CONFLICT OF INTERSET
Authors declare that they have no competing interests.
DATA
ACCESSIBILITY STATEMENT
We
are willing to upload our experimental data to Dryad Digital Repository,
if our manuscript are accepted.
References:
Aldezabal, A., Moragues, L.,
Odriozola, I., & Mijangos, I. (2015).
Impact
of grazing abandonment on plant and soil microbial communities in an
Atlantic mountain grassland. Applied Soil Ecololgy , 96 ,
251-260.
Averill,
C., Anthony, M. A., Baldrian, P., Baldrian, P., Finkbeiner, F., van den
Hoogen, L., … & Crowther, T. W. (2022). Defending Earth’s
terrestrial microbiome. Nature Microbiology .
Bardgett, R. D., & van der Putten, W.
H. (2014).
Belowground
biodiversity and ecosystem functioning. Nature , 515 ,
505-511.
Byrnes, R. C., Eastburn, D. J., Tate,
K. W., & Roche, L. M. (2018).
A
global meta-analysis of grazing impacts on soil health indicators.Journal of Environmental Quality , 47 , 758-765.
Berg, G., & Smalla, K. (2009).
Plant
species and soil type cooperatively shape the structure and function of
microbial communities in the rhizosphere.FEMS
Microbiology Ecology , 68 , 1-13.
Cesco, S., Neumann, G., Tomasi, N.,
Pinton, R., & Weisskopf, L. (2010).
Release
of plant-borne flavonoids into the rhizosphere and their role in plant
nutrition. Plant and Soil , 329 , 1-25.
Chaudhary, D. R., Gautam, R. K.,
Yousuf, B., Mishra, A., & Jha, B. (2015).
Nutrients,
microbial community structure and functional gene abundance of
rhizosphere and bulk soils of halophytes. Applied Soil Ecology ,91 , 16-26.
Chen, D., Saleem, M., Cheng, J., Mi,
J., Chu, P., Tuvshintogtokh, I., … & Bai, Y. (2019).
Effects
of aridity on soil microbial communities and functions across soil
depths on the Mongolian Plateau. Functional Ecology, 33 ,
1561-1571.
Costa, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., & Smalla, K.
(2006).
Effects
of site and plant species on rhizosphere community structure as revealed
by molecular analysis of microbial guilds. FEMS Microbiology
Ecology, 56 , 236-249.
Coban,
O., De Deyn, G. B., & van der Ploeg, M. (2022). Soil microbiota as
game-changers in restoration of degraded lands. Science ,375 , eabe0725.
Curl, E. A., & Truelove, B. (1986).
The rhizosphere. Springer Berlin Heidelberg.
De Deyn, G. B., &
van
der Putten, W. H. (2005). Linking
aboveground and belowground diversity. Trends in Ecology &
Evolution, 20, 625-633.
Dlamini, P., Chivenge, P., &
Chaplot, V. (2016).
Overgrazing
decreases soil organic carbon stocks the most under dry climates and low
soil pH: A meta-analysis shows. Agriculture, Ecosystem &
Environment, 221, 258-269.
Donn, S., Kirkegaard, J. A., Perera,
G., Richardson, A. E., & Watt, M. (2015).
Evolution
of bacterial communities in the wheat crop rhizosphere.Environmental Microbiology, 17 , 610-621.
Dwivedi, D., Riley, W. J., Torn, M.
S., Spycher, N., Maggi, F., & Tang, J. Y. (2017).
Mineral
properties, microbes, transport, and plant-input profiles control
vertical distribution and age of soil carbon stocks. Soil Biololgy
and Biochemsitry, 107 , 244-259.
Eldridge, D. J., Delgado-Baquerizo,
M., Travers, S. K., Val, J., Oliver, I., Kardol, P. (2017).
Do
grazing intensity and herbivore type affect soil health? Insights from a
semi-arid productivity gradient.Journal
of Applied Ecology, 54 , 976-985.
Edgar, R. C., Hass, B. J., Clemente, J. C., Quince, C., & Knight, R.
(2011).
UCHIME improves sensitivity and speed of chimera detection.Bioinformatics, 27 , 2194-2200.
Edgar, R. C. (2013).
UPARSE:
highly accurate OTU sequences from microbial amplicon reads.Nature Methods, 10, 996-998.
Fan, K., Cardona, C., Li, Y., Shi,
Y., Xiang, X., Shen, C., … & Chu, H. (2017).
Rhizosphere-associated bacterial network structure and spatial
distribution differ significantly from bulk soil in wheat crop fields.Soil Biology and Biochemistry, 113, 275-284.
Fierer, N., Bradford, M. A., &
Jackson, R. B. (2007). Toward an ecological classification of soil
bacteria. Ecology, 88, 1354-1364.
Giese, M., Brueck, H., Gao, Y., Lin, S., Steffens, M., Kögel-Knabner,
i., … & Han, X. (2013). N balance and cycling of Inner Mongolia
typical steppe: a comprehensive case study of grazing effects.Ecological Monographs , 83, 195-219.
