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Abstract: 29 

 30 

Canada’s boreal forests and tundra ecosystems are responding to unprecedented climate change 31 

with implications for the global carbon (C) cycle and global climate. However, our ability to 32 

model the response of Canada's terrestrial ecosystems to climate change is limited and there has 33 

been no comprehensive, process-based assessment of Canada’s terrestrial C cycle. We tailor the 34 

Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to Canada and 35 

evaluate its C cycling performance against independent reference data. We utilize skill scores to 36 

assess model performance against reference data alongside benchmark scores that quantify the 37 

level of agreement between the reference data sets to aid in interpretation. Our results 38 

demonstrate CLASSIC’s sensitivity to prescribed vegetation cover. They also show that the 39 

addition of five region-specific PFTs improves CLASSIC’s skill at simulating the Canadian C 40 

cycle. CLASSIC performs well when tailored to Canada, falls within the range of the reference 41 

data sets, and meets or exceeds the benchmark scores for most C cycling processes. New region-42 

specific land cover products, well-informed plant functional type (PFT) parameterizations, and 43 

more detailed reference data sets will facilitate improvements to the representation of the 44 

terrestrial C cycle in regional and global land surface models (LSMs). Incorporating a 45 

parameterization for boreal disturbance processes and explicitly representing peatlands and 46 

permafrost soils will improve CLASSIC’s future performance in Canada and other boreal 47 

regions. This is an important step toward a comprehensive process-based assessment of Canada’s 48 

terrestrial C cycle and evaluating Canada's net C balance under climate change. 49 

 50 

Plain language summary: 51 

 52 

Canada plays an important role in the global carbon cycle. Its boreal forests and tundra are 53 

responding to climate change. There has not been a comprehensive modeling assessment of 54 

Canada's land carbon cycle. We modify our model to better represent the distribution of plants in 55 

Canada and to include five new plant-type representations. We then compare results from our 56 

model and other independent observation-based data sets. Our modifications produced model 57 

results that agreed better with the independent data sets. This is an important step towards a 58 

comprehensive modeling assessment of Canada's land carbon cycle. 59 

 60 

Keywords: Canada, boreal, Arctic, carbon cycle, land surface model, CLASSIC 61 

 62 

1. Introduction 63 

Canada’s extensive boreal forests and tundra ecosystems are critical components of the global 64 

carbon (C) cycle (Keenan & Williams, 2018; Lenton et al., 2008; Miner et al., 2022; Myers-65 

Smith et al., 2020; Qiu et al., 2020). Approximately 31% of the world's boreal forests and 36% 66 

of arctic tundra lie within Canada (Potapov et al., 2008; Walker et al., 2005). These ecosystems 67 

are responding to unprecedented climate change and anthropogenic activities with implications 68 
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for the region’s C balance and global climate (Lenton et al., 2008; Myers-Smith et al., 2020; 69 

Schuur & Mack, 2018; White et al., 2017). Unfortunately, there has been no comprehensive, 70 

process-based assessment of Canada’s terrestrial C cycle (Chaste et al., 2017; Friedlingstein et 71 

al., 2019; Peng et al., 2014). Moreover, our ability to investigate the response of Canada's 72 

terrestrial ecosystems to climate change is limited by the level of detail with which vegetation in 73 

Canada’s boreal and tundra ecosystems is represented within models (D’Orangeville et al., 2018; 74 

Girardin et al., 2016; Marchand et al., 2018; Ma et al., 2012; Sulla-Menashe et al., 2018). 75 

Improving our ability to model Canada’s terrestrial ecosystems will provide more accurate 76 

insight into Canada’s historical and future C cycle while informing the implementation of the 77 

2015 Paris Agreement (UNFCCC, 2015) and the Pan-Canadian Framework on Clean Growth 78 

and Climate Change (Government of Canada, 2016). A comprehensive process-based assessment 79 

of Canada’s terrestrial C cycle could also be used to estimate emissions from the land sector in 80 

synergy with other efforts (e.g. Kurz et al., (2009)). Here we tailor the Canadian Land Surface 81 

Scheme Including Biogeochemical Cycles (CLASSIC) to the pan-Canadian domain (i.e. all of 82 

Canada south of 76° North) and evaluate its ability to represent the Canadian C cycle. 83 

Boreal forests are responding to climate change, rising atmospheric CO2 concentrations, water 84 

stress, permafrost thaw, and changing disturbance regimes (Babst et al., 2019; Potapov et al., 85 

2008; Reich et al., 2018, 2022; Sulla-Menashe et al., 2018). Warmer temperatures and higher 86 

atmospheric CO2 concentrations may increase the productivity of boreal forests (Ju & Chen, 87 

2008; Sulla-Menashe et al., 2018). In contrast, increased drought stress and changing disturbance 88 

regimes may act to decrease boreal productivity and lead to the release of C from vegetation and 89 

soil (Babst et al., 2019; Lenton et al., 2008; Potapov et al., 2008; Reich et al., 2018; Weber & 90 

Flannigan, 1997). Not all boreal tree species and regions of Canada are equally sensitive to these 91 

environmental changes nor are all regions equally affected by anthropogenic disturbance 92 

(D’Orangeville et al., 2018; Girardin et al., 2016; Marchand et al., 2018; Ma et al., 2012; Sulla-93 

Menashe et al., 2018). For example, decreases in vegetation productivity are occurring in 94 

northwestern boreal forests, whereas southeastern boreal forests show positive trends (Marchand 95 

et al., 2018). These complex patterns are likely a product of both regional differences in 96 

disturbance regimes and the different sensitivities of the tree genera present in these regions 97 

(D’Orangeville et al., 2018; Sulla-Menashe et al., 2018). Arctic vegetation is also responding to 98 

unprecedented historical climate change (Box et al., 2019). Increased arctic vegetation 99 

productivity such as enhanced shrub growth hypothesized to be a result of warming 100 

temperatures, longer growing seasons, deeper thaw depths, increased atmospheric CO2 101 

concentrations, and increased nutrient availability could lead to greater CO2 uptake by arctic 102 

vegetation (Berner et al., 2020; Jia et al., 2009; Myers-Smith et al., 2020; Tape et al., 2006). This 103 

growth may offset some of the anticipated C emissions from the warming and thawing of arctic 104 

permafrost soils (Miner et al., 2022; Schuur et al., 2015; Schuur & Mack, 2018). At present, the 105 

representation of vegetation within Canada’s boreal forests, and tundra ecosystems is limited in 106 

regional-scale simulations, restricting our ability to disentangle the impacts of these various 107 
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processes and make projections (Friedlingstein et al., 2019; Melton et al., 2020; Meyer et al., 108 

2021; Sulman et al., 2021; Wullschleger et al., 2014). 109 

To date, we are not aware of a comprehensive, process-based assessment of Canada’s terrestrial 110 

C cycle. Preexisting regional or global C cycling assessments using process-based models, have 111 

a relatively coarse spatial resolution (0.5° or more) and have a limited representation of region-112 

specific vegetation types, disturbance, and ground surface-related processes (Chaste et al., 2017; 113 

Friedlingstein et al., 2019; Hayes et al., 2012; Huntzinger et al., 2012; Peng et al., 2014). 114 

Inventory-based estimates, atmospheric inversion (top-down) models, and data-driven models 115 

have been used to estimate C fluxes and stocks in Canada, in some cases at extremely high 116 

resolution (1 km or less) but each with their own limitations (Chen et al., 2000, 2003; Ju & Chen, 117 

2008; Kurz et al., 2009; Shiga et al., 2018; Sothe et al., 2022; Xiao et al., 2014). The inventory-118 

based approach cannot disentangle the relative contributions of CO2 fertilization and climate to 119 

vegetation growth, the inversion approach operates at coarse regional resolution, and the data-120 

driven approach is dependent upon the quality of the training data and has difficulty 121 

disentangling CO2 fertilization and climate impacts on vegetation. All three alternative 122 

approaches additionally have a limited ability to make future projections. Conversely, regional 123 

processes-based models have several advantages that can circumvent some of the drawbacks of 124 

the other approaches. They can run at high resolution compared to their global counterparts, 125 

include model parameters optimized based upon region-specific data, include regional PFTs that 126 

better capture the distribution of vegetation on the landscape, and utilize region-specific data sets 127 

