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S1: Domain 4 

We demonstrate the horizontal domain of MOBO-DIC (this study) in Fig. S1, highlighting that 5 

compared to the monthly climatology of MOBO-DIC (Keppler et al., 2020), the domain has 6 

increased due to an increase in the domain of the Argo-based temperature and salinity fields we 7 

use as predictors (Roemmich & Gilson, 2009). While the monthly climatology of MOBO-DIC 8 

extended from 65° N to 65° S, MOBO-DIC extends up to 80° N in the Atlantic. Additionally, some 9 

coastal zones that were previously masked are now included.  10 

Figure S1: Horizontal domain of MOBO-DIC. Green areas illustrate the domain in the monthly climatology of MOBO-11 

DIC, while the purple regions illustrate the additional regions in MOBO-DIC (this study). Black stars mark the location 12 

of the BATS, HOT, and Drake Passage time-series stations (from north to south), which are discussed in Section S5.2.   13 
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S2: Clusters 14 

We apply an ensemble approach, where we create an ensemble of SOM-clusters to avoid 15 

boundary problems, following Gregor & Gruber (2021). Fig. S2 illustrates first the shape of the 16 

clusters and then demonstrates that the clusters are most variable around the boundaries. 17 

Figure S2. Shape and variability of the clusters. Maps of the clusters in January 2004 on 2 depth levels (a,b), 18 
and the number of different clusters at the same depth levels (c,d) at 10 m (a,c) and 500 m (b,d).   19 
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S3: Global upscaling of the inventory changes 20 

After calculating the change in the integrated trend i.e., the inventory change in our study domain, 21 

we conduct an upscaling to estimate the global changes in the salinity-normalized DIC (sDIC) that 22 

includes regions beyond our domain, i.e., the high latitudes, coastal regions, and below 1500 m. 23 

For the high latitudes and coastal regions that are masked in MOBO-DIC, we take the global mean 24 

trend of MOBO-DIC at each depth level and assume the masked grid cells have the same trend at 25 

these depth levels and calculate the vertical integral in these regions. As the trend in sDIC 26 

decreases with depth in the upper 1500 m, we assume that the trend below 1500 m continues to 27 

weaken with depth and propose that between 1500 m and 4000 m the trend should be between 28 

0 and the trend at 1500 m. We thus calculate the vertical integral between 1500 m and 4000 m, 29 

using the trend at each latitude-longitude grid cell at 1500 m in the remaining water column. We 30 

add half of that amount to our estimate and add the remaining half to the uncertainty to our global 31 

upscaled estimate. As discussed further below, our estimate of the sDIC trend between 1500 m 32 

and 4000 m yields 6±6 Pg C during our study period, i.e., 0.4±0.4 Pg C yr-1. This estimate is higher 33 

than the increase in Cant between 1994 and 2007 in the same depth range, which amounts to 34 

approximately 3±0.4 Pg C, i.e., 0.2±0.0 Pg C yr-1. In the assumption that most of the long-term 35 

changes are anthropogenic, our estimate of the positive trend in DIC between 1500 m and 4000 36 

m might be overestimated, but within the uncertainties. To obtain the depth until where we 37 

vertically integrate, we use the bathymetry from Etopo2 (2001). Previous studies have found that 38 

there is no significant increase in Cant below 4000 m (Gruber et al., 2019). It is possible that there 39 

are changes in the natural carbon (Cnat) below 4000 m, however, we are unable to quantify this 40 

contribution here. As the trend in sDIC decreases with depth in the upper 1500 m, we assume no 41 

significant trend in the total sDIC below 4000 m.  42 



4 
 

S4: Uncertainties 43 

The prediction uncertainty, which we define as the uncertainty linked to our method, is highlighted 44 

in Fig. S3. This uncertainty is estimated as the standard deviation across the 15-member ensemble 45 

from our bootstrapping approach. Note that the overall uncertainty of our product is, however, 46 

higher than the prediction uncertainty as described in Eq. 1 of the Main Text. In addition, Fig. S3 47 

illustrates the temporal mean of the prediction uncertainty. At a single point in time, the prediction 48 

uncertainty may differ from this mean.  49 

Figure S3. Maps of the prediction uncertainty of MOBO-DIC on four depth levels: (a) 10, (b) 100, (c) 500, and (d) 1500 50 

m.   51 
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S5: Comparison with the state of the art 52 

