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Abstract12

Reducing flood risk through improved disaster planning and risk management requires13

accurate and reliable estimates of flood damages. Models can provide such information14

by calculating the costs of flooding to exposed assets, such as buildings within a com-15

munity. Computational or data constraints often lead to the construction of such mod-16

els from coarse aggregated data, the effect of which is poorly understood. Through the17

application of a novel spatial segregation framework, we are able to show mathemati-18

cally that aggregating flood grids through averaging will always introduce a systematic19

error in a particular direction in partially inundated regions. By applying this framework20

to a case study we spatially attribute these errors and demonstrate how the exposure21

of buildings can be an order of magnitude more sensitive to these errors than uninhab-22

ited regions. This work provides insight into, and recommendations for, upscaling grids23

used by flood risk models. Further, we demonstrate a positive dependence of systematic24

error magnitude on scale coarseness, suggesting coarse models be used with caution and25

greater attention be paid to issues of scale.26

1 Introduction27

With the increase in flood related disaster damages, the expansion of computation28

power, and the availability of global datasets, the development and application of meso-29

and macro-scale flood risk models has increased dramatically in the past decade (Ward30

et al., 2020). These flood risk models are often conceptualized as a chain of sub-models31

for the flood hazard, exposure of assets, and vulnerability modelling; with each step adding32

uncertainty (de Moel & Aerts, 2011). Vulnerability modelling, the last step in the chain33

where variables describing the assets-at-risk and their flood exposure are related to es-34

timate some flood loss or damage, is generally found to be the most uncertain compo-35

nent in micro- and meso-scale models (de Moel & Aerts, 2011; Jongman et al., 2012).36

These findings are supported by work comparing modelled damages to those observed37

during flood events, where large discrepancies are regularly found between different mod-38

els and against observations (Jongman et al., 2012; McGrath et al., 2015; Molinari et al.,39

2020). Further challenges are introduced when such models are transferred to the macro-40

scale, where hazard, exposure, and vulnerability are treated with gridded data of res-41

olutions from 100 to 1000m (Hall et al., 2005; Ward et al., 2015; Sairam et al., 2021).42

This process collapses heterogeneities within a grid-cell (like variable flood depth) and43

poses poorly understood challenges to calculating the exposure of sub-grid assets like build-44

ings.45

The terminology of model scaling varies between authors. Here, we use model or46

grid ”support” of a fine (s1) or coarse (s2) grid (where s1 < s2) to avoid confusion with47

the more generic ”scale” which can also refer to the related spatial extents (Bierkens et48

al., 2000). This is closely related to the resolution (λs1 < λs2) of the corresponding square49

grid cells. Operations which transform data or model resolution between fine (s1) and50

coarse (s2) are commonly termed ”rescaling”, with those that refine resolution called ”dis-51

aggregating” and those that coarsen called ”aggregating”. Alternate terms include ”down-52

scaling” and ”upscaling” respectively (Bierkens et al., 2000); however, these are less com-53

mon in the flood literature. This transformation between resolutions is generally employed54

on flood hazard grids to improve model stability or to satisfy some computational con-55

straints (Sampson et al., 2015).56

Flood hazards are increasingly modelled with 2D grid-based hydrodynamic mod-57

els or 1D/2D hybrid models, both implementing some simplification of the shallow wa-58

ter equations (Apel et al., 2009; Sampson et al., 2015). Because of the computational59

demands of such models, resolution has been extensively studied and found to be one60

of the parameters of most importance for accuracy (Fewtrell et al., 2008; Savage et al.,61

2016; Papaioannou et al., 2016; Alipour et al., 2022). Focusing on the relationship be-62
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tween model coarseness and inundation area, many studies of fluvial floods find a pos-63

itive inundation area and flood depth bias at coarser resolutions (Banks et al., 2015; Sak-64

sena & Merwade, 2015; Mohanty et al., 2020; Ghimire & Sharma, 2021; Muthusamy et65

al., 2021) while studies of urban flooding are less conclusive (Fewtrell et al., 2008). For66

the underlying terrain model grids or digital elevation models (DEM), the resampling67

method used to generate the coarse analogs is often of little significance (Muthusamy et68

al., 2021; Saksena & Merwade, 2015) except at high resolutions when buildings are present69

in the fine DEM (Fewtrell et al., 2008). Comparing fine and coarse models with iden-70

tical roughness, Muthusamy et al. (2021) used separate resolutions for the channel and71

floodplain to show that positive bias can be explained by the coarse river channel be-72

ing poorly defined and a subsequent reduction in conveyance. While these studies pro-73

vide valuable insight into the behaviour of coarse hydrodynamic models, their utility for74

practitioners is limited as the coarse models are uncalibrated in these studies (unlike mod-75

els in practice). Further, the focus of such studies is on a coarse model’s (in)ability to76

reproduce observed high water marks or match some reference model, not on the haz-77

ard variables (and their heterogeneity) at asset locations used in risk modelling. In other78

words, when such studies find high water marks are adequately reproduced by a model79

at some coarse resolution, this should not be interpreted as that same model adequately80

reproducing the exposure which is sensitive to more than just water levels.81

Many studies investigate flood risk model parameter sensitivity (Metin et al., 2018;82

Jongman et al., 2012; Apel et al., 2009; Seifert et al., 2010; Ghimire & Sharma, 2021),83

but few investigate sensitivity to scale explicitly (Komolafe et al., 2015; Brussee et al.,84