(i.e. meteorological or disturbance history drivers) (Koca et al., 2006; Kuntoro et al., 2009; 128 

Morales et al., 2007; Santini et al., 2014; Seiler et al., 2014, 2015). Developing a higher 129 

resolution process-based model tailored to the pan-Canadian domain is an important step toward 130 

disentangling the impact of different processes on Canada's net C balance and projecting how the 131 

Canadian C cycle will respond to future climate change. 132 

Representing the distribution and plant traits of Canada’s vegetation will improve our capacity to 133 

model the Canadian terrestrial C cycle. Plant functional types (PFTs) are commonly used in land 134 

surface models (LSMs) to represent broad groups of vegetation with similar characteristics such 135 

as their growth form, phenological patterns, or photosynthetic pathways (Bonan et al., 2002; 136 

Box, 1996; Smith et al., 1993; Ustin & Gamon, 2010). There are, however, large differences in 137 

the coverage and type of PFTs used in LSMs, which in turn impact the simulated fluxes of matter 138 

and energy from the land surface (Fritz et al., 2011; Hartley et al., 2017; Ottlé et al., 2013; Wang 139 

et al., 2022). Moreover, the PFTs used in LSMs have historically been developed to represent 140 

global patterns of vegetation and their associated traits (Bonan et al., 2002; Box, 1996; Melton et 141 

al., 2020; Wullschleger et al., 2014). Region-specific PFTs can enhance model realism, more 142 

accurately represent the diversity of vegetation on the landscape, and include more informed 143 

parameterizations that act to reduce regional biases (Curasi et al., 2022; Epstein et al., 2001; 144 

Mekonnen et al., 2021; Meyer et al., 2021; Peng et al., 2014; Rezende et al., 2016; Rogers, 145 

2014). For these region-specific PFTs to improve model performance and robustness they 146 
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require sufficient data or expert knowledge to inform their parameterization and specify their 147 

distribution. Adding a region-specific PFT increases the number of parameters used in the 148 

model. Therefore region-specific PFTs must be carefully specified by balancing realism and 149 

parsimony and avoiding issues of equifinality (Anderegg et al., 2022; Prentice et al., 2015). 150 

Currently, CLASSIC and indeed we are not aware of any other LSMs that include PFTs tailored 151 

to explicitly represent Canada’s boreal forests, tundra sedges, and shrubs (Melton et al., 2020; 152 

Meyer et al., 2021; Wullschleger et al., 2014).  153 

In this study, we tailor CLASSIC to the pan-Canadian domain by improving its representation of 154 

the distribution and traits of Canada’s vegetation to enhance CLASSIC’s representation of the 155 

Canadian C cycle. Given the wide array of vegetation cover products that exist for Canada, we 156 

evaluate the performance of CLASSIC when run with prescribed land cover from four vegetation 157 

cover products. We also evaluate the impact of including five new PFTs in CLASSIC including 158 

shrub, sedge, and region-specific tree PFTs. We compare our offline model simulations to 159 

independent remotely sensed and data-driven products to demonstrate the skill of the region-160 

specific model configuration in representing the pan-Canadian domain relative to the standard 161 

model setup. Finally, we evaluate the model biases to determine where to implement future 162 

improvements. 163 

2. Methods  164 

 165 

2.1 The CLASSIC model 166 

 167 

CLASSIC is the community open-source successor to the coupled Canadian Land Surface 168 

Scheme (CLASS) (Verseghy, 2017, 2000, 2007; Verseghy et al., 1993) and Canadian Terrestrial 169 

Ecosystem Model (CTEM) (Arora, 2003; Melton & Arora, 2016). A detailed description and 170 

evaluation of CLASSIC v1.0 can be found in Melton et al., (2020) and Seiler et al., (2021). The 171 

description below highlights updates since CLASSIC v1.0 that include or improve the 172 

representation of certain processes. Within CLASSIC, CLASS simulates the energy and water 173 

balances of the land surface and CTEM simulates the biogeochemical processes. 174 

 175 

CLASS is the physics sub-model that, when driven by meteorological data, simulates the fluxes 176 

of heat, momentum, and water on and within the land surface. CLASS simulates four possible 177 

subareas within each grid cell: bare ground, snow-covered ground, canopy-covered ground, and 178 

snow-covered canopy, typically on a thirty-minute time step in offline simulations. The model is 179 

set up to use 20 ground layers which gradually increase from ten layers of 0.1 m thickness to a 180 

30 m thick layer for a total depth of over 61 m. CLASS simulates water fluxes between the soil 181 

layers down to the depth of the underlying impermeable bedrock layers. The water fluxes use an 182 

improved first-order Lagrange interpolation to discretize the Richards equation for unsaturated 183 

vertical flow (MacKay et al., 2022). CLASS simulates heat transfer within all ground layers 184 

including the underlying bedrock. The soil textures and permeable depth used within the model 185 
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come from the SoilGrids250m data set (Hengl et al., 2017). CLASS models the canopy as a 186 

single layer and in the default configuration uses four plant functional types for the model 187 

physics: needleleaf trees, broadleaf trees, grasses, and crops. One of our model runs includes one 188 

new region-specific CLASS PFT in addition to those described above: Broadleaf shrubs (see 189 

section 2.4 below; Table 1). 190 

 191 

CTEM is a dynamic vegetation model which simulates the biogeochemical processes within 192 

CLASSIC. CLASS is coupled to CTEM on a daily time step. CLASS provides CTEM with 193 

information about the mean daily soil moisture, soil temperature, and net radiation on the land 194 

surface. CTEM in turn provides CLASS with information about the overlying vegetation 195 

including its height, leaf area index (LAI), biomass, and rooting depth. The vegetation is 196 

dynamically simulated by CTEM as a function of environmental conditions through its 197 

simulation of photosynthetic fluxes on the physics timestep, and daily simulation of C allocation 198 

to three live vegetation components: leaves, stems, and roots. CTEM incorporates non-structural 199 

and structural carbohydrate pools within the three live vegetation components (Asaadi et al., 200 

2018). CTEM allocates C first to the non-structural pool, and the model then simulates the flux 201 

of C to the structural pool. The non-structural pools buffer the supply of C to improve the 202 

seasonality of simulated LAI (Asaadi et al., 2018). CTEM also simulates daily autotrophic 203 

respiration (Ra) from the live vegetation components and heterotrophic respiration (Rh) fluxes 204 

from the litter and soil C pools. CTEM has a fire module that simulates fires and their associated 205 

C fluxes based on climate conditions, population density, and lightning strike frequency (Arora 206 

& Boer, 2010; Arora & Melton, 2018). The simulation of the C pools and fluxes within the 207 

model utilizes a user-determined number of PFTs. In its default configuration, CTEM utilizes 208 

nine biogeochemical PFTs that map onto the physics (CLASS) PFTs (Table 1). One of our 209 

model runs utilizes new region-specific CTEM PFTs, in addition to the standard nine, including 210 

broadleaf deciduous shrubs, broadleaf evergreen shrubs, continental needleleaf evergreen trees, 211 

interior needleleaf evergreen trees, and sedges (see section 2.4 below; Table 1). 212 

 213 

2.2 Meteorological forcings and simulation protocol 214 

 215 

CLASSIC requires seven meteorological forcing variables for its simulation of matter, energy, 216 

and momentum exchanges between the land surface and the atmosphere: incoming shortwave 217 

radiation, incoming longwave radiation, air temperature, precipitation rate, air pressure, specific 218 

humidity, and wind speed. As described by Meyer et al. (2021), the daily meteorological forcing 219 

used in our simulations is from a merged dataset (GSWP3–W5E5–ERA5). The 1901 – 1978 220 

portion of the meteorological forcing comes from the Inter-Sectoral Impact Model 221 