S5.1: Residuals from the GLODAP data 53 

Unlike an interpolation, our mapping method estimates the target data at all grid points, while 54 

minimizing the difference between the target data (i.e., GLODAPv2.2021) and the mapped 55 

estimate (i.e., MOBO-DIC). Thus, there is a difference between the GLODAP data and MOBO-DIC. 56 

Here, we present these residuals to get a better handle on the quality of our fits (Fig. S4). We 57 

calculate the residuals by subtracting the GLODAP data at each point in time and space from our 58 

MOBO-DIC estimate. In the maps below we display the temporal mean of these residuals on 59 

different depth levels. While some regions have a positive bias, others have a negative one, leading 60 

to a global mean bias of 0. The same regions can show different residuals at different depths and 61 

there is also no indication of certain depth levels being more prone to over- or underestimate. The 62 

global mean root mean square difference (RMSD) between GLODAP and MOBO-DIC is 16 μmol kg-63 

1.  64 

Figure S4. Maps of the temporal mean residuals (MOBO-DIC – GLODAP) at (a) 10, (b) 100, (c) 500, and (d) 1500 m.  65 
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S5.2 Climatologies (Lauvset, Broullón, climatology of MOBO-DIC) 66 

The current state-of-the art climatology of global-scale DIC was created by Lauvset et al. (2016), 67 

who optimally interpolated GLODAPv2 ship data to create an annual-mean climatology of DIC in 68 

the upper 5500 m of the ocean. Recently, Broullón et al. (2020) and Keppler et al. (2020) used 69 

machine learning approaches to create monthly climatologies of DIC, the first global-scale time-70 

varying DIC fields in the upper ocean. Although the climatologies cannot be used to assess the 71 

interannual variability of MOBO-DIC, we use these data sets to assess the differences in the 72 

temporal mean distribution (Lauvset et al., 2016), and the seasonal cycles (Broullón et al., 2020; 73 

Keppler et al., 2020) as a first order test of our method in comparison to the state of the art at 74 

lower temporal resolution.  75 

 76 

In the upper ~200 m, MOBO-DIC tends to yield higher DIC concentrations than the Lauvset-77 

climatology (differences up to ~50 μmol kg-1), except for the northern Indian Ocean, which has 78 

lower values in the upper ~600 m (Fig. S5). Below ~200 m, the differences between the two 79 

products are smaller and both positive and negative. Similar differences were observed when 80 

comparing climatology of MOBO-DIC (Keppler et al., 2020) with the Lauvset climatology 81 

(Supporting Information of Keppler et al., 2020). The higher surface concentrations in both MOBO- 82 

DICclim and MOBO-DIC can be largely attributed to the fact that MOBO-DIC covers a later period 83 

(2004-2018 and 2004-2020, for the climatology and this study, respectively) than the Lauvset 84 

climatology, which is normalized to the year 2002. We expect other differences between the two 85 

products to be due to different data used (i.e., Lauvset use data from before 2004), as well as 86 

difference in the mapping method. This is further discussed in the Supporting Information of 87 

Keppler et al. (2020).  88 
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Figure S5: Zonal mean difference between the mean DIC in the climatology by Lauvset et al. (2016) and MOBO-DIC 89 

(MOBO-DIC - Lauvset) as a function of latitude (x-axis) and depth (y-axis), in the Indian (a), Pacific (b), and Atlantic 90 

Ocean (c). Zoomed into the upper 200 m. 91 

 92 

The comparison of the seasonal cycle of DIC with the existing monthly climatologies is 93 

encouraging: the three products agree on the distribution and magnitude of the amplitude and 94 

phase (Fig. S6). In all products, the largest surface amplitudes are in the north Pacific (more than 95 