Hamilton, E. W., & Frank, D. A.
(2001).
Can
plants stimulate soil microbes and their own nutrient supply? Evidence
from a grazing tolerant grass. Ecology, 82, 2397-2402.
Han, G., Hao, X., Zhao, M., Wang, M.,
Ellert, B. H., Willms, W., & Wang, M. (2008).
Effect
of grazing intensity on carbon and nitrogen in soil and vegetation in a
meadow steppe in Inner Mongolia. Agriculture, Ecosystem, &
Environment, 125, 21-32. https://doi.org/10.1016/j.agee.2007.11.009
Han, W., Fang, J., Guo, D., & Zhang,
Y.
(2005).
Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant
species in China. New Phytologist, 168, 377-385.
Hartmann, A., Schmid, M., Tuinen, D.
V., & Berg, G. (2009). Plant-driven selection of microbes. Plant
and Soil, 321, 235-257.
Hu,
H., Chen, X., Hou, F., Wu, Y., & Cheng, Y. (2017).
Bacterial
and fungal community structures in Loess Plateau grasslands with
different grazing intensities. Frontiers in Microbiology, 8, 606.
Hu, L., Robert, C. A., Cadot, S., Zhang, X., Ye, M., Li, B., … &
Erb, M. (2018).
Root
exudate metabolites drive plant-soil feedbacks on growth and defense by
shaping the rhizosphere microbiota. Nature Communications, 9,1-13.
Huang,
H.
(2021).
linkET: Everything is Linkable. R package version: 0.0.5.https://github.com/Hy4m /linkET
Jiang, S., Ling, N., He, J., Ma, Z.,
& He X. (2021).
Short-term
warming increases root-associated fungal community dissimilarities among
host plant species on the Qinghai-Tibetan Plateau. Plant and Soil,
466, 597-611.
Kemp, D. R., Han, G., Hou, X., Michalk, D. L., Hou, F., Wu, J., &
Zhang, Y. (2013).
Innovative
grassland management systems for environmental and livelihood benefits.Proceedings of the National Academy of Sciences, 110, 8369-8374.
Kobayashi, T., Hori, Y., & Nomoto,
N. (1997).
Effects
of trampling and vegetation removal on species diversity and
micro-environment under different shade conditions. Journal of
Vegetaion Science, 8, 873-880.
Kõljalg, U., Nilsson, R. H.,
Abarenkov, K., Tedersoo, L., Taylor, A. F., Bahram, M., … & Larsson,
K. H.
(2013).
Towards
a unified paradigm for sequence-based identification of fungi.Molecular Ecology, 22, 5271-5277.
Lai, J., Zou, Y., Zhang, J., &
Peres-Neto, P. (2021).
Generalizing
hierarchical and variation partitioning in multiple regression and
canonical analysis using the rdacca.hp R package. Methods in
Ecology and Evolution, 13, 782-788.
Lamb, E. G., Kennedy, N., &
Siciliano, S. D. (2011).
Effects
of plant species richness and evenness on soil microbial community
diversity and function. Plant and Soil, 338, 483-495.
Leff, J. W., Jones, S. E., Prober, S.
M. , Barberan, A., Borer, E. T., Firn, J. L., …& Fierer, N.
(2015).
Consistent
responses of soil microbial communities to elevated nutrient inputs in
grasslands across the globe. Proceedings of the National Academy
of Sciences, 112, 10967-10972.
Martin, M. (2011).
Cutadapt
removes adapter sequences from high-throughput sequencing reads.EMBnet. Journal, 17, 10-12.
McNaughton, S. J.(1979).
Grazing
as an optimization process: grass ungulate relationships in the
Serengeti. The American Naturalist, 113(5), 691–703.
Mueller, P., Granse, D., Nolte, S., Do, H. T., Weingartner, M., Hoth,
S., & Jensen, K. (2017).
Top-down
control of carbon sequestration: grazing affects microbial structure and
function in salt marsh soils. Ecological Applications, 27,1435-1450.
Nan, J., Chao, L., Ma, X., Xu, D.,
Mo, L., Zhang, X., … & Bao, Y. (2020).
Microbial
diversity in the rhizosphere soils of three Stipa species from the
eastern Inner Mongolian grasslands. Global Ecology and
Conservation, 22, e00992.
Nie, Y., Wang, M., Zhang, W., Ni, Z.,
Hashidoko, Y., & Shen, W. (2018).
Ammonium
nitrogen content is a dominant predictor of bacterial community
composition in an acidic forest soil with exogenous nitrogen enrichment.Science of The Total Environment, 624, 407-415.
Oksanen, J., Blanchet, F. G.,
Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … & Wagner,
H. (2020). vegan: Community ecology package. R package version
2.5-7. https://CRAN.R-project.org/package=vegan
Quast, C., Pruesse, E., Yilmaz, P.,
Gerken, J., Schweer, T., Yarza, P., … & Glockner, F. O. (2013).
The
SILVA ribosomal RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Research, 41, D590-D596.
