., & Roche, L. M. (2018). A global meta-analysis of grazing impacts on soil health indicators.Journal of Environmental Quality , 47 , 758-765.
Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.FEMS Microbiology Ecology , 68 , 1-13.
Cesco, S., Neumann, G., Tomasi, N., Pinton, R., & Weisskopf, L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil , 329 , 1-25.
Chaudhary, D. R., Gautam, R. K., Yousuf, B., Mishra, A., & Jha, B. (2015). Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Applied Soil Ecology ,91 , 16-26.
Chen, D., Saleem, M., Cheng, J., Mi, J., Chu, P., Tuvshintogtokh, I., … & Bai, Y. (2019). Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau. Functional Ecology, 33 , 1561-1571.
Costa, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., & Smalla, K. (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 56 , 236-249.
Coban, O., De Deyn, G. B., & van der Ploeg, M. (2022). Soil microbiota as game-changers in restoration of degraded lands. Science ,375 , eabe0725.
Curl, E. A., & Truelove, B. (1986). The rhizosphere. Springer Berlin Heidelberg.
De Deyn, G. B., & van der Putten, W. H. (2005). Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20, 625-633.
Dlamini, P., Chivenge, P., & Chaplot, V. (2016). Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agriculture, Ecosystem & Environment, 221, 258-269.
Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E., & Watt, M. (2015). Evolution of bacterial communities in the wheat crop rhizosphere.Environmental Microbiology, 17 , 610-621.
Dwivedi, D., Riley, W. J., Torn, M. S., Spycher, N., Maggi, F., & Tang, J. Y. (2017). Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biololgy and Biochemsitry, 107 , 244-259.
Eldridge, D. J., Delgado-Baquerizo, M., Travers, S. K., Val, J., Oliver, I., Kardol, P. (2017). Do grazing intensity and herbivore type affect soil health? Insights from a semi-arid productivity gradient.Journal of Applied Ecology, 54 , 976-985.
Edgar, R. C., Hass, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics, 27 , 2194-2200.
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nature Methods, 10, 996-998.
Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., … & Chu, H. (2017). Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields.Soil Biology and Biochemistry, 113, 275-284.
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
Giese, M., Brueck, H., Gao, Y., Lin, S., Steffens, M., Kögel-Knabner, i., … & Han, X. (2013). N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects.Ecological Monographs , 83, 195-219.
Hamilton, E. W., & Frank, D. A. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402.
Han, G., Hao, X., Zhao, M., Wang, M., Ellert, B. H., Willms, W., & Wang, M. (2008). Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystem, & Environment, 125, 21-32. https://doi.org/10.1016/j.agee.2007.11.009
Han, W., Fang, J., Guo, D., & Zhang, Y. (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
Hartmann, A., Schmid, M., Tuinen, D. V., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235-257.
Hu, H., Chen, X., Hou, F., Wu, Y., & Cheng, Y. (2017). Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities. Frontiers in Microbiology, 8, 606.
Hu, L., Robert, C. A., Cadot, S., Zhang, X., Ye, M., Li, B., … & Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9,1-13.
Huang, H. (2021). linkET: Everything is Linkable. R package version: 0.0.5.https://github.com/Hy4m /linkET
Jiang, S., Ling, N., He, J., Ma, Z., & He X. (2021). Short-term warming increases root-associated fungal community dissimilarities among host plant species on the Qinghai-Tibetan Plateau. Plant and Soil, 466, 597-611.
Kemp, D. R., Han, G., Hou, X., Michalk, D. L., Hou, F., Wu, J., & Zhang, Y. (2013). Innovative grassland management systems for environmental and livelihood benefits.Proceedings of the National Academy of Sciences, 110, 8369-8374.
Kobayashi, T., Hori, Y., & Nomoto, N. (1997). Effects of trampling and vegetation removal on species diversity and micro-environment under different shade conditions. Journal of Vegetaion Science, 8, 873-880.
Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F., Bahram, M., … & Larsson, K. H. (2013). Towards a unified paradigm for sequence-based identification of fungi.Molecular Ecology, 22, 5271-5277.
Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. (2021). Generalizing hierarchical and variation partitioning in multiple regression and canonical analysis using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338, 483-495.
Leff, J. W., Jones, S. E., Prober, S. M. , Barberan, A., Borer, E. T., Firn, J. L., …& Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 112, 10967-10972.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet. Journal, 17, 10-12.