50 μmol kg-1), while the Labrador Sea, equatorial East Pacific and equatorial East Atlantic also have 96 

elevated surface amplitudes (Fig. S6 a-c). The seasonal maxima tend to be in hemispheric winter, 97 

due to deeper mixed layers in winter. The magnitude of the seasonal cycle tends to be weakest 98 

near the equator and largest near the poles due to the strength in seasonal forcing. The processes 99 

behind these patterns are described in more detail Keppler et al. (2020).  100 

 101 

 102 

 103 
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  104 

Figure S6: Amplitude of the seasonal cycle of DIC at 2.5 m in the monthly climatology by Broullón et al. (2020) (a), 105 
climatology of MOBO-DIC (b), and MOBO-DIC (c). The mean seasonal cycle in climatic zones in the northern (d-f) and 106 
southern hemisphere (g-i) for the same three datasets (Broullón et al. (2020) (d,g), climatology of MOBO-DIC (e,h), 107 
and MOBO-DIC (f,i). Temperate is from 35° to 65°, subtropics from 23° to 35°, tropics from 0° to 23°, for each 108 
hemisphere. Shading illustrates the standard deviation in the latitude-longitude space. 109 

  110 



9 
 

S6: Comparison with independent data 111 

S6.1 Comparison with synthetic data (HAMOCC) 112 

To date, there is no estimate of monthly inter-annually varying mapped fields of interior DIC at a 113 

global scale. We therefore conduct an assessment with synthetic data from the ocean 114 

biogeochemical model HAMOCC (Ilyina et al., 2013; Mauritsen et al., 2019). Here, we subsample 115 

the full model field of sDIC in the HAMOCC model at the time and location where we have 116 

observations of DIC in GLODAPv2.2021, and then run our cluster-regression method to recreate 117 

the full model field of sDIC. We then compare our sDIC reconstruction in HAMOCC with the actual 118 

sDIC in HAMOCC at every grid cell. Please refer to Keppler et al. (2020) and its Supporting 119 

Information for a more detailed description of this method with synthetic data.  120 

 121 

The trend in sDIC in HAMOCC and our MOBO-DIC reconstruction of HAMOCC display very 122 

comparable spatial patterns (Fig. S7). There are both regions of under estimation and over 123 

estimation of the trend, indicating that there is no systematic bias in our method. When comparing 124 

the depth-integrated change in sDIC, we find again that in most regions, the spatial distributions 125 

agree well. However, in the eastern tropical Pacific, the trend is higher in our MOBO-DIC 126 

reconstruction of HAMOCC, than in HAMOCC. This difference mostly comes from the deep ocean 127 

between 1000 and 1500 m, where we find strong positive trends, that seem to be artifactual, 128 

possibly due to overfitting in our estimate with synthetic data (Fig. S7i). However, our estimate 129 

with real observations does not have these large positive trends at depth (see Fig. 1 in the Main 130 

Text), indicating that this is only a feature in our estimate with synthetic data. Integrated over the 131 

whole domain, the total increase in sDIC in the upper 1500 m is 1.7 Pg C yr-1 in the HAMOCC model, 132 

and 1.9 Pg C yr-1 in our MOBO-DIC reconstruction of HAMOCC. The larger increase in our MOBO-133 

DIC reconstruction of HAMOCC is mostly due to the artifact at depth accumulating in the vertical 134 

integration.  135 
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Figure S7: Spatial distribution of the decadal trend of sDIC in HAMOCC (a,d,g), our MOBO-DIC reconstruction of 136 

HAMOCC with synthetic data (b,e,h), and the difference between the two (c,f,i) at 10 m (a-c), 100 m (d-f), and vertically 137 

integrated decadal trend in the upper 1500 m  (g-i).  138 

 139 

Our MOBO-DIC method run with synthetic data also captures the patterns and magnitude of the 140 

interannual variability of sDIC in HAMOCC well (Fig. S8). Although in some regions, MOBO-DIC 141 

over- or underestimates the variability, there is no systemic bias in one direction. Similar as with 142 

the trend, we find an over estimation of the interannual variability in our MOBO-DIC 143 

reconstruction of HAMOCC. This appears to be an artifact due to overfitting, that is not found in 144 

our reconstructions based on real observations. 145 
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Figure S8: Spatial distribution of the interannual variability of sDIC, defined as the standard deviation in time (de-146 

trended, seasonal cycle smoothed with a 12-month running mean) in HAMOCC (a,d,g), our MOBO-DIC reconstruction 147 

of HAMOCC with synthetic data (b,e,h), and the difference between the two (c,f,i) at 10 m (a-c), 100 m (d-f), and 1500 148 

m (g-i).  149 

 150 

S6.2 Independent time-series stations (BATS, HOT, Drake Passage) 151 

DIC time-series stations are regularly visited sites, where measurements of DIC are taken. These 152 

data are independent from our mapping method, i.e., they are not used to create our data 153 

estimate, but provide a crucial basis to estimate how well our estimate compares to measured 154 

values. Independent time-series stations that overlap with our study domain and period include 155 

the Bermuda Atlantic Time-series Study (BATS; Bates et al., 2014), Hawaii Ocean Time-series (HOT; 156 