Intercomparison Project 0.5° GSWP3–W5E5 bilinearly interpolated to a 0.25° grid (Kim, 2017; 222 

Lange, 2019, 2020a, 2020b). The 1979–2018 portion comes from the 0.25° ERA5 time series 223 

bias corrected to match the means of the overlapping period of the GSWP3–W5E5 dataset 224 

(ECMWF, 2019). We nearest neighbor interpolated the bias-corrected meteorological forcing to 225 
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a 0.22° common grid using the Climate Data Operators suite (Schulzweida et al., 2006). We 226 

disaggregated the meteorology from daily to half-hourly time steps following the methodology 227 

of Melton and Arora (2016) except for incoming longwave radiation which was linearly 228 

interpolated. The fire module utilizes time-varying lightning-to-ground strike data from the 229 

Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) Climatology Data Set 230 

(Cecil et al., 2014) and time-varying population density from the Trends in the land carbon cycle 231 

2021 (TRENDY) protocol based on the History database of the Global Environment (Hyde) 232 

version 3.2 (Chini et al., 2021; Friedlingstein et al., 2022). 233 

 234 

In our simulations, we prescribe the spatial distribution of PFTs using four different land cover 235 

products to better elucidate the influence of the new PFTs (see sections 2.3, and 2.4 below). 236 

CLASSIC’s fire module simulates fires and their associated C fluxes during our model runs. 237 

Although CLASSIC can simulate nitrogen (N) cycling and land use change (LUC), we did not 238 

use either in these simulations (Arora & Boer, 2010; Asaadi & Arora, 2021).  239 

 240 

The model simulations utilize a standard protocol consisting of a spin-up to allow the model to 241 

equilibrate C fluxes to conditions corresponding to the year 1850 and a transient run over the 242 

period 1850 to 2017. During spin-up, we loop climate data from the earliest 25 years available 243 

(1901 - 1925) and hold atmospheric CO2 concentrations at the pre-industrial level (286.46 ppm). 244 

The transient runs use time-varying CO2 and climate. The early phase of the transient run (1850 - 245 

1900) uses the same 1901 - 1925 climate as the spinup, but with time-varying atmospheric CO2 246 

concentrations. The later phase of the transient run uses time-varying atmospheric CO2 247 

concentrations and evolving climate from the 1901–2017 period. The fire module is active 248 

during the simulations and during the transient run where it uses the time-varying lightning strike 249 

and population density data. 250 

 251 

2.3 Land cover products 252 

 253 

We use four different land cover products to explore their impact on CLASSIC’s ability to 254 

represent C cycling-related processes over Canada: Global Land Cover 2000 land cover (GLC 255 

2000), North American Land Change Monitoring System land cover (NALCMS), European 256 

Space Agency Climate Change Initiative land cover (ESA CCI), and a hybrid land cover with the 257 

default 9 CLASSIC PFTs (Hybrid-9PFT). GLC 2000 is a 1 km resolution global land cover 258 

product with 22 classes. It was generated by Bartholomé and Belward (2005) from Satellite Pour 259 

l’Observation de la Terre VEGETATION (SPOT-VEG) data collected from November 1999 to 260 

December 2000 using an unsupervised image classification method. NALCMS is a 30 m 261 

resolution North American regional product with 19 classes (Latifovic et al., 2017). It was 262 

generated by the Canada Center for Remote Sensing from Landsat imagery using a random 263 

forest algorithm and local optimization method. ESA CCI is a 300 m resolution global product 264 

with 22 classes and 15 sub-classes (European Space Agency, 2017). It was generated by the 265 
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(European Space Agency, 2017) by applying a combination of machine learning and 266 

unsupervised image classification methods to three products: Environmental Satellite 267 

(ENVISAT; 2003-2012), SPOT-VEG (1999 - 2013), and Project for On-Board Autonomy 268 

Vegetation (PROBA-V; 2013 - 2018). Finally, Hybrid is a Canada-specific product generated by 269 

Wang et al. (2022). It combines NALCMS with a land cover classification generated by 270 

Hermisilla et al. (2018) using the Virtual Land Cover Engine (VLCE). The VLCE product was 271 

generated with a random forest-based classification method using Landsat time-series data and 272 

informed by forest change and digital elevation information derived from the Advanced 273 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The Hybrid product has 17 274 

classes and blends the detailed land cover classification of NALCMS with a more accurate forest 275 

cover mapping by VLCE (Wang et al., 2022). Based on field survey data and expert knowledge 276 

of global biomes and class descriptions, we use cross-walking tables to convert each dataset's 277 

land cover classes into the nine default PFTs in CLASSIC (Table 1) (Wang et al., 2006, 2019, 278 

2022). Information about shrub fractional cover is available in the underlying Hybrid product, 279 

however, the default nine PFTs do not include shrubs so we assign a fraction of the shrub cover 280 

to the tree PFTs and the remainder to the C3 grass PFT in Hybrid-9PFT.  281 

 282 

2.4 Additional PFTs 283 

 284 

We implement five additional plant functional types and evaluate how region-specific PFTs 285 

improve CLASSIC’s performance in Canada and increase the model's realism. Three of the 286 

additional PFTs are non-tree PFTs including broadleaf evergreen shrubs, broadleaf deciduous 287 

shrubs, and sedges. These PFTs represent shrubs and sedges in Canada's arctic and boreal 288 

ecosystems. They were parameterized and extensively evaluated at a high Arctic eddy-289 

covariance tower site by Meyer et al. (2021). We specify the fractional coverage of these three 290 

PFTs by creating a cross-walking table for the Hybrid product that includes 12 PFTs (i.e. the 291 

default nine plus the three non-tree new PFTs; Table S1) (Wang et al., 2006, 2019, 2022).  292 

 293 

The other two additional PFTs are needleleaf trees: continental needleleaf evergreen trees and 294 

interior needleleaf evergreen trees. The interior needleleaf evergreen tree PFT parameterization 295 

comes from Peng et al. (2014) and assumes 50% lower rates of leaf loss from cold and drought 296 

in the CTEM phenology model compared to the standard needleleaf evergreen tree PFT (Table 297 

1). This PFT roughly corresponds to the pines (Pinus spp.), spruces (Picea spp.), subalpine fir 298 

(Abies lasiocarpa), interior Douglas fir (Pseudotsuga menziesii var. glauca), western hemlock 299 

(Tsuga heterophylla), and western red cedar (Thuja plicata) that occupy the interior of British 300 

Columbia. We specify the fractional cover for this PFT by splitting the interior needleleaf 301 

evergreen PFT from the needleleaf evergreen tree cover in the 12 PFT version of Hybrid using 302 

land cover classifications encompassing these species or subspecies in British Columbia’s 303 

biogeoclimatic ecosystem classification map (MacKenzie & Meidinger, 2018; Salkfield et al., 304 

2016). The continental needleleaf evergreen tree PFT parameterization is based on Qu et al., 305 
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(2021) and has a lower maximum carboxylation rate of Rubisco (Vmax; Table 1) than the default 306 

needleleaf evergreen tree PFT. This PFT primarily corresponds to black spruce (Picea mariana), 307 

which occupies the continental interior of Canada. We calculate the fraction of the total 308 

needleleaf evergreen tree cover that is white or black spruce using gridded species composition 309 

data from Canada’s National Forest Inventory for areas within Canada, and from the Scenarios 310 

Network for Alaska and Arctic Planning for areas within Alaska (Beaudoin et al., 2018; Land 311 

Cover v0.2, 2021). To estimate the fractional cover of the continental needleleaf evergreen PFT, 312 

we apply this fractional value to the needleleaf evergreen tree cover in the 12 PFT version of 313 