2021; Pollack et al., 2022). However, by extracting results from this literature and com-85

paring those candidate fine-coarse model pairs which differ only in the level of aggrega-86

tion, a quantitative bias of flood damage from aggregation can be computed from a di-87

verse set of flood risk model experiments. Table 1 provides such a comparison that in-88

cludes all relevant studies (and study pairs) the authors are aware of. This shows a clear89

positive bias, albeit of different magnitudes; which is remarkable considering the diverse90

methods, data, and regions under study. While the positive bias of coarse hazard mod-91

els is well studied (Saksena & Merwade, 2015; Muthusamy et al., 2021), the implications92

for risk models have not been explored systematically.93

Table 1. Summary of selected studies with paired grid-based models at fine and coarse resolu-

tion. The bias is computed from the reported aggregated total damage of the coarse divided by

the fine model. ”[...]” indicates a coarse (s2) model element which is identical to its fine (s1) pair.

ref. fine (s1) description coarse (s2) description bias (s2/s1)
Apel et al. (2009) Hazard: 2D hydrodynamic with triangular finite elements on 25 m DEM. [. . . ] 1.16

Exposure: building-scale Exposure: dasymetric land-use grid at best 100m.
Vulnerability:multi-variate empirical private sector building damage. [. . . ]

Sieg et al. (2019) and Hazard: random sample of water mask values. 10m. Hazard: interpolation of highwater marks. 25m. 5.68
Seifert et al. (2010) Exposure: 165 businesses (object-scale, aspatial and stochastic) Exposure: disaggregated average municipal asset values. 25m.

Vulnerability: Random Forest empirical commercial damages. Vulnerability: multi-variate empirical commercial damage.

Sieg et al. (2019) and Hazard: random sample of water mask values. 10m. Hazard: 1D/2D hydrodynamic LISFLOOD-FP. 25m 8.88
Seifert et al. (2010) Exposure: 15 businesses (object-scale, aspatial and stochastic) Exposure: disaggregated average municipal asset values. 25m.

Vulnerability: Random Forest empirical commercial damages. Vulnerability: multi-variate empirical commercial damage.

Komolafe et al. (2015) Hazard: 1D/2D hydrodynamic. 50m. [. . . ] 1000 m upscale (unspecified method) 1.05
Exposure: remote sensing derived land-use grid. 30m. [. . . ]
Vulnerability: multi-variable synthetic direct building damages. [. . . ]

Brussee et al. (2021) Hazard: 2D flexible mesh hydrodynamic. 5m. [. . . ] 100m 1.08
Exposure: disaggregated neighbourhood-scale [. . . ]
Vulnerability: multi-variable mortality function. [. . . ]

Ghimire and Sharma (2021) Hazard: 2D hydrodynamic. LiDAR derived 3m [. . . ] unspecified 30m 1.33
Exposure: buildings (object-scale) [. . . ]
Vulnerability: depth-damage curves [. . . ]

Pollack et al. (2022) Hazard: 2D hydrodynamic. 30m [. . . ]
Exposure: buildings (object-scale) [. . . ] aggregated to census block-group (order 1-100km) 4.67
Vulnerability: uni-variate synthetic [. . . ]

In one of the few studies to investigate risk model sensitivity to grid aggregation94

specifically, Komolafe et al. (2015) performed a simulation experiment with a model cal-95
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ibrated to the 1996 Ichinomiya river basin flood in Japan. Beginning with 50m gridded96

asset and flood depth layers, eight additional coarse-resolution models were constructed97

by aggregating with an unspecified method. Their results show that aggregating depths98

introduces a slight positive bias, while aggregating assets introduces a strong negative99

bias. No mention of the aggregation routine is provided or explanation for the behaviour100

observed. Investigating the sensitivity of a flood mortality model to hydrodynamic model101

resolution, Brussee et al. (2021) compared a 5, 25, and 100m resolution 2D hydrodynamic102

model of a densely populated dike ring surrounded by three rivers in the Netherlands.103

Applying a constant breach width, they find higher discharge and associated mortality104

in the breach zone at the coarser scales and a mortality bias of +8%. Ghimire and Sharma105

(2021) provides a thorough sensitivity analysis of U.S. focused hazard and vulnerabil-106

ity modelling platforms. Along with testing a 1D and 2D hazard model framework and107

input data qualities, they investigated alternate DEM constructions with a LiDAR-derived108

3m and two publicly available DEMs at 10 and 30m resolution. They found the 1D model109

to be more sensitive to the different DEMs than the 2D model, with a 25% and 75% in-110

crease in damages respectively at 30m with comparable increases in flood footprint. In111

a recent large-scale study, Pollack et al. (2022) constructed a benchmark and aggregated112

analog models from roughly 800,000 single family dwellings and eight 30m resolution flood113

depth grids with return periods ranging from 2- to 500-years. When only building at-114

tributes were aggregated, a small negative bias was observed (-10%) while when hazard115

variables were also aggregated a large positive bias was found (+366%) for annualized116

damage. Given the spatial correlation of building values and flood exposure found in their117

study area, they conclude that bias would be difficult to predict ex-ante. They also find118

that errors arising from missing data and damage function uncertainties can be orders119

of magnitude greater than those arising from aggregation.120

Leveraging a rich object-scale dataset of 300 buildings damaged by a 2010 Italian121

flood, Molinari and Scorzini (2017) provide a non-grid based comparison to investigate122

the sensitivity of their multi-variate damage modelling framework to input data accu-123

racy. For this, six models were built with different combinations of input data elements124

either at object-scale or averaged across the census-block (taking the mode or the mean).125