Dore et al., 2009), and Drake Passage (Munro et al., 2015). See Fig. S1 for the location of these 157 

stations.  158 

 159 

While the in-situ observations display considerably more noise than our smooth monthly 1°x1° 160 

fields, we find that MOBO-DIC is close to the mean values at the time-series stations and captures 161 
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some of the variability (Fig. S9). The RMSD between MOBO-DIC and the time-series stations range 162 

from 13 μmol kg-1 in the shallow waters at HOT to 42 μmol kg-1 at the surface of Drake Passage. 163 

Some observed values at the time-series stations seem to be outliers and may not be 164 

representative of the mean monthly field. For example, the large RMSD at Drake Passage can be 165 

at least partially attributed to some very low observed values (~200 μmol kg-1 lower than the 166 

mean). In addition, MOBO-DIC has a substantial offset in the deeper waters near BATS station, 167 

resulting in a large RMSD here too. 168 

Figure S9: Timeline of DIC between 20 and 40 m (a-c), 100 and 150 m (e-g), and 600 and 800 m (h-j), BATS (a,d,f), HOT 169 

(b,e,g), and Drake Passage (surface only, c). Dots illustrate the direct measurements at these stations, solid lines show 170 

our MOBO-DIC estimate of DIC at the same month and 1°x1° grid point closest to the sites. RMSD between MOBO-171 

DIC and the time-series stations is shown for each depth range and for each station as text. We chose to display 172 

averages over multiple depth levels here as the time-series data is often sparse at individual depth levels. 173 

 174 

 175 
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S6.3 DIC calculated from biogeochemical Argo float measurements (SOCCOM floats) 176 

Argo floats equipped with biogeochemical sensors (BGC Argo floats) have been sampling the global 177 

ocean in recent years, supplementing the ship data (https://biogeochemical-argo.org/). They do 178 

not measure DIC directly, but several methods have been developed to estimate DIC based on the 179 

BGC float measurements of other variables. Some BGC Argo floats are equipped with pH sensors, 180 

but these floats are mostly confined to the Southern Ocean as part of the Southern Ocean Carbon 181 

and Climate Observations and Modeling project (SOCCOM, https://soccom.princeton.edu/). Here, 182 

we make use of DIC calculated based on the temperature, salinity, and pH measurements of the 183 

SOCCOM floats, in combination with the LIAR approach to estimate total alkalinity (Carter et al. 184 

2018), and CO2SYS (Humphreys et al., 2020), available at 185 

https://soccompu.princeton.edu/www/index.html.  186 

 187 

Our comparison with the float data shows that MOBO-DIC captures the variability in the Southern 188 

Ocean well (Fig. S10). The discrepancies that exist between MOBO-DIC and the float data can be 189 

partially explained by high frequency variability captured by the floats, that are not in our smooth 190 

1°x1° monthly fields. In addition, in the region between the Polar Front (~55°S) and 65°S, our 191 

estimate of DIC at the time and location of the floats is substantially less than the DIC estimates 192 

by the floats, especially in the winter months (i.e., when the DIC concentrations exhibit the 193 

seasonal peak). This finding is in line with previous studies who found that SOCCOM floats report 194 

more outgassing (i.e., higher DIC concentrations) in this region in winter than ship-based estimates 195 

(Gray et al., 2018; Bushinsky et al., 2019). Notably, this known difference at the surface also exists 196 

in the interior (Fig. S10 f,i). However, the difference between the floats and our estimate south of 197 

the Polar Front (mean bias of ~8 μmol kg-1) is well within the uncertainty of MOBO-DIC in this 198 

region (18 μmol kg-1). Nonetheless, it confirms the known differences between float and ship-199 

based estimates of DIC in this region and further research should be conducted to understand the 200 

processes behind that.  201 

https://soccom.princeton.edu/
https://soccompu.princeton.edu/www/index.html


14 
 

Figure S10: Timeline of mean DIC at 10 m (a-c), 100 m (d-f), and 1500 m (g-i), between 35° S and the Subtropical Front 202 