Qu, T., Du, W., Yuan, X., Yang, Z., Liu, D., Wang, D., Yu, L. (2016).
Impacts of grazing intensity and plant community composition on soil
bacterial community diversity in a steppe grassland. PLoS One,
11 , e0159680.
R Core Team., 2020. R: A language and
environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.
https://doi.org/http://www.r-project.org/index.html
Rousk, J., & Bååth, E. (2011).
Growth
of saprotrophic fungi and bacteria in soil. FEMS Microbiology
Ecology, 78, 17-30.
Schöps, R., Goldmann, K., Herz. K., Lentendu, G., Schöning, I.,
Bruelheide, H., … & Buscot, F. (2018).
Land-use
intensity rather than plant functional identity shapes bacterial and
fungal rhizosphere communities. Frontiers in Microbiology,2711.
Sterkenburg, E., Bahr, A., Brandstrom Durling, M., Clemmensen, K. E., &
Lindahl, B. D. (2015).
Changes
in fungal communities along a boreal forest soil fertility gradient.New Phytologist, 207, 1145-1158.
Suttie, J. M., Reynolds, S. G., & Batello, C. (2005).
Grasslands
of the World. Food & Agriculture Organization of the United Nations,
Plant Production and Protection Series (Food and Agriculture
Organization, Rome) No. 34.
Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S.
(2017).
Land-use
types and soil chemical properties influence soil microbial communities
in the semiarid Loess Plateau region in China. Scientific
Repports, 7, 1-9.
US Geological Survey (2001) National
Geochemical Database: Soil Data from the PLUTO Geochemical Database.
http://minerals.usgs.gov/sddp/data/soilsPLUTO.zip
van de Koppel, J., Rietkerk, M., &
Weissing, F. J. (1997).
Catastrophic
vegetation shifts and soil degradation in terrestrial grazing systems.Trends in Ecology & Evolution, 12, 352-356.
van Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P.,
Streitwolf-Engel, R., Boller, T., … & Sanders, I. R. (1998)
Mycorrhizal
fungal diversity determines plant biodiversity, ecosystem variability
and productivity. Nature, 396, 69-72.
Wang,
Z., Ding, Y., Jin, K., Struik, P. C.,Sun, S., Ji, B., … & Li, X.
(2021a)
Soil
bacterial and fungal communities are linked with plant functional types
and soil properties under different grazing intensities. European
Journal of Soil Science, 73, e13195.
Wang, R., Yang, J., Liu, H., Sardans, J., Zhang, Y., Wang, X., …
& Jiang, Y. (2021b). Nitrogen enrichment buffers phosphorus limitation
by mobilizing mineral‐bound soil phosphorus in grasslands.Ecology, 103, e3616.
Wang, Z., Jiao, S., Han, G., Zhao,
M., Ding, H., Zhang, X., … & Liu, Y. (2014).
Effects
of stocking rate on the variability of peak standing crop in a desert
steppe of Eurasia grassland. Environmental Management, 53,266-273.
Yang, F., Niu, K., Collins, C. G.,
Yan, X., Ji, Y., Ling, N., … & Hu, S. (2018).
Grazing
practices affect the soil microbial community composition in a Tibetan
alpine meadow. Land Degradation & Development, 30, 49-59.
Yang, Y., Chen, S., Wu, X., Syed, S.
I., Syed, I. U. S., Huang, B., … & Wang, D. (2021).
Grazing
affects bacterial and fungal diversities and communities in the
rhizosphere and endosphere compartments of Leymus chinensisthrough regulating nutrient and ion distribution. Microorganisms,
9, 476.
Zhang, H., & Fu, G. (2020).
Responses
of plant, soil bacterial and fungal communities to grazing vary with
pasture seasons and grassland types, northern Tibet. Land
Degradation & Development, 32(4), 1821-1832.
https://doi.org/10.1002/ldr.3835
Zhang, G., Huang, J., Jia, M., Huang, W., Sui, X., Wang, Z., & Han, G.
(2019). Effect of grazing intensities on bacterial community composition
and diversity in rhizosphere and non-rhizosphere soils in desert steppe
of China. Chilean Journal of Agriculture Research, 79, no.4.
Zhang, R., Wang, Z., Niu, S., Tian,
D., Wu, Q., Gao, X., … & Han, G. (2021).
Diversity
of plant and soil microbes mediates the response of ecosystem
multifunctionality to grazing disturbance. Science of Total
Environment , 776 , 145730.
Zhang,
Y., Gao, X., Hao, X., Alexander, T. W., Shi, X., Jin, L., & Thomas, B.
W. (2020).
Heavy
grazing over 64 years reduced soil bacterial diversity in the foothills
of the Rocky Mountains, Canada. Applied Soil Ecology, 147,103361.
Zhang, Y., Hao, X., Alexander, T.,
Thomas, B., Shi, X., & Lupwayi, N. Z. (2018).
Long-term
and legacy effects of manure application on soil microbial community
composition. Biology and Fertility of Soils, 54, 269-283.
Supplementary information includes Tables S1-S5 and Figs.
S1-S2.