Results were mixed; however, the model where all inputs were aggregated had a s2
s1 bias126

of 1.51. While this approach is suitable for investigating model sensitivity to input data127

accuracy, because exposure data was aggregated from object-scale data after hazard data128

sampling (rather than aggregating before sampling) these findings are less relevant to129

the broader issues of scaling challenging aggregated models used in practice.130

The goal of this paper is to partially explain the bias shown in Table 1 through gen-131

eralizeable methods (i.e., not bound to the specifics of individual case studies) and thereby132

improve our understanding of the effects of scale on flood risk models. In this study, we133

focus on flood hazard data, composed of a set of grids, and their intersection with as-134

sets or buildings to calculate exposure — two initial stages of risk modelling. To explore135

scale effects, we compare fine grids to their coarse analogs using metrics of interest to136

flood risk modellers. Rather than construct these coarse analogs through hydrodynamic137

modelling as has previously been done, we aggregate hazard grids through averaging rou-138

tines; a less common practice, but one that is more amenable to analytical investigation.139

In this way, we provide the first guidance and explanation for practitioners aggregating140

or upscaling flood hazard grids, along with an easy-to-use QGIS script (https://github141

.com/cefect/FloodRescaler). Further, we elucidate some endemic scaling effects and142

provide evidence and explanation to the positive bias common among coarse flood risk143

models.144

2 Flood Hazard Grids and Scales145

There are three primary hazard grids included in most flood risk models: Water
Depth (WSH), Water Surface Elevation (WSE), and the Ground Elevations (DEM)
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related by the following:
WSE = DEM +WSH (1)

Combining Equation 1 with the assumption that the flood hazard grids are constrained
to surface water flooding (i.e., ground water is irrelevant), yields the following expecta-
tions:

WSH ≥ 0 and WSE > DEM (2)

From this emerges an important distinction for the handling of dry cells:

WSHi or j = 0 ⇐⇒ WSEi or j = null ⇐⇒ ”dry” (3)

where i is the index of a fine (s1) and j a coarse (s2) grid cell. In other words, because
WSE values are on some absolute vertical datum, the grid is undefined in dry regions,
whereas WSH, being relative to ground (DEM), has a zero value in these same regions.
Absent transformation or resampling, the application of Equation 1 and 3 is trivial and
allows for simple conversion between WSE and WSH or vice versa using the DEM as
shown in Figure 1c. However, in the presence of dry cells Equation 3 leads to inconsis-
tencies when computing the denominator of averaging operations:

DEMs2,j = DEMs1,i =
1

N12

N12∑

i=1

DEMs1,i (4)

WSHs1,i =
1

N12

N12∑

i=1

WSHs1,i (5)

WSEs1,i =
1

Nwet

Nwet∑

i=1

WSEs1,i (6)

where N12 is the count of s1 cells contributing to a coarse s2 cell, and Nwet = N12 −146

Ndry where Ndry is the count of s1 cells described in Equation 3. Later, we show how147

these inconsistencies can lead to systematic errors in aggregation routines.148

3 Methods149

To investigate the potential for systematic errors to be introduced through aggre-150

gating of fluvial flood hazard data, we introduce a novel ”resample case” framework for151

classifying the flood hazard grid domain. With this, two typical grid aggregation rou-152

tines are investigated first analytically, then computationally using data from a 2018 flood153

in Canada as an example. This analysis is then extended to consider only exposed re-154

gions (locations with buildings) to provide an analysis of systematic errors particularly155

relevant to flood risk models.156

3.1 Aggregation Routines157

To demonstrate the application of our framework, we consider two routines for yield-158

ing a set of s2 analog grids from a set of s1 grids through averaging local groups of size159

N12. Both respect Equation 1 and 2, but differ on the strategy for preserving averages160

in the resulting s2 analogs: the first preserving WSH (”WSH Averaging”) and the sec-161

ond WSE (”WSE Averaging”). In this way, each routine has a primary grid (WSH or162

WSE), which is computed through direct averaging, and a secondary grid (WSH or WSE).163

Both routines use Equation 4 to obtain DEMs2, as this is not affected by the ”dry” cells164

in Equation 3. Further, both rely on Equation 1 to compute the secondary grid — rather165

than averaging, which would yield a grid set in violation of Equation 1 (this can be seen166

by comparing the WSH grids in Figure 1d and e). Figure 1d and e provide a graphi-167

cal summary and toy example of these routines, which are defined mathematically in the168