Hybrid. The resulting land cover product and associated model runs are hereafter referred to as 314 

the Hybrid land cover with 14 PFTs (Hybrid-14PFT). 315 

 316 

2.5 Reference data sets 317 

 318 

We evaluate the CLASSIC outputs against in situ and gridded observation-based data (hereafter 319 

termed reference data) available within the pan-Canadian domain. The 33 reference data sets 320 

contain information about 12 variables relevant to the energy, C, and water cycle including 321 

above-ground biomass (AGB), the fraction of area burnt (BURNT), gross primary productivity 322 

(GPP), latent heat flux (HFLS), leaf area index (LAI), net surface longwave radiation (RLS), net 323 

surface radiation (RNS), net surface shortwave radiation (RSS), sensible heat flux (HFSS), 324 

shortwave albedo (ALBS), snow water equivalent (SNW), and soil carbon (CSOIL). These data 325 

sets include either monthly mean values or are simply a snapshot in time (Table 2) and are 326 

versions of those detailed in Seiler et al., (2021, 2022) which we interpolated to the 0.22° model 327 

grid. Our analysis focuses on AGB, CSOIL, GPP, and LAI as these variables are particularly 328 

relevant to the C cycle and multiple gridded reference data sets are available for each which 329 

allows us to consider observational uncertainty. 330 

 331 

The GPP reference data sets are from the Moderate Resolution Imaging Spectroradiometer 332 

(MODIS) (Zhang et al., 2017), the FluxCom initiative (FluxCom) (Jung et al., 2019), the Global 333 

Orbiting Carbon Observatory-2 Solar-induced Chlorophyll Fluorescence (GOSIF) (Li & Xiao, 334 

2019), and the Global Land Surface Satellite Product Suite (GLASS) (Liang et al., 2021). 335 

MODIS GPP was calculated from a range of MODIS and reanalysis products using a light-use 336 

efficiency model which considers the efficiency with which vegetation uses light absorbed by 337 

chlorophyll to fix carbon via photosynthesis. GOSIF GPP was calculated based on a statistical 338 

model which relates GPP measurements from eddy covariance towers to solar-induced 339 

chlorophyll fluorescence (SIF) from the global Orbiting Carbon Observatory-2 (OCO-2). 340 

FluxCom GPP was upscaled from eddy covariance towers using an ensemble of six machine 341 

learning models and an array of MODIS-derived remotely sensed products and meteorological 342 

data from the Climate Research Unit National Centers for Environmental Prediction version 8. 343 

We pre-process FluxCom GPP by calculating the median of the six ensemble members. GLASS 344 

GPP was calculated from a range of remotely sensed products detailing direct and diffuse 345 
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radiation fluxes, vapor pressure deficit, and atmospheric CO2 concentrations using an eddy 346 

covariance-derived light use efficiency model. All of these GPP data sets directly integrate or 347 

were originally validated against eddy covariance tower data which exhibits some spatial bias 348 

against far north regions in its sampling distribution (Jung et al., 2020; Keenan & Williams, 349 

2018). 350 

 351 

The LAI reference data sets are from MODIS (Myneni et al., 2002), the Advanced Very High-352 

Resolution Radiometer (AVHRR) (Claverie et al., 2016), and the European Space Agency's 353 

Copernicus Global Land Service (Copernicus) (Verger et al., 2015, 2016). The LAI reference 354 

data sets were all derived from surface reflectance based on satellite imagery. MODIS LAI was 355 

calculated by inverting a three-dimensional canopy radiative transfer model. Claverie et al., 356 

(2016) derived AVHRR LAI from AVHRR surface reflectance using an artificial neural network 357 

trained using LAI from MODIS (MCD15A2) and calibrated using in situ data from Baret et al., 358 

(2006). Finally, Copernicus LAI was generated from SPOT-VEG satellite imagery using an 359 

artificial neural network. The Copernicus LAI product was filtered to remove artifacts due to 360 

snow cover or poor illumination. At high latitudes, an additional correction was applied where 361 

the pixels were fixed at their minimum values when the sun's zenith angle was >70°. Gap-filling 362 

was also applied, but our analysis only uses non-gap-filled records. 363 

 364 

The AGB reference data sets come from the Global Carbon Observation and Analysis System 365 

(GEOCARBON) (Avitabile et al., 2016; Santoro et al., 2015), Huang et al., (2021) (Huang2021), 366 

Canada’s National Forest Inventory (NFI) (Gillis et al., 2005), Zhang et al., (2020) (Zhang), and 367 

in-situ observations from Schepaschenko et al., (2019) and Xue et al., (2017) (FOSXue). These 368 

AGB reference data sets are diverse both in terms of the methodologies applied and the 369 

underlying field data or remote sensing covariates used. GEOCARBON AGB was created by 370 

harmonizing two pre-existing AGB data sets from Santoro et al., (2015) for boreal regions and 371 

Avitabile et al., (2016) for tropical regions. Therefore in our region of interest, it is primarily 372 

informed by the Envisat Advanced Synthetic Aperture Radar (SAR) derived estimates of Santoro 373 

et al., (2015). Huang2021 AGB was developed from Santoro et al., (2018) which, in turn, was 374 

derived from Advanced Land Observing Satellite and Envisat SAR. The SAR retrievals were 375 

used to estimate the volume of wood on the landscape. Then AGB was calculated based on wood 376 

density and a biomass expansion factor derived by upscaling in-situ data. When validated against 377 

in-situ data, Huang2021 AGB performed better in boreal regions than in tropical, subtropical, 378 

and temperate regions (Santoro et al., 2021). Zhang AGB used data fusion to integrate 10 pre-379 

existing aboveground biomass maps that were then extensively evaluated against in-situ 380 

observations and LIDAR observations. The pre-existing AGB products fused in Zhang exhibit 381 

large differences in AGB in boreal regions and positive biases globally. FosXue and NFI AGB 382 

are both in-situ point-based reference data sets that were derived by upscaling field 383 

measurements using allometric equations. The NFI has excellent spatial coverage of forested 384 

areas within Canada and consists of approximately 20,000 plots located on a 20 x 20 km grid. 385 
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The FOSXue data combined in-situ observations from Xue et al., (2017) and Schepaschenko et 386 

al., (2019). It has fairly limited spatial coverage within Canada encompassing <50 sites 387 

concentrated in southern forests. 388 

 389 

The CSOIL reference data sets come from the Harmonized World Soil Database (HWSD) 390 

(Todd-Brown et al., 2013), and the SoilGrids system at 250m resolution (SG250m) (Hengl et al., 391 

2017). HWSD CSOIL was created by combining soil survey data with the FAO Soil Map of the 392 

World to calculate the soil C content of the top 100cm of soil. SG250m CSOIL was created by 393 

upscaling 150,000 soil survey data records using an ensemble of machine learning models and 394 

150 remotely sensed covariates. We process SG250m to only include the first 100cm of soil and 395 

make it comparable to HWSD. These two data sets are known to differ in the extent to which 396 

they represent peatlands, river floodplains, and permafrost soils leading to lower CSOIL in 397 

HWSD when compared to SG250m (Seiler et al., 2022; Tifafi et al., 2018). 398 

 399 

The BURNT reference data sets come from the Global Fire Emissions Database (GFED4S) 400 

(Giglio et al., 2013), and the European Space Agency Climate Change Initiative land cover 401 

(ESACCI) (Chuvieco et al., 2018). The SNW reference data sets come from a blended product 402 

developed at Environment and Climate Change Canada (ECCC) which combines four other 403 

gridded SNW products (Brown et al., 2003; Brun et al., 2013; Gelaro et al., 2017; Takala et al., 404 

2011), and in-situ SNW measurements compiled by Mortimer et al., (2020) (Mortimer). The 405 

surface energy balance-related reference datasets come from the Clouds and the Earth’s Radiant 406 

Energy System (CERES) (Kato et al., 2013), the Global Energy and Water Cycle Experiment-407 