McNaughton, S. J.(1979). Grazing as an optimization process: grass ungulate relationships in the Serengeti. The American Naturalist, 113(5), 691–703.
Mueller, P., Granse, D., Nolte, S., Do, H. T., Weingartner, M., Hoth, S., & Jensen, K. (2017). Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils. Ecological Applications, 27,1435-1450.
Nan, J., Chao, L., Ma, X., Xu, D., Mo, L., Zhang, X., … & Bao, Y. (2020). Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands. Global Ecology and Conservation, 22, e00992.
Nie, Y., Wang, M., Zhang, W., Ni, Z., Hashidoko, Y., & Shen, W. (2018). Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment.Science of The Total Environment, 624, 407-415.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … & Wagner, H. (2020). vegan: Community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Qu, T., Du, W., Yuan, X., Yang, Z., Liu, D., Wang, D., Yu, L. (2016). Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PLoS One, 11 , e0159680.
R Core Team., 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://doi.org/http://www.r-project.org/index.html
Rousk, J., & Bååth, E. (2011). Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology, 78, 17-30.
Schöps, R., Goldmann, K., Herz. K., Lentendu, G., Schöning, I., Bruelheide, H., … & Buscot, F. (2018). Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Frontiers in Microbiology,2711.
Sterkenburg, E., Bahr, A., Brandstrom Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2015). Changes in fungal communities along a boreal forest soil fertility gradient.New Phytologist, 207, 1145-1158.
Suttie, J. M., Reynolds, S. G., & Batello, C. (2005). Grasslands of the World. Food & Agriculture Organization of the United Nations, Plant Production and Protection Series (Food and Agriculture Organization, Rome) No. 34.
Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Repports, 7, 1-9.
US Geological Survey (2001) National Geochemical Database: Soil Data from the PLUTO Geochemical Database. http://minerals.usgs.gov/sddp/data/soilsPLUTO.zip
van de Koppel, J., Rietkerk, M., & Weissing, F. J. (1997). Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems.Trends in Ecology & Evolution, 12, 352-356.
van Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., … & Sanders, I. R. (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
Wang, Z., Ding, Y., Jin, K., Struik, P. C.,Sun, S., Ji, B., … & Li, X. (2021a) Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities. European Journal of Soil Science, 73, e13195.
Wang, R., Yang, J., Liu, H., Sardans, J., Zhang, Y., Wang, X., … & Jiang, Y. (2021b). Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral‐bound soil phosphorus in grasslands.Ecology, 103, e3616.
Wang, Z., Jiao, S., Han, G., Zhao, M., Ding, H., Zhang, X., … & Liu, Y. (2014). Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland. Environmental Management, 53,266-273.
Yang, F., Niu, K., Collins, C. G., Yan, X., Ji, Y., Ling, N., … & Hu, S. (2018). Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow. Land Degradation & Development, 30, 49-59.
Yang, Y., Chen, S., Wu, X., Syed, S. I., Syed, I. U. S., Huang, B., … & Wang, D. (2021). Grazing affects bacterial and fungal diversities and communities in the rhizosphere and endosphere compartments of Leymus chinensisthrough regulating nutrient and ion distribution. Microorganisms, 9, 476.
Zhang, H., & Fu, G. (2020). Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degradation & Development, 32(4), 1821-1832. https://doi.org/10.1002/ldr.3835
Zhang, G., Huang, J., Jia, M., Huang, W., Sui, X., Wang, Z., & Han, G. (2019). Effect of grazing intensities on bacterial community composition and diversity in rhizosphere and non-rhizosphere soils in desert steppe of China. Chilean Journal of Agriculture Research, 79, no.4.
Zhang, R., Wang, Z., Niu, S., Tian, D., Wu, Q., Gao, X., … & Han, G. (2021). Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Science of Total Environment , 776 , 145730.
Zhang, Y., Gao, X., Hao, X., Alexander, T. W., Shi, X., Jin, L., & Thomas, B. W. (2020). Heavy grazing over 64 years reduced soil bacterial diversity in the foothills of the Rocky Mountains, Canada. Applied Soil Ecology, 147,103361.
Zhang, Y., Hao, X., Alexander, T., Thomas, B., Shi, X., & Lupwayi, N. Z. (2018). Long-term and legacy effects of manure application on soil microbial community composition. Biology and Fertility of Soils, 54, 269-283.
Supplementary information includes Tables S1-S5 and Figs. S1-S2.