Supplement. Both routines are easily implemented in a few steps using standard spa-169

tial software packages (GDAL, Whitebox Tools, QGIS, rasterio, etc.) or the provided170
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QGIS script (https://github.com/cefect/FloodRescaler). While additional aggre-171

gation routines are possible, these two were selected as they are the simplest, are amenable172

to analytical treatment, and provide a reasonable approximation of analog grids built173

with hydrodynamic models.174

3.2 Resample Case175

To understand and spatially attribute the effects of such aggregation routines on
flood hazard grids, we classify each cell in the s1 domain into one of four cases of po-
tentially homogeneous aggregation behaviour. We define each of these ”resample cases”
using local relations of the DEMs1, WSHs1 and WSEs1 fine data grids within a block
j of size N12 as shown graphically in Figure 2 and defined explicitly as:

casej =





DD if max(WSHs1,i) = 0

DP if not DD and DEMs1,i ≥ WSEs1,i

WP if not WW and DEMs1,i < WSEs1,i

WW if min(WSHs1,i) > 0

(7)

where the first letter of the casej label code is determined by the relative averages of WSHs1176

and DEMs1, and the second letter by the overlap of extremes between WSEs1 and DEMs1177

grids as shown in Figure 2b. The quadrants in Figure 1a provide a simple example of178

four such groups whose corresponding case labels are shown on Figure 1b. Figure 3 shows179

a fully classified domain where WSHs1 has been simulated using a hydrodynamic model180

built on a 1m fine DEM described below. Such a resample case map is independent of181

any s2 grids resulting from a specific aggregation routine. However, this classification182

provides simplifying assumptions for the investigation of aggregation behaviour by con-183

sidering each case region independently. For example, the DD and WW regions we ex-184

pect to be fully dry and fully wet respectively in the s2 grids, regardless of the aggre-185

gation routine. The partial regions (DP and WP ) on the other hand are ambiguous, and186

we expect s2 grid results can differ based on the routine applied.187

3.3 Analytical Approach188

For this evaluation, we define error as the difference between a ”true” value, a phys-189

ical property, and the modelled value, taken here as the corresponding grid value. For190

example, the ”true” WSH of a flood event could be measured at a discrete point in space191

and time (say 1m), and compared to the value at the corresponding location in the WSH192

grid (say 1.5m) to quantify the grid error (+0.5m in this case). For the purposes of this193

analysis, we assume ”true” values are represented in the fine (s1) grid. This allows us194

to investigate the error introduced solely through aggregation by computing, and then195

comparing metrics between the fine (s1) and coarse (s2) grids. From this, an important196

distinction is made between random errors, i.e. differences in s1 and the corresponding197

s2 values with a zero-mean, and systematic errors which have a non-zero mean. In flood198

grid aggregation, these random errors are an obvious or even intentional product — gen-199

erally thought to cancel in larger models (Merz et al., 2004). Systematic errors on the200

other hand, which from here on we call ”bias”, are an undesirable artifact of aggrega-201

tion and the focus of this analysis.202

Biases in the two aggregation routines are first investigated analytically to derive203

inequalities between metrics computed on the fine (s1) and coarse (s2) grids. To accom-204

plish this, each of the four ”resample cases” is investigated separately, which provides205

the simplifying assumptions that allow closed-form solutions to the errors in each met-206

ric of interest. Bias is evaluated in four metrics of interest to flood models: two primary207

metrics, water depth (WSH) and water surface elevation (WSE), and two derivative208

metrics, inundation area (A), and volume (V ). Primary metrics are computed as grid-209

wide ”global” averages similar to Equation 5 and 6, but evaluated against all cells in a210

–6–



manuscript submitted to Water Resources Research

region of interest (rather than local groups). For example, WSHs1,WW is the sum of all211

WSHs1 cells classified as resample case WW per Equation 7 divided by the count. The212

derivative metrics are computed as grid-wide totals: inundation area (As) is the count213

of all non-dry grid cells multiplied by the area of each cell (λ2
s) and volume (Vs) is the214

sum of all WSHs values multiplied by the area of each cell (λ2
s).215

To better attribute bias spatially, we also compute a ”local” bias for WSH and WSE.216

This allows us to separate errors owing to the increase in flood footprint, from those at-217

tributable to changes in local values. For this, we first calculate the error of each s2 vs.218

s1 cell, before computing the mean of these error values to obtain a single bias metric.219

For the WSE metric, this local bias can of course only be computed in regions inundated220

by both s1 and s2 grids (see Equation 2), as the grid is undefined in other regions. For221

consistency, we apply this same constraint to the WSH metric. While this masks the222

performance of a routine in dry regions, it provides a consistent way to separate the re-223

porting of bias in local variables from bias in inundation area (which is reported as a sep-224

arate metric).225

3.4 Computational Approach226

To demonstrate the application of the novel ”resample case” framework, we apply227

the aggregation routines to a set of 1m resolution grids from the May 2018 Saint John228

River flood in Canada. The DEMs1 grid was downloaded from GeoNB who constructed229

the bare earth terrain model from six aerial LiDAR points per m2 flown in the summer230

of 2015 (Government of New Brunswick, 2016). The WSEs1 grid was simulated by GeoNB231

using a hydrodynamic model (on the aforementioned DEMs1) calibrated to field sur-232

veyed high water marks and described in Bryant et al. (2022). The WSHs1 grid was com-233

puted with Equation 1 yielding the grids shown in Figure 3a. From these fine (s1) grids,234

a set of five ( 1
s2 = 2n for n = 3, 6, 7, 8, 9) aggregated retrograde s2 analog grids and235

the corresponding resample classification maps (e.g., Figure 3b) are computed for the236