Surface Radiation Budget (GEWEXSRB) (Zhang et al., 2011), the Conserving Land–408 

Atmosphere Synthesis Suite (CLASSr) (Hobeichi et al., 2020), FluxCom and MODIS (Strahler 409 

et al., 1999). 410 

 411 

2.6 The Automated Model Benchmarking R package 412 

 413 

The Automated Model Benchmarking R package (AMBER) assesses model performance against 414 

the reference data sets and calculates skill scores (Seiler et al., 2021). The package calculates a 415 

total of six scores: the bias score (Sbias), the root-mean-square-error score (Srmse), the phase score 416 

(Sphase), the interannual variability score (Siav), the spatial distribution score (Sdist), and the overall 417 

score (Soverall). Sbias assesses the difference between the reference and modeled mean values. Srmse 418 

evaluates the residuals of the reference and modeled time series. Sphase assesses how well the 419 

model reproduces the seasonality in the reference time series. Siav assesses how well the model 420 

reproduces the interannual variability in the reference time series. Sdist evaluates how well the 421 

model captures the pattern of a variable across space compared to the reference data. Finally, 422 

Soverall is a weighted average of the other five scores where Srmse is weighted by a factor of two 423 

commensurate with its perceived importance in assessing model performance. The scores are 424 

dimensionless and on a scale from 0 to 1. The scores express the level of agreement between the 425 
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model and reference data with a higher value implying better performance. Lower values are, 426 

however, not necessarily a product of poor model performance as the scores are also affected by 427 

uncertainties in the forcing and reference data. Further details regarding the AMBER R package 428 

as well as the skill score equations are presented in Seiler et al. (2021) and Seiler (2019). 429 

 430 

We also calculate benchmark scores for the reference data sets compared to one another. These 431 

scores quantify the level of agreement between the reference data sets. They are indicative of the 432 

Soverall that is achievable given the uncertainty between the reference data sets. The benchmark 433 

scores for a single variable (i.e. GPP) can vary among the reference data sets due to the 434 

calculations involved in normalizing each statistical metric (Seiler et al., 2022). If the model skill 435 

scores reach the benchmark scores then the level of disagreement between the model and the 436 

reference data set is of similar magnitude to the uncertainty between the individual reference data 437 

sets. The model scores can exceed the benchmark scores when the model falls within the 438 

uncertainty range of the reference data. 439 

 440 

3. Results 441 

 442 

3.1 The spatial distribution of land cover 443 

 444 

The four vegetation cover products differ in terms of the fractional cover of the 9 CTEM PFTs 445 

and their dominance. In all four land cover products, needleleaf deciduous trees, broadleaf 446 

drought/dry deciduous trees, C4 crops, and C4 grasses PFTs are for the most part found at lower 447 

latitudes and are not present or have a negligible fractional cover in the pan-Canadian domain 448 

(Figure S1). The broadleaf evergreen tree PFT is only present in GLC 2000 and ESA CCI, with 449 

limited fractional cover (Figure S1a,c).  450 

 451 

Needleleaf evergreen trees dominate western and mid-latitude Canada, whereas broadleaf cold 452 

deciduous trees dominate southern Ontario and Quebec (Figure 1). The fractional cover of 453 

needleleaf evergreen and broadleaf cold deciduous trees is generally higher in GLC 2000 when 454 

compared to the other three land covers. C3 crops dominate southeastern and south-central 455 

Canada, however, the fractional cover of C3 crops is lower in GLC 2000 (Figure 1a) than in the 456 

other three data sets (Figure 1b-d). C3 grass is dominant in parts of south-central Canada and the 457 

Arctic; however, its fractional cover differs widely between the four data sets. In GLC 2000, C3 458 

grass cover in south-central Canada is higher and more widespread, likely due to its lower C3 459 

crop cover when compared to the other three data sets (Figure 1a). GLC 2000 also uses a mix of 460 

C3 grass and broadleaf cold deciduous trees at high latitudes (Figure 1a). ESA CCI has 461 

consistent C3 grass cover at higher latitudes (Figure 1c) whereas NALCMS and Hybrid-9PFT 462 

feature a peak ~70° north and a gradual decline in C3 grass cover at higher latitudes (Figure 463 

1b,d). 464 

 465 
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3.2 Comparisons of model simulations with different PFT cover 466 

 467 

The AMBER scores of the CLASSIC model runs using the four different prescribed PFT covers 468 

vary when compared to an array of reference data sets (Figure 2). The model run using Hybrid-469 

9PFT has the best overall performance for C cycling-related reference data sets. Hybrid-9PFT 470 

has the highest overall score for three out of the four GPP reference data sets with an average 471 

improvement of 0.013 when compared to the land cover with the lowest score (Figure 2 b,c). 472 

Similar improvements are seen for LAI (3/3 data sets), AGB (2/5 data sets), and CSOIL (2/2 data 473 

sets). These improvements are primarily a result of improvements in the spatial distribution 474 

(Sdist) of these C cycling variables and in the bias (Sbias; Figure 2b). The overall score differences 475 

are generally large ranging from 0.02 to 0.08. The NALCMS and ESA CCI model runs rank 476 

second or third against C cycling-related reference data sets with approximately equal frequency 477 

(Figure S2). The score differences between the first and second-ranked model runs are often 478 

small (i.e. <0.01) but are eclipsed by large differences between the first and third-ranked model 479 

runs (i.e. >0.01). 480 

 481 

ESA CCI consistently improves the model's performance in terms of surface energy balance-482 

related comparisons and has the highest overall score for RNS (3/4 data sets) and ALBS (3/3 483 

data sets; Figure 2 b,c). These improvements are primarily due to changes in the spatial 484 

distribution of RNS and ALBS (Figure 2c). The differences in the overall scores are lower 485 

ranging from <0.01 to 0.03. The Hybrid-9PFT and NALCMS often rank second and third against 486 

these surface energy balance-related data sets and exhibit similar performance when compared to 487 

the top-ranked model run (i.e. score differences <0.01; Figure S2). Looking across all of the 488 

comparisons, GLC 2000 is the lowest-scoring land cover (22/33 comparisons; Figure 2d).  489 

 490 

Average AGB ranges from 1.9 to 5.7 kg C m-2 in the various gridded reference data sets masked 491 

to the same spatial extent. In the point data average, AGB is 6.0 kg C m-2 for FosXue, and 4.6 kg 492 

C m-2 for NFI. The spatial extent of the FosXue data, which is concentrated in southern Canada, 493 

is markedly different from that of the NFI data, which covers most forested areas in Canada 494 

(Figure S3). The NFI point data has the widest range of any AGB reference data set (0 - 36.7 kg 495 

C m-2; Figure S3). The model runs fell into a smaller range towards the higher end of that found 496 

within the reference data (4.3 - 5.0 kg C m-2). In both the model runs and the reference data, 497 

AGB generally declines with increasing latitude (Figure 3a). For the model simulations, the 498 

slope of this decline is steepest for GLC 2000. Average CSOIL ranges from 15 - 50 kg C m-2 in 499 

the various reference datasets while the model runs fall into a small range (13 - 17 kg C m-2) at 500 

the lower end of the reference data. The model-simulated CSOIL is generally similar to the 501 

HWSD reference data set from 45° - 65° north but has lower values at higher latitudes (Figure 502 

3b). The CSOIL reference datasets differ dramatically amongst themselves at mid to high 503 

latitudes with HWSD consistently lowest. The average GPP in the various reference data sets 504 

ranges from 1.3 - 1.7 g C m-2 day-1 while the model simulates a smaller range from 1.4 - 1.5 g C 505 
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m-2 day-1. GPP declines with increasing latitude in both the model runs and the reference data 506 

sets (Figure 3c). The model generally estimates higher GPP than the reference data sets at <60° 507 

north and is within the range of reference data sets at higher latitudes. GLC 2000 has the steepest 508 

decline in GPP with increasing latitude. The average LAI in the various reference data sets 509 

ranges from 0.9 - 1.3 m 2 m-2 and the model runs fall into a smaller range from 1.4 - 1.5 m 2 m-2. 510 

