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Abstract18

Sustainable river management can be supported by models predicting long-term mor-19

phological developments. Even for one-dimensional morphological models, run times can20

be up to several days for simulations over multiple decades. Alternatively, analytical tools21

yield metrics that allow estimation of migration celerity and damping of bed waves, which22

have potential for being used as rapid assessment tools to explore future morphological23

developments. We evaluate the use of analytical relations based on linear stability anal-24

yses of the St. Venant-Exner equations, which apply to bed waves with spatial scales much25

larger than the water depth. With a one-dimensional numerical morphological model,26

we assess the validity range of the analytical approach. The comparison shows that the27

propagation of small bed perturbations is well-described by the analytical approach. For28

Froude numbers over 0.3, diffusion becomes important and bed perturbation celerities29

reduce in time. A spatial-mode linear stability analysis predicts an upper limit for the30

bed perturbation celerity. For longer and higher bed perturbations, the dimensions rel-31

ative to the water depth and the backwater curve length determine whether the analyt-32

ical approach yields realistic results. For higher bed wave amplitudes, non-linearity be-33

comes important. For Froude numbers ≤ 0.3, the celerity of bed waves is increasingly34

underestimated by the analytical approach. The degree of underestimation is propor-35

tional to the ratio of bed wave amplitude to water depth and the Froude number. For36

Froude numbers exceeding 0.3, the net impact on the celerity depends on the balance37

between the decrease due to damping and the increase due to non-linear interaction.38

Plain Language Summary39

The riverbed responds to climate change and human interventions such as engi-40

neering works and dredging. A pit resulting from dredging, for example, typically moves41

in a downstream direction through the river, like a wave in the bed elevation. These waves42

move much slower than water waves, which is why structures like groynes and embank-43

ments in the Rhine and Meuse Rivers still cause long-term riverbed erosion. For proper44

river management, understanding the development of the riverbed over shorter and longer45

timescales is paramount. Numerical models are often used to simulate these changes, but46

simulations for multiple decades can last several days. Therefore, more efficient alter-47

natives are of interest. We developed a theoretical approach to assess the propagation48

and damping of bed waves from a simple equation. The results have been compared to49

numerical model runs. The results are valid for low bed waves and river reaches with gen-50

tle bed slopes. When bed slopes increase, the approach overestimates the propagation51

of low bed waves. For the Dutch Meuse River, the approach is promising for the mildly52

sloped Sand Meuse, but overestimates bed wave celerities on longer timescales for the53

steeper Border Meuse upstream.54

1 Introduction55

In lowland rivers, bed morphological processes at spatial scales much larger than56

the water depth are generally slower than hydrodynamic processes. The morphological57

changes on river reaches of tens of kilometers or more typically develop over a period of58

years to centuries, which is here referred to as the engineering timescale. The engineer-59

ing timescale is relevant from a perspective of planning river interventions and opera-60

tional river management, which is often focused on navigability, flood prevention and na-61

ture conservation. In the long term, the river bed develops towards a (quasi) equilibrium62

situation. De Vries (1975) introduced a morphological timescale for the development of63

longitudinal riverbed profiles. He and others (e.g. Dade & Friend, 1998; Church & Fer-64

guson, 2015) showed that larger lowland rivers may take 103 to 105 years to adapt to65

permanent changes, for example at the downstream boundary. Here, we focus on the pre-66

diction of development of the riverbed in reaches of tens of kilometers of length or more67
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in the coming century, as a consequence of changes in sediment supply or river geom-68

etry and the hydrological regime. These changes can be the result of, for instance, sed-69

iment nourishments, dredging activities or river widening measures. We evaluate if and70

how analytical relations, resulting from linear stability analysis of the governing equa-71

tions, can be used for morphodynamic prediction, based on a comparison with high-complexity72

numerical model results.73

Several techniques are available for assessment of the long-term (quasi-) equilib-74

rium river bed profiles. Arkesteijn et al. (2019) developed a method to predict the quasi-75

equilibrium channel bed profile in the backwater region of a river, as well as its dynam-76

ics. The method is efficient, as the transient phase does not have to be computed. At77

engineering timescales, the development of sediment transport and bed level change in78

time is particularly relevant, which cannot be readily inferred from a (quasi) equilibrium79

state. The run time of numerical morphological models simulating the initial response80

at engineering timescales is still long. Even for one-dimensional models, where param-81

eters and variables are averaged over the cross-section, a single simulation for a river reach82

of a hundred kilometres and several decades may take hours, or even days. To address83

uncertainty of model input and to evaluate the consequences of climate change projec-84

tions, multiple simulations are required, necessitating a stochastic or probabilistic ap-85

proach (e.g. Van Vuren et al., 2005). Many techniques are being developed to speed up86

morphological simulations. Besides improvement of numerical solvers, efforts to improve87

model efficiency are focused on the development of a morphological acceleration factor88