”WSE Averaging” and ”WSH Averaging” routines for a total of 40 grids (4 grid types237

x 5 coarse scales x 2 routines). Komolafe et al. (2015) takes a similar approach, but only238

for the WSH grid and they do not specify the aggregation routine or report the met-239

rics discussed here.240

While bias in aggregated flood grids is of general interest, flood risk models are par-241

ticularly concerned with those regions where assets or buildings are present. To explore242

the significance of this ”exposed domain” (in contrast to the ”full domain”), building lo-243

cations within the study area were obtained from Microsoft (2019) (see Figure 3a black244

”buildings”). From the centroids of this layer, each of the aforementioned 40 retrograde245

grids is sampled to produce a parallel dataset from which the same metrics of interest246

can be computed for the exposed domain.247
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(c) s1 (e) s2: WSE Averaging

Eq. 4

Eq. 6

Eq. 5

Eq. 1

d 5
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8 4 4 8
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4 2 0 0

d d 5 5
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0 2

1.75* 0.25*

d 5

5 5

0 2

1* 0*

7.75 3

4 7.25

d 5

5.75* 7.5*

2

Eq. 1

Eq. 3

Eq. 4

1

1 2

3

1

1

2

(d) s2: WSH Averaging 

DEM

WSE

WSH

Figure 1. Flood hazard data scaling issues and two aggregation schemes demonstrated with a

toy example. Panel (a) is an oblique view of a fine (s1) DEM and WSE while panel (b) shows

an aggregated coarse (s2) analog and corresponding resample case (DD, WW, WP, DP) from

Figure 2. Panel (c) shows an example set of s1 values for the three grids described by Equation

1. Panel (d) and (e) show the two aggregation routines described in the text based on averaging

the WSH and WSE grid respectively. Numbered arrows indicate different phases within these

schemes, the ”Eq.” notes refer to equations from the text, ’d’ denotes dry or null WSE grid val-

ues, and light grey grids show intermediate calculations. Discrepancies between resulting s2 grids

from the two routines are marked with *.
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Figure 2. Framework for classification of flood hazard resample case. Panel (a) shows class

label acronyms. Panel (b) provides a conceptual diagram showing a hypothetical distribution of

WSEs1 and four possible DEMs1 groups and their resulting resample case. D, W, and P stand

for “dry”, “wet”, and “partial”, respectively.

Figure 3. Simulated May 2018 Saint John River flood in Canada. Panel (a) shows DEMs1

and WSHs1 at 1m resolution and building footprints from Microsoft (2019). Panel (b) shows

corresponding resample case (see Figure 2) for a 1:64 upscale (DD is transparent for clarity).
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4 Analytical Results and Discussion248

To investigate the six metrics of interest (A, V and local and global WSH and WSE),249

we applied the ”resample case” framework to the two aggregation routines (details in250

the Supplement). Results are summarized in Table 2.251

Focusing on the non-partial columns (DD and WW ), Table 2 shows that aggre-252

gation preserves all our metrics of interest in these regions. This is intuitive consider-253

ing our aggregation routines and the selected metrics are commutative and cumulative254

in the absence of dry cells. Put simply, this is the naive expectation for the aggregation255

of a continuous grid: averages are preserved. Outside of this — in the partial regions —256

flood hazard grid behaviour deviates from that of continuous grids owing to the pres-257

ence of dry cells and the inter-grid relations (see Equation 3 and 1). Examining the bias258

in partial regions (WP and DP ), Table 2 shows some bias for all metrics except the re-259

spective primary grids on the global metric (i.e.,”WSE Averaging” has no Biasglobal[WSE]260

bias and ”WSH Averaging” has no Biasglobal[WSH] bias — or Bias[
∑

V ], which is dis-261

cussed below). This suggests that a single aggregation routine which employs averag-262

ing will always carry bias on some metric in partial regions; another artifact that follows263

from Equation 3 and 1.264

Table 2. Biases in two aggregation routines evaluated analytically for each resample case. For

metrics computed from the WSE grid, which has no value for dry cells, ”n/a” denotes dry re-

gions. Similarly, the aggregation routine ”WSE Averaging”, which resolves ”dry” cells for both

DD and DP cases, shows ”n/a” for Biaslocal[WSH] as our definition of ”local” requires wet cells

on both the s1 and s2 grids. The remaining ”+”/”-” symbols indicate cases where we found the

metric calculated with the s2 grid to be systematically higher/lower than the s1 grid, while ”0”

indicates the metrics are equivalent.

resample case DD DP WP WW

WSH Averaging

Biasglobal[WSH] = WSHs2 −WSHs1 0 0 0 0
Biaslocal[WSH] = WSHs2 −WSHs1 0 - - 0
Biasglobal[WSE] = WSEs2 −WSEs1 n/a + + 0
Biaslocal[WSE] = WSEs2 −WSEs1 n/a + + 0
Bias[

∑
A] =

∑
As2 −

∑
As1 0 + + 0

Bias[
∑

V ] =
∑

Vs2 −
∑

Vs1 0 0 0 0

WSE Averaging

Biasglobal[WSH] 0 - - 0
Biaslocal[WSH] 0 n/a - 0
Biasglobal[WSE] n/a n/a 0 0
Biaslocal[WSE] n/a n/a 0 0
Bias[