All the model runs have higher LAI than the reference data from 45° - 60° north. The Copernicus 511 

reference data is substantially closer to the modeled values than MODIS or AVHRR (Figure 3d). 512 

 513 

3.3 Additional plant functional types 514 

 515 

The Hybrid-14PFT vegetation cover product has more heterogeneous vegetation cover patterns 516 

than the baseline Hybrid-9PFT. In Hybrid-14PFT, needleleaf deciduous, broadleaf drought/dry 517 

deciduous, and broadleaf evergreen trees are again not present in Canada whereas some limited 518 

C4 crop cover is present in central Canada and southern Ontario (Figure S4). Needleleaf 519 

evergreen trees in Hybrid-9PFT are largely replaced by continental needleleaf evergreen trees in 520 

the central mid-latitudes of Canada and interior needleleaf evergreen trees in western Canada in 521 

Hybrid-14PFT (Figure 4a,b). C3 grass PFT cover is largely replaced by broadleaf deciduous, and 522 

to a lesser extent, broadleaf evergreen shrub cover throughout Canada. In Hybrid-14PFT, the 523 

Arctic is now dominated by a mix of sedge, broadleaf deciduous shrub, and broadleaf evergreen 524 

shrub cover which replaces the homogenous C3 grass cover in Hybrid-9PFT (Figure 4b). In 525 

Hybrid-14PFT, broadleaf deciduous shrubs dominate the low arctic, but their fractional cover 526 

declines and is largely supplanted by sedges at high latitudes. 527 

 528 

3.4 Model performance with additional plant functional types 529 

 530 

The addition of five CTEM PFTs to the model improves its performance against reference data 531 

for several C cycling-related variables (Figure 5). The overall scores for three of the five AGB 532 

reference data sets improve between 0.04 and 0.14. This is primarily a result of large 533 

improvements (i.e. up to 0.14) in the spatial distribution and bias of modeled AGB (Figure 5 b,c) 534 

This came at the cost of a performance loss against the Zhang and FOSXue reference data. The 535 

overall scores for three of the four GPP reference data sets also improve by between 0.04 and 536 

0.06 due to improvements in the spatial distribution, interannual variability, and bias of modeled 537 

GPP. GLASS is the only GPP reference data product to show an overall score decrease with 538 

Hybrid-14 over Hybrid-9. Changes in the spatial distribution of CSOIL lead to a decrease in 539 

performance against both CSOIL reference data sets. The overall scores now meet or exceed the 540 

benchmark scores for most GPP (4/4) and AGB (4/5) reference data sets, but fewer CSOIL (1/2) 541 

and LAI (0/3) reference data sets (Figure 6). The C cycling-related overall scores consistently 542 

exceed the original GLC 2000 model run, except for CSOIL (Figure 6, S5, S6). 543 

 544 
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There are smaller (i.e. <0.1) changes in the overall scores of surface energy balance-related 545 

variables except for latent heat flux (HFLS) where changes in its modeled distribution and inter-546 

annual variability lead to overall score declines between 0.03 and 0.04 (Figure 5b,c). The HFLS 547 

overall scores nonetheless still exceed the benchmark scores for both reference data sets (Figure 548 

6). 549 

 550 

The AGB for CLASSIC simulations with 14 PFTs is lower on average (3.1 kg C m-2 ) than that 551 

with 9 PFTs (4.5 kg C m-2 ). There is a similar decline in AGB with increasing latitude in both, 552 

but with 14 PFTs, the model is now closer to the middle estimate provided by the reference data 553 

(Figure 7a). With 14 PFTs, CLASSIC simulated CSOIL (11 kg C m-2 ) is also lower on average 554 

than simulations with 9 PFTs (16 kg C m-2 ). Both model runs generally cluster around the 555 

HWSD CSOIL reference data (Figure 7b). With the 14 PFTs, CLASSIC simulated GPP is lower 556 

on average (1.1 g C m-2 day-1) than estimated with the 9 PFTs (1.4 g C m-2 day-1). The additional 557 

PFTs move GPP to within the range of the reference data at <60° north, where the model run 558 

with 9 PFTs generally is above the range of the reference data (Figure 7c). The simulated LAI 559 

with the 14 PFTs CLASSIC run is lower on average (1.1 m 2 m-2) than with 9 PFTs (1.4 m 2 m-2) 560 

and is biased low compared to the Copernicus reference data from 45° - 60° north (Figure 7d). 561 

 562 

Use of the 14 PFT land cover and associated parameterizations in CLASSIC significantly 563 

reduces regional biases in simulated AGB, GPP, and LAI across Canada (Figure 8). With the 14 564 

PFTs model setup, AGB, CSOIL, and GPP are within the 95% confidence interval of the gridded 565 

reference data across the majority of Canada (Figure 8). Exceptions include interior British 566 

Columbia where the model under-predicts AGB (Figure 8a) and southeastern and south-central 567 

Canada where GPP exhibits significant negative biases (Figure 8c). CSOIL did not exhibit 568 

distinct regional biases between the two model runs and large disagreements between the two 569 

reference data sets likely confound the CSOIL significance tests (Figure 8b). The largest absolute 570 

bias in CSOIL occurs in the Hudson Bay Lowlands region. Modeled LAI and BURNT exhibit 571 

strong, often significant biases across much of Canada in both model runs. With the CLASSIC 572 

14 PFTs simulation, strong positive LAI biases remain in boreal and western Canada (Figure 8d). 573 

BURNT exhibits consistent strong negative biases in the mid-latitude boreal region of Canada 574 

and strong positive biases in the plains region (Figure 8e). BURNT falls outside the 95% 575 

confidence interval of the reference data across the majority of Canada in line with its low scores 576 

(Figure 5, 6, S6). 577 

 578 

4. Discussion 579 

 580 

We evaluate CLASSIC’s performance across the pan-Canadian domain and demonstrate its skill 581 

at simulating C cycling at regional scales. Comparing CLASSIC runs using different prescribed 582 

PFT covers demonstrates the model’s sensitivity to prescribed vegetation cover (Figure 1-3). The 583 

addition of five region-specific PFTs further improves CLASSIC’s skill at simulating regional C 584 
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cycling compared to the 9 PFT model runs and demonstrates that a well-informed regional 585 

parameterization can reduce biases (Figure 4-8). For Hybrid-14PFT, the overall scores (Soverall) 586 

for the majority of C-cycling (9/14) and many surface energy balance (7/15) processes meet or 587 

exceed the benchmark scores, further highlighting the skill of our regional parameterization 588 

(Figure 6, S5, S6). Some processes (i.e. LAI, CSOIL, BURNT) continue to exhibit biases similar 589 

to those observed in CLASSIC and other LSMs at global scale (Figure 8b,d,e) (Seiler et al., 590 

2022). 591 

 592 

4.1 Vegetation cover impacts the modeled C cycle 593 

 594 

Differences in the distribution and fractional cover of PFTs can impact an LSM’s simulated 595 

fluxes of matter and energy (Fritz et al., 2011; Gou et al., 2019; Hartley et al., 2017; Jung et al., 596 

2007; Ottlé et al., 2013; Quaife et al., 2008; Wang et al., 2022). Our results clearly demonstrate 597 

CLASSIC is sensitive to differences in prescribed PFT cover which produce wide-ranging 598 

impacts across the model outputs. GLC 2000 exhibits consistently higher tree PFT cover and 599 

lower crop and grass cover than other land cover products (Figure 1). The higher tree PFT cover 600 

biases the simulated fluxes of matter and energy in the model resulting in the GLC 2000 run 601 

consistently scoring the lowest (Figure 2). In the GLC 2000 run AGB, GPP, and LAI fall above 602 

the range of the reference data sets at mid-latitudes where tree cover is highest, and below the 603 

range of the reference data at higher latitudes where C3 grasses are prescribed to dominate 604 