(STF, a,d,g), between the STF and the Polar Front (PF, b,e,h), and between the PF and 65° S (c,f,i). Solid lines illustrate 203 

the DIC estimated from the SOCCOM floats, dashed lines show our MOBO-DIC estimate at the same month and 1°x1° 204 

grid point closest to each float observation. The panel on the right displays the three interfrontal regions in green, 205 

purple, and orange from north to south. The fronts are based on Orsi et al. (1995).  206 

 207 

  208 
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S6.4 Global mapped surface DIC (OceanSODA-ETHZ) 209 

To compare our estimate at a global scale, but restricted to the surface, we compare it to the 210 

surface DIC estimate OceanSODA-ETHZ by Gregor & Gruber (2021) at the time and location where 211 

the two datasets overlap (January 2004 to December 2018). The approach by Gregor & Gruber 212 

(2021) also uses a cluster-regression method with an ensemble of clusters; however, they only 213 

estimate surface values. In addition, the DIC in OceanSODA-ETHZ is not based on direct DIC 214 

measurements but is calculated based on their cluster-regression estimates of pH and total 215 

alkalinity using CO2SYS (Humphreys et al., 2020). Note that for the surface, we consider the 216 

shallowest depth level in MOBO-DIC (2.5 m), which is not at the actual surface. We do not 217 

normalize for salinity in this comparison, as their estimate uses a different salinity-product than 218 

ours. 219 

 220 

Considering that the two estimates of DIC are based on independent datasets of measurements 221 

(SOCAT vs. GLODAP), their distribution of surface DIC compares well (Fig. S11). Overall, the global 222 

mean RMSD between the two data estimates is 15 μmol kg-1, and a global mean bias of 4 μmol kg-223 

1 (Fig. S11 a-c). The positive bias cannot be attributed to different periods, as here we only 224 

compare the overlap period from 2004 through 2018. A part of this bias could be linked to our 225 

shallowest depth being 2.5 m, and not the surface. Both the bias and the RMSD are, however, well 226 

within the sum of the uncertainty limits of the two datasets (21 and 18 μmol kg-1, for OceanSODA-227 

ETHZ and MOBO-DIC, respectively).  228 

 229 

The trend (Fig. S11 d-f) and interannual variability (Fig. S11 g-i) in the two datasets are also 230 

encouragingly similar. The trend of MOBO-DIC at the surface is slightly less in most regions than 231 

the trend of the mapped surface DIC from Gregor & Gruber (2021), with global mean trends of 0.6 232 

μmol kg-1yr-1 and 0.8 μmol kg-1yr-1, respectively (Fig. S11 d-f). The interannual variability of MOBO-233 

DIC at the surface is also slightly smaller in most regions than the interannual variability in 234 

OceanSODA-ETHZ Gregor & Gruber (2021), with global mean standard deviations of 3 and 4 μmol 235 

kg-1, respectively.  236 
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Figure S11: Mean (a-c), trend (d-f), and interannual variability (g-h) of surface DIC in OceanSODA-ETHZ (a,d,g) and 237 

MOBO-DIC at 2.5 m (b,e,h) from January 2004 to December 2018, and the difference between the two estimates 238 

(MOBO-DIC - OceanSODA-ETHZ; c,f,i).  239 

  240 
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S7 Trends in sDIC 241 

We illustrate the vertically integrated trend in sDIC in Fig. 2a of the Main Text. Here, we 242 

demonstrate the trends on the individual depth levels (Fig. S12). We find that most of the observed 243 

negative trends are significant at the 95% confidence intervals, including some negative trends 244 

e.g., below the thermocline of the North Pacific.  245 

Figure S12: Maps of the trend in sDIC between 2004 and 2020 based on the linear trend at 10 m (a), 100 m (b), 500m 246 

(c), 1500 m (d), and vertically integrated over the upper 1500 m (e). In a-d, regions where the trends are not significant 247 

(p<0.05) are hatched. In e, we remove the trends that are not significant (p<0.05) before integrating. 248 

  249 
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S8 Interannual variability in the Western Equatorial Pacific 250 