∑
A] 0 - + 0

Bias[
∑

V ] 0 - - 0

Contrary to global bias, the analysis shows the ”WSH Averaging” routine has a265

negative Biaslocal[WSH] in partial regions (WP and DP ). A simple explanation for this266

is illustrated in Figure 4a, where we see the aggregated values have a progressively lower267

local value (measured at the centre), while the global average remains constant. In other268
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words, given a wet s1 cell with some dry neighbours, aggregating depths through aver-269

aging will produce progressively smaller (i.e., shallower) depth values. ”WSE Averag-270

ing” on the other hand does not suffer from this as dry cells are omitted from the de-271

nominator during averaging (see Figure 4b). This has important implications for model272

scaling. For example, ”WSH Averaging”, arguably the simplest aggregation routine, ap-273

pears to preserve WSH when viewed globally — but in fact imparts a negative bias in274

partial regions.275

y = 0

(a)

y = 0

(b) s1

s2 = 2

s2 = 4

s2 = 8

Figure 4. Conceptual diagram showing a cross-section of local bias generated through two

types of averaging: (a) zero-inclusion (as in Equation 5) and (b) zero-exclusion (as in Equation

6). All series within a panel have the same global mean. Black arrow shows the progression of

local bias.

For inundation area (A), the analysis shows a positive bias for ”WSH Averaging”276

and a mixed bias for ”WSE Averaging” in partial regions. This is highly consequential277

for flood risk models, considering changes to flood footprints are expected to lead to changes278

in flood exposure, a highly sensitive component (Jongman et al., 2012; Metin et al., 2018).279

With this in mind, the ”WSE Averaging” routine seems preferable considering it at least280

has the potential to preserve
∑

A; however, obviously some disparity in local inunda-281

tion is expected with any routine — this phenomena is explored further below. Finally,282

Table 2 shows Bias[
∑

V ] follows the same behaviour as Biasglobal[WSH] (see Supple-283

ment for derivation), meaning ”WSH Averaging” also preserves
∑

V . This suggests a284

paradox for hydrodynamic modellers: aggregating outputs biases either V , which vio-285

lates mass conservation, or WSE, which violates the calibration.286

This analysis has shown mathematically whether or not a metric will be biased by287

a given routine aggregating a hypothetical grid. By employing the ”resample case” frame-288

work, these bias solutions become closed-form, independent of grid values, and ubiqui-289

tous within their respective regions. In other words, they apply to all grids aggregated290

with a given routine and all cells within that region. These provide definitive, albeit lim-291

ited, statements about the behaviour of the two aggregation routines applied to any case292

(assuming segregation into ”resample cases”). However, this does not provide any in-293

dication of the magnitude of bias, which is case specific (see below), and provides con-294

ditional evidence on the relative magnitude between resample cases (e.g., whether Bias[WD] >295

Bias[DP ]). For example, so far we have not provided an evaluation about the prevalence296

or proportion of each resample case (i.e., a grid could conceivably have only one resam-297

ple case, rendering most of the analysis here irrelevant). With this in mind, the follow-298

ing section applies a similar analysis computationally to a case study. Further, the reader299

should note that requiring the ”resample case” segregation is a significant limitation, as300

this requires the original s1 grids.301
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5 Computational Results and Discussion302

To evaluate aggregation bias, the resample case framework and the two aggrega-303

tion routines are applied to a case study of the May 2018 Saint John River flood in Canada.304

For this, two domains are considered: first, the complete rectangular or ”full domain”305

shown in Figure 3; and second, the ”exposed domain”, a sub-set of the full domain of306

cells intersecting building centroids. To attribute bias to specific regions, and to com-307

pare with the results of the analytical approach, both these domains are further sub-set308

by the four ”resample cases” defined in Figure 2.309

5.1 Full Domain310

Figure 5 shows the resulting change in composition or classification of the domain,311

computed from the classification map obtained at each s2 scale. This shows that the por-312

tion of partial regions (WP and DP ) increases with aggregation. This is intuitive if we313

consider these partial regions as transition zones between wet and dry cells — and that314

these zones must cover an increasing portion of the domain to be resolved as the reso-315

lution coarsens. This has significant implications for flood risk models if we consider the316

previous section showed these partial regions are those which generate bias during ag-317

gregation. In other words, the portion of the domain subject to aggregation bias increases318

with resolution. Further, these transition zones, or shorelines, often have a high-density319

of assets — a phenomena explored in Figure 5c and discussed below.320

3xRscProg 4x4.pdf (2022-10-22)

λs2 =32m λs2 =64m λs2 =128m λs2 =256m λs2 =512m
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Figure 5. Resample case classification progression for May 2018 Saint John River flood haz-

ard data showing (a) illustrative maps at five scales; (b) full domain fraction; and (c) exposed

domain (i.e., values sampled at buildings – see text) for each case. See Figure 2 for description of

legend.