(Figure 1-3). CLASSIC is particularly sensitive to mid-latitude differences in prescribed tree 605 

cover owing to its parameterization and the growth forms prominent role on the landscape 606 

(Huntzinger et al., 2012; Melton et al., 2020; Melton & Arora, 2016). The Hybrid-9PFT run falls 607 

near or within the range of the AGB, GPP, and LAI reference data owing to its lower tree cover 608 

and gradual decline in C3 grass cover with increasing latitude (Figures 1-3). As a result, the 609 

Hybrid-9PFT run consistently scores higher in C cycling-related comparisons. These results 610 

demonstrate that the use of realistic land cover products in LSMs can help reduce regional or 611 

global C cycling biases.  612 

 613 

Differences in the distribution and cover of PFTs are known to be a significant source of 614 

uncertainty between LSMs (Hartley et al., 2017; Teckentrup et al., 2021). GLC 2000, which 615 

generally is the lowest-scoring run in this study, has been employed in previous versions of 616 

CLASS-CTEM (Arora et al., 2009; Wang et al., 2006). It is the oldest and has the lowest spatial 617 

resolution of the five land cover products considered here (Bartholomé & Belward, 2005; 618 

European Space Agency, 2017; Latifovic et al., 2017; Wang et al., 2022). It also does not include 619 

changes in land cover due to disturbance or agricultural land use change, which have occurred 620 

since 2000 and are included in the other products. Hybrid-9PFT, on the other hand, is Canada-621 

specific and integrates more recently produced higher-resolution products. Therefore, advances 622 

in remote sensing which yield higher resolution, region-specific information, and more 623 

accurately characterize the vegetation on the landscape can represent a potential boon for 624 
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improving the accuracy of LSM simulations on regional to global scales (Fritz et al., 2011; Lu & 625 

Weng, 2007; Macander et al., 2022; Ottlé et al., 2013; Ustin & Gamon, 2010). Methods that 626 

blend vegetation cover products with varying extents, classes, or data types could allow global 627 

LSMs with regional biases to benefit from these advances (Hartley et al., 2017; Wang et al., 628 

2022, 2017; Zhang & Liang, 2020). Finally, model evaluation methods similar to those 629 

employed here i.e., Seiler et al. 2021, Seiler 2019, and Collier et al. 2018, present a powerful tool 630 

for determining the impact of different vegetation cover products on LSMs. 631 

 632 

4.2 Region-specific PFTs improve the representation of C cycle processes 633 

 634 

We also demonstrate that PFTs designed for use in global models can exhibit biases when used 635 

in regional scale simulations while region-specific PFTs can reduce these biases by better 636 

representing the traits of vegetation on the landscape (Epstein et al., 2001; Harper et al., 2018; 637 

Peng et al., 2014; Rezende et al., 2016; Rogers, 2014; Wullschleger et al., 2014). The five 638 

additional PFTs in this study address significant sources of bias in AGB and GPP. This is 639 

possible because sufficient information is available to inform their incorporation into the model 640 

(i.e. Meyer et al., 2021; Peng et al., 2014; Qu et al., 2021; Land Cover v0.2, 2021; Beaudoin et 641 

al., 2018). These PFTs have the additional benefit of improving the LAI biases while not 642 

exacerbating the existing CSOIL biases when compared to reference data (Figure 5). 643 

 644 

In our baseline model runs there is substantial positive bias in AGP, GPP, and LAI across the 645 

forested region of central Canada (Figures 6 & 7). This aligns with results by Qu et al., (2021) 646 

showing that the default needleleaf evergreen tree PFT in CLASSIC has a high Vmax which leads 647 

to an overestimated GPP when compared to eddy covariance observations in Canadian boreal 648 

forest stands (predominantly spruce trees). Incorporating the continental needleleaf evergreen 649 

tree PFT reduces these biases (Figures 4, 7, & 8). Similar positive GPP biases in boreal Canada 650 

and Eurasia were observed in TRENDY LSMs (Seiler et al., 2022). Vmax for needleleaf 651 

evergreen tree PFTs also varies widely in LSMs (Rogers, 2014). The interior needleleaf 652 

evergreen tree PFT more accurately represents the leaf traits of needleleaf evergreen trees within 653 

interior British Columbia (BC) and reduces the negative AGB biases in interior BC (Peng et al., 654 

2014; Reich et al., 1995) (Figure 8).  655 

 656 

The shrub and sedge PFTs improve model realism in high-latitude regions. These PFTs have 657 

been shown to improve the representation of soil temperatures, soil moisture, CO2, and energy 658 

fluxes in tundra ecosystems in site-level simulations (Meyer et al., 2021). The shrub and sedge 659 

PFTs more realistically represent the heterogeneous vegetation cover in tundra, which is often 660 

modeled using a single C3 grass PFT (Curasi et al., 2022; Meyer et al., 2021; Myers-Smith et al., 661 

2011; Wullschleger et al., 2014). These ecosystems are particularly significant given shrub 662 

expansion and complex greening patterns and browning observed across the Arctic (Berner et al., 663 

2020; Jia et al., 2003, 2009; Mekonnen et al., 2021; Tape et al., 2006). Further model evaluation 664 
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and meta-analysis will determine if global LSMs will see a similar benefit from these region-665 

specific PFTs. 666 

 667 

4.3 Will further regional parameterization improve performance? 668 

 669 

While there is significant diversity in tree genera across Canada, data quantifying how this 670 

diversity translates into differences in traits and plant function is limited (Beaudoin et al., 2018; 671 

Fisher et al., 2018; Iversen et al., 2017; Iversen & McCormack, 2021; Kattge et al., 2020). 672 

Additional region-specific PFTs need to be well-informed, ideally by field data, to balance 673 

realism and parsimony (Anderegg et al., 2022; Prentice et al., 2015). The addition of five PFTs 674 

brings the model runs within the range of available observation-based estimates provided by the 675 

AGB, LAI, and GPP reference data (Figures 6 & 7). As a result, further improvements in model 676 

performance against one data set are likely to degrade performance against another. 677 

 678 

The GPP reference data sets have high benchmark scores but are relatively clustered, possibly 679 

due to the similar underlying data sets used to create and validate them (Jung et al., 2019; Liang 680 

et al., 2021; Li & Xiao, 2019; Zhang et al., 2017). Hybrid-14PFT exceeds the GPP benchmark 681 

scores (Figure 6). The improvements in simulated GPP, especially for latitudes <60° north for 682 

three-quarters of the data sets, come at the expense of performance versus GLASS which has 683 

generally higher GPP (Figure 5,7c). The AGB data sets have lower benchmark scores and vary 684 

more in their estimates possibly due to the diversity of methodologies and underlying data used 685 

to create them (Avitabile et al., 2016; Gillis et al., 2005; Huang et al., 2021; Santoro et al., 2015; 686 

Schepaschenko et al., 2019; Xue et al., 2017; Zhang & Liang, 2020). Hybrid-14PFT exceeds the 687 

AGB benchmark scores in the majority of cases (Figure 6). The improvements in simulated AGB 688 

against 3/5 of the reference data sets, likely come at the expense of performance versus the 689 

Zhang and spatially limited FOSXue which have higher average AGB (Figure 5,7c).  690 

 691 

For LAI, Hybrid-14PFT improves slightly against MODIS and AVHRR at the expense of 692 

performance against Copernicus (Figure 5, 7). Hybrid-14PFT approaches but does not yet meet, 693 

the benchmark scores for these data sets (Figure 6). There is disagreement between 694 

MODIS/AVHRR, which are derived using similar methods, and Copernicus LAI, which employs 695 

additional filtering and correction at high latitudes (Claverie et al., 2016; Myneni et al., 2002; 696 