We find the largest interannual variations in sDIC below the thermocline in the Western Equatorial 251 

Pacific (here: 0.5°N to 14.5°N, 124.5°E to 179.5°E). Here, we compare the connection between the 252 

observed variations in sDIC in this region and natural climate variability, represented by the 253 

Multivariate El Niño Index (MEI; Wolter et al., 2011). During El Niño periods (positive MEI), the 254 

trade winds weaken, leading to less upwelling in the Peruvian Coastal Upwelling System (PCUS), 255 

the cold tongue in the eastern equatorial Pacific extends less far towards the west, while the warm 256 

pool in the Western Equatorial Pacific retracts eastward (Talley et al., 2011). Thus, overall sea 257 

surface temperatures tend to be warmer, and less DIC and nutrients are brought to the surface in 258 

the PCUS during El Niño periods. Concurrently, the slope of the thermocline, which has a west-259 

east gradient across the equatorial Pacific flattens, resulting in a shallower mixed layer in the 260 

Western Equatorial Pacific. The opposite holds for La Niña periods, i.e., colder SSTs, more sDIC and 261 

nutrients in the PCUS, and a steeper slope of the thermocline.  262 

 263 

Our results demonstrate a positive correlation between mean sDIC and MEI in the upper Western 264 

Equatorial Pacific. This correlation is moderate near the surface (r = 0.41 at 10 m), largest around 265 

the thermocline (r = 0.85 at 150 m) and decreases again below the thermocline (r = 0.28 at 500 266 

m, Fig. S13). Temperature cannot be the dominant driver of this signal because the effect of 267 

decreased solubility of CO2 would result in a negative correlation. Instead, the relationship 268 

between the sDIC in the water column of the Western Equatorial Pacific and MEI suggests that the 269 

shift in the thermocline is the dominant driver for the sDIC variations, in line with model studies 270 

from McKinley et al. (2004). The flattening of the thermocline during El Niño periods brings sDIC 271 

and nutrients stored at depth upward, explaining the strong positive correlation in the thermocline 272 

of this region. This effect diminishes with depth, and above the thermocline, the effect is reduced 273 

through outgassing and biological activity as proposed by Takahashi et al. (2002) and subsequent 274 

studies (e.g., Feely et al., 2006).  275 

 276 

Compared to the signal in the Western Equatorial Pacific, we observe a smaller signal in the PCUS. 277 

It seems that here, opposing effects on the sDIC mostly cancel each other out, resulting in the 278 
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weak interannual variability of sDIC in this region. Here, decreased upwelling during El Niño 279 

periods leads to less DIC being brought to the surface. Concurrently, less upwelled nutrients result 280 

in less biological uptake of DIC, and thus, more DIC remaining near the surface. 281 

 282 

Our findings are consistent with the findings by McKinley et al. (2004), who used a global ocean 283 

general circulation model to link their model’s variability of the air-sea CO2 fluxes in the equatorial 284 

Pacific to ENSO-induced changes in the transport of DIC: the combined effects of the flattening of 285 

the thermocline, less upwelling, and the east-west displacement of the warm pool change how 286 

much DIC-rich water reaches the surface and affects the air-sea CO2 fluxes. However, that study 287 

finds large variabilities across most longitudes of the equatorial Pacific, with the largest variations 288 

near the center and the east, compared to our study, where the largest variations are in the 289 

Western Equatorial Pacific. This may be linked to the recent westward shift of the El Niño 290 

phenomena also referred to as El Niño Modoki (Ashok et al., 2007).  291 
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Figure S13: ENSO and sDIC in the Western Equatorial Pacific. Timelines of the mean sDIC in the western 292 

equatorial Pacific (left y-axis, blue) and the MEI (right y-axis, orange) at 10 m (a), 150 m (b), and 500 m (c) both 293 

sDIC and the MEI are smoothed with a 12-month moving average. The first and last 6 months are lost in the 294 

smoothing. The blue shading indicates the ensemble spread, i.e., the prediction uncertainty. Correlation 295 

coefficient r between sDIC in this region (seasonal cycle removed) and the MEI (seasonal cycle removed) as a 296 

function of depth (d). The correlation coefficient r between sDIC and the MEI is shown as text for each depth 297 

level in a-c. 298 