To demonstrate how these dynamic regions interact with the grid values calculated321

by each aggregation routine, the six aforementioned metrics are computed by compar-322

ing the analog s2 grids to the original 1m resolution s1 grids. These calculations are per-323

formed on the full domain and each resample case as independent regions of interest to324

develop five magnitude vs. resolution series for each metric and routine. Results of four325
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key metrics are shown in Figure 6a and b and the remaining two metrics are provided326

in Figure S1.327

Comparing Figure 6 and S1 to Table 2 shows all computations agree with the di-328

rectional bias derived analytically in the previous section. For the ”WSH Averaging”329

routine, Figure 6a suggests the bias in the DP case is always more severe than the WP330

case. This is also shown analytically in the Supplement for certain conditions (e.g., Nwet,DP <331

Ndry,WP ). However, while the conditions favouring a more severe DP bias are intuitively332

more common, these conditions are not ubiquitous.333

When aggregating, both the analytical and computational results show either de-334

creasing or stable WSHs2 (Table 2, Figure 6a0 and b0 and Figure S1); opposite of what335

Muthusamy et al. (2021) find when comparing increasingly coarse hydrodynamic mod-336

els without adjusting the calibration. Saksena and Merwade (2015) take a similar ap-337

proach but only report WSE, which they also find increasing. This contrast can be ex-338

plained if we consider the uncalibrated hydrodynamic models are forced by boundary339

conditions (namely a hydrograph), while the aggregation routines are ”forced” by the340

fine (s1) grid values. To make up for the loss of the deepest cells (i.e., the thalweg), the341

former achieves balance through increasing depths (and conveyance) while the latter in-342

creases volume or area. Of more value would be a comparison against a similarly coarse343

hydrodynamic model calibrated to high water marks.344

For all partial zones, ”WSH Averaging” shows a doubling (100% increase) of the345

inundated area (A) for the λ2 = 512m grids for this case study. ”WSE Averaging” fared346

better, with the WP and DP global bias nearly balancing, leading to a meagre 10% in-347

crease for λ2 = 512m. However, the reader should note that our selected
∑

A metric348

is global, and that while the total areas may nearly balance, a substantial number of falsely349

inundated cells may be generated in the aggregated grids. These increases in flood foot-350

print are in line with those reported by coarse hydrodynamic model comparisons (Banks351

et al., 2015; Saksena & Merwade, 2015; Mohanty et al., 2020; Ghimire & Sharma, 2021;352

Muthusamy et al., 2021).353
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computational 4x4.pdf (2022-10-08)
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Figure 6. Bias from aggregation of four metrics for two routines sub-sampled for the full do-

main and the exposed domain (i.e., values sampled at buildings – see text) by resample case. See

Figure 2 for description of resample cases. The ”all” series uses the complete region of interest,

without sub-setting by resample case.
∑

A is the non-dry area of the full domain (panels (a2)

and (b2)) and the count of non-dry (i.e., exposed) buildings (panels (c2) and (d2)).
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5.2 Exposed Domain354

Having now demonstrated the character of bias on the full domain, we turn our fo-355

cus to those regions of particular interest to flood risk models: developed areas or ar-356

eas with exposure. Figure 5c shows that WW regions are insignificant for building ex-357

posure. This is intuitive if we consider: first, that the four cases form roughly concen-358

tric rings (WW > WP > DP > DD), radiating out from regions of continuous flood-359

ing (i.e., the river channel for fluvial floods) as demonstrated by Figure 3b; and second,360

that buildings are less prevalent within the river channel. Further, Figure 5b shows that361

DP regions are more than twice as prevalent for building exposure, leading to roughly362

30% of buildings classified as either WP or DP at a resolution of 512m, compared to363

20% on the full domain for this case study. Recalling that these partial regions (WP and364

DP ) are those responsible for the bias produced by aggregation suggests that exposure365

is more sensitive to aggregation bias than the full domain.366

The magnitude of increased sensitivity, or relevance, of the exposed domain to ag-367

gregation bias for this case study is shown in Figure 6c and d and Figure S2. Compar-368

ing the elements in Figure 6 row 2 shows that the exposed building count is an order of369

magnitude more sensitive to aggregation bias than inundation area (note the vertical axis).370

This is intuitive if we consider the distribution of buildings: few in regions flooded by371

the base grids and many immediately adjacent. In other words, a small increase in flood372

footprint leads to a large increase in the number of exposed buildings. In their compar-373

ison of 3 and 30m hydrodynamic models, Ghimire and Sharma (2021) found a compa-374

rable factor of 2 increase in building exposure.375

For water surface elevations (WSE), bias generated in the full and exposed domain376

have the same direction and relative ranking of resample cases; however, the values show377

a muted bias in the exposed domain relative to the full domain. In other words, grid cells378

with the most severe WSE errors tend to have fewer buildings, but this may be specific379

to our case study.380

Counter to this, Figure 6a shows a significant difference in the sensitivity to wa-381

ter depth (WSH) errors between the full and exposed domain: with the full domain hav-382

ing a negative (or no) bias and the exposed domain having a positive bias for all but the383

DP case. This can be explained if we consider that the aggregation routines (and the384

full domain metrics) include all s1 cells in a group, while the exposed domain sampling385

(and therefore the metrics) ignore those cells without exposure. Figure 7 shows a clear386

example where each tile has the same WSHs2 on the full domain, but within s2 cells the387

buildings occupy drier ground. In other words, assets exhibit a ”dry bias”, so the arti-388

facts leading to systematic grid errors may cease to be systematic when only the exposed389

subset is considered. We suspect this ”dry bias” is equally relevant for coarse hydrody-390

namic models although we can find no such discussion in the literature; however, this391

mechanism should be present in Ghimire and Sharma (2021) and Pollack et al. (2022).392

In fact, Pollack et al. (2022) discusses a counter mechanism, where high-value assets tend393

to be closer to the shoreline and therefore have disproportionately higher risk, impart-394

ing a negative bias in the damage estimates for some aggregate blocks. These mecha-395

nisms are not contradictory however, as they operate at different scales (Pollack et al.396