Verger et al., 2015, 2016). The positive LAI biases here are similar to those observed by Seiler et 697 

al., 2022, but are difficult to interpret given the disagreement between the individual LAI 698 

reference data sets. For CSOIL there is disagreement between the reference data due to 699 

differences in the extent to which peatlands, river floodplains, and permafrost soils are 700 

represented (Seiler et al., 2022; Tifafi et al., 2018) (Figures 6-8). These processes are likewise 701 

not represented within the CLASSIC framework used in our study. As a result, Hybrid-14PFT 702 

falls close to the values for CSOIL HWSD and exceeds the benchmark score for that data set. 703 

Ultimately, efforts to make field data for model parameterization more widely available and to 704 
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create more accurate reference data sets are key for further regional parameterization (Kattge et 705 

al., 2020; Kyker-Snowman et al., 2021; Seiler et al., 2021, 2022) 706 

 707 

Our results highlight areas in which further work could improve model realism and performance 708 

in the Canadian domain. First, disturbance processes (i.e. fire, harvest, and insect damage) have 709 

significant impacts on the net C balance of Canada's forests (Chaste et al., 2017; Giglio et al., 710 

2013; Giles-Hansen & Wei, 2022; Ju & Chen, 2008; Kurz et al., 2008, 2009; Landry et al., 2016; 711 

Weber & Flannigan, 1997; White et al., 2017). Harvest affected 3% of Canada’s land mass from 712 

1985 - 2010, and fire affected 7% of Canada’s land mass from 1985 - 2010 (White et al., 2017). 713 

Insect damage which often does not completely kill and replace stands affected 25% of Canada’s 714 

land mass from 1990 - 2010 (CCFM: National Forestry Database, 2022). All three of these 715 

processes are underrepresented and biased in CLASSIC simulations for Canada (Figure 6, 8). 716 

The absence of these disturbance processes likely contributes to the remaining positive AGB, 717 

GPP, and LAI biases. Second, despite the large uncertainty in the CSOIL reference data, the 718 

largest absolute CSOIL biases are in peatlands (i.e. the Hudson Bay Lowlands) and tundra 719 

(Figure 8). These CSOIL biases mirror those observed in other TRENDY models and can likely 720 

be improved by explicitly representing peatland, river floodplains, permafrost C, and yedoma 721 

(Melton et al., 2019; Seiler et al., 2022; Wu et al., 2016). Future efforts to incorporate 722 

disturbance and high latitude soil C processes within CLASSIC in Canada will improve its 723 

representation of these globally important soil C pools and Canada’s terrestrial C cycle more 724 

broadly. 725 

 726 

5. Conclusion 727 

 728 

Canadian ecosystems are critical components of the global carbon cycle which are responding to 729 

unprecedented climate change. We developed the first parameterization of a process-based LSM 730 

tailored to Canada. We demonstrate that region-specific vegetation cover products and region-731 

specific plant functional types improve CLASSICs' performance against independent reference 732 

data. Our model evaluations show that future work focused on incorporating a parameterization 733 

for boreal disturbance processes (i.e. fire and harvest) and explicitly representing peatlands and 734 

permafrost soils are important next steps in tailoring CLASSIC for optimal performance over 735 

Canada with potential improvements for other boreal regions. We argue that developing further 736 

region-specific land cover products, well-informed PFT parameterizations, and more detailed 737 

reference data sets will facilitate improvements to the representation of the terrestrial C cycle in 738 

regional and global LSMs. Ultimately this is an important step toward a comprehensive process-739 

based assessment of Canada’s terrestrial C cycle and understanding the response of Canada's net 740 

C balance to climate change 741 
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9. Figures 762 

 763 

 764 
Figure 1: Maps of dominant plant function type (PFT) cover across Canada for a) GLC 2000, b) 765 

NALCMS, c) ESA CCI and d) Hybrid-9PFT vegetation cover products.  766 
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 767 
Figure 2: a) Mean ensemble score, b) maximum score difference among ensemble members, 768 

and ensemble member with the c) highest and d) lowest score for historical model runs using the 769 

GLC 2000 (1), NALCMS (2), ESA CCI (3), and Hybrid-9PFT (4) vegetation cover. 770 

Comparisons are greyed out in panels b-d when the difference between the maximum and 771 

minimum scores is less than 0.01. Srmse, Sphase, and Siav are omitted for reference data sets that are 772 

a snapshot in time  773 



23 

 774 
Figure 3: Plots of the zonal average of a) Above ground living biomass (AGB) b) Soil carbon 775 

(CSOIL) c) Gross primary productivity (GPP) and d) Leaf area index (LAI). The dashed color 776 

lines represent the model runs with different vegetation cover products: GLC 2000 (purple), 777 

NALCMS (blue), ESA CCI (light blue), and the Hybrid-9PFT (green). The additional color lines 778 

denote various reference data sets. NFI and FOSXue are point-based reference data sets and are 779 

therefore not displayed in panel a. Average AGB for FosXue is 6.0 kg C m-2 f and average AGB 780 

for NFI is 4.6 kg C m-2.   781 
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 782 
Figure 4: a) Maps of major plant function type (PFT) cover across Canada for the Hybrid-783 

14PFT vegetation cover. b) Maps of the difference in PFT cover across Canada (Hybrid-14PFT 784 

– Hybrid-9PFT) for major PFTs present in both data sets.  785 
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 786 

 787 
Figure 5: a) Mean ensemble score, b) maximum score difference among ensemble members, 788 

and ensemble members with the c) highest and d) lowest score for historical model runs using 789 

Hybrid-9PFT (1) and Hybrid-14PFT (2). Comparisons are grayed out in panels b-d when the 790 

difference between the maximum and minimum scores is less than 0.01.791 
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 792 
Figure 6: Overall model scores with benchmarks. Green circles denote model scores that meet 793 

or exceed the benchmark scores and white squares denote model scores that meet or exceed the 794 

multi-model mean. 795 

  796 
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 797 
Figure 7: Plot of the average a) Above ground living biomass (AGB) b) Soil carbon (CSOIL) c) 798 

Gross primary productivity (GPP) and d) Leaf area index (LAI) across latitude. The dashed color 799 

lines represent the model runs with different vegetation cover products: Hybrid-9PFT (purple) 800 

and Hybrid-14PFT (green). The additional color lines denote various reference data sets. NFI 801 

and FOSXue are point-based reference data sets and are therefore not displayed in panel a. 802 

 803 
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 805 
Figure 8: Average bias for a) Above ground living biomass (AGB), b) Soil carbon (CSOIL), c) 806 

Gross primary productivity, d) Leaf area index (LAI), and e) burnt area (BURNT), for CLASSIC 807 

using the Hybrid-9PFT and Hybrid-14PFT, versus gridded reference data sets (Table 2, Section 808 

2.5). Stippling denotes areas where the model falls outside the 95% confidence interval for 809 

reference data sets. Gray cells denote land areas not covered by one or more of the reference data 810 

sets. The 9 PFT model run and stippling have been omitted in panel e because of the strength and 811 

similarity of the biases. NFI and FOSXue are point-based reference data sets and are therefore 812 

not included in panel a.  813 
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10. Tables 814 

 815 

Table 1: Plant functional types used by CLASSIC in the default 9 PFT configuration as 816 

compared to 14 PFT configuration tested in our study. The mapping between CLASS and CTEM 817 

PFTs is shown along with the parameters for the maximum rate of carboxylation by Rubisco 818 

(vmax ; μmol CO2 m-2 s-1), maximum cold stress leaf loss rate (ΩC,max; day− 1), and the maximum 819 

drought stress leaf loss rate (ΩD,max; day− 1). 820 

 821 
 1See Meyer et al., 2021 for additional details regarding the sedge and shrubs PFTs and 822 

associated parameters.  823 
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Table 2: Overview of the reference data sets used in our model evaluation. The acronyms given 824 

here are defined in section 2.5. 825 

 826 
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