(e.g. Lesser et al., 2004; Carraro et al., 2018), the reduction of spin-up time (e.g. Yossef89

et al., 2008), and simplification of governing equations such as the quasi-steady approach90

first introduced by De Vries (1965)). Arkesteijn et al. (2021) used the distinction of timescales91

from Arkesteijn et al. (2019) to set up a rapid numerical method that determines the mean92

transient channel response under stochastic controls.93

Analytical solutions for reduced-complexity model equations offer potential to be94

used as rapid assessment methods. Linear stability analyses provide such solutions, based95

on the assumption of infinitesimal perturbations of the river bed and the flow. However,96

little is known about the extent to which these analytical solutions are valid when the97

assumption of infinitesimal perturbations fails. Linear stability analyses of river morpho-98

dynamics have been performed extensively during the last five decades. Colombini (2022)99

provides an overview of stability analyses related to bars, dunes and antidunes, ripples,100

and to transverse or oblique bed forms like sand ridges or diagonal dunes. James (2006)101

refers to bed waves for all these changes in bed elevation during aggradation-degradation102

cycles. The governing equations in linear stability analyses differ for bed wave scales smaller103

or larger than the water depth.104

Kennedy (1963, 1969) and Nakagawa and Tsujimoto (1980) showed that small-scale105

periodic bedforms result from an instability phenomenon caused by a phase lag between106

bed geometry and local rates of sediment transport. As a consequence, for subcritical107

conditions, a linear stability analysis of the governing Saint-Venant equations in com-108

bination with an Exner equation (including an equilibrium sediment transport predic-109

tor) does not show an instability that would explain the development of ripples and dunes110

(Balmforth & Provenzale, 2001; Charru, 2011). Various researchers have studied how111

non-equilibrium sediment transport can explain the initiation of bedforms. Nakagawa112

and Tsujimoto (1984) used the Eulerian interpretation of a stochastic model for bed load113

transport (Nakagawa & Tsujimoto, 1980) in a linear stability analysis, to explain the early114

stage of bedform development. Bohorquez and Ancey (2015, 2016) and Bohorquez et al.115

(2019) incorporate a non-equilibrium sediment transport formulation in the Exner equa-116

tion, to account for particle diffusion. Including diffusion captures the net effect of the117

irregular movement of particles inherent to the stochastic nature of bedload sediment118

transport, and development of bedforms at small spatial and temporal scales (Furbish119

et al., 2012a, 2012b; Roseberry et al., 2012; Lajeunesse et al., 2010, 2018; Ancey & Hey-120
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man, 2014; Mart́ınez-Aranda et al., 2019). For this reason, existing linear stability anal-121

yses adopting the classical Exner equation do no yield tools for morphodynamic predic-122

tion of ripples and dunes.123

Several studies focus on morphological prediction of bed waves with lengths much124

larger than the water depth. Grijsen and Vreugdenhil (1976) and Ponce and Simons (1977)125

performed linear stability analyses, starting from perturbations in the flow. De Vries (1965)126

derived characteristic migration celerities of flow and river bed disturbances, and Vreugdenhil127

(1982) performed a linear stability analysis of the equations for flow and sediment as-128

suming quasi-steady circumstances, which simplifies the analysis. In the latter case, the129

time derivatives in the governing flow equations were neglected, which was justified by130

De Vries (1965) for small values of the Froude number. Sieben (1996), Lyn and Altinakar131

(2002) and Lanzoni et al. (2006) elaborated further on this line of linear stability anal-132

yses, concentrating on mountain rivers and thus transcritical (Froude numbers in the range133

0.8-1.2) and supercritical flow conditions. Lanzoni et al. (2006) also addressed subcrit-134

ical flow conditions. They performed numerical simulations to check the character of the135

analytical expressions for migration celerities of infinitesimal flow and bed waves, with-136

out performing a comprehensive quantitative comparison