(2022)’s base scenario is 30m resolution and they aggregate assets to counties which can397

be on the order of 1-100 km) and on different elements of risk modelling (exposure vs.398

damage). In other words, both may be present in a large model like Pollack et al. (2022)’s.399

6 Conclusions400

In this study, we developed the novel ”resample case” framework and used it to an-401

alytically demonstrate that aggregation through averaging will always lead to the bias402

of some metric in partially inundated regions. We then applied this framework to a case403
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λs2 =32m λs2 =64m λs2 =128m λs2 =256m λs2 =512m

-2.0 -1.0 +0.0 +1.0 +2.0

Figure 7. Maps of 512m example region at five resolutions aggregated with the ”WSH Av-

eraging” routine showing building centroid locations in black. To compute local errors, WSHs2

grids are downscaled to s1 then WSHs1 is subtracted, yielding the WSHs2 − WSHs1 values

shown in meters on a red-blue colour scale

study of a 2018 Canadian flood to spatially spatially attribute the biases to the flood fringes404

or edges. Using this case study we provide example magnitudes of these biases for each405

metric showing, for example, inundation area can double at an aggregation of 29. Finally,406

this case study was extended to show how those regions with assets or buildings are par-407

ticularly sensitive to this bias – sometimes in counter-intuitive ways.408

Through attributing and deriving errors, these results have direct utility for those409

seeking to aggregate or upscale flood hazard grids. In addition to formally defining two410

routines, in Table 2 we have shown to what extent and in which regions metrics are pre-411

served: providing a framework for evaluating additional routines and enabling practi-412

tioners to make more informed decisions when selecting a routine. For example, in a haz-413

ards focus analysis where flood volume and average depth are of importance: a routine414

similar to the ”WSH Averaging” should be pursued. However, we suspect most flood415

risk modellers would place more emphasis on exposure accuracy, suggesting the ”WSE416

Averaging” routine. Regardless, some trade offs must be considered when selecting the417

appropriate routine. To support technical implementation, an open-source QGIS script418

is provided here (https://github.com/cefect/FloodRescaler).419

In practice, we recognize scale transfers in flood risk models through grid aggre-420

gation generally involve only small changes in scale; and the errors introduced are mi-421

nor compared to other sources of uncertainty (Pollack et al., 2022; Ghimire & Sharma,422

2021). More prevalent is the use of hydrodynamic models, where the friction term is cal-423

ibrated to observed high water marks, to develop WSH grids from aggregated or coarse424

DEM grids. These practices however are less amenable to the analytical methods em-425

ployed here. Considering this, our exploration of grid aggregation may provide a sim-426

plified analog through which to better understand systematic errors in hydrodynamic427

models, especially in regions with buildings or assets. However, additional work is re-428

quired to understand the limits of this comparison.429

The results presented here for the exposed domain all show a positive bias (Fig-430

ure 6c and d), like the previous studies summarized in Table 1 and a growing body of431

work on hydrodynamic models (Banks et al., 2015; Saksena & Merwade, 2015; Mohanty432

et al., 2020; Ghimire & Sharma, 2021; Muthusamy et al., 2021). While our work stops433

short of computing risk or impact metrics like those in Table 1, the remarkable four-fold434

increase in exposed assets shown in Figure 6d2 provides a logical, albeit partial, expla-435

nation for the bias shown. Figure 7 provides a graphical demonstration of how the affin-436

ity of assets for high ground leads to a systematic over prediction of exposure at coarse437
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scales. Counter to this, we can imagine how hydrodynamic models may miss small chan-438

nels completely at coarse scales, introducing a negative bias. Considering this, our find-439

ings and those of similar studies are likely somewhat sensitive to the study area and the440

flooding mechanism, and especially sensitive to the magnitude of the scale transfer. Re-441

gardless, a more comprehensive understanding of these competing biases is sorely needed442

to fully explain the biases shown in Table 1.443

Of equal importance, but not addressed here, is work to understand the role of as-444

set aggregation on flood risk model bias. This longstanding and common practice (Hall445

et al., 2005; Jongman et al., 2012; Sairam et al., 2021) involves aggregating assets and446

their attributes, intersecting these with the aggregated grids explored here, then apply-447

ing these as inputs to damage functions developed on single assets. To attribute and cor-448

rect for systematic errors which may emerge through such scale transfers, the frameworks449

and findings developed here could be extended to study such processes. By studying is-450

sues of scale, the accuracy and applicability of large or global flood risk models can be451

improved — allowing society to better prepare and plan for disasters.452

Open Research Section453

The python scripts used to construct the aggregated grids, sample the grids at build-454

ing locations, compute the metrics, and generate the plots are provided here: https://455

github.com/cefect/2112 agg pub. An easy-to-use QGIS script for aggregating flood456

hazard grids is provided here: https://github.com/cefect/FloodRescaler. The DEMs1457

grid used in the computation approach is hosted by GeoNB (http://geonb.snb.ca/458

li/index.html) and the Saint John River 2018 maximum WSHs1 data is also hosted459

by GeoNB (http://www.snb.ca/geonb1/e/DC/floodraahf.asp) under the “GeoNB460

Open Data License” (http://www.snb.ca/e/2000/data-E.html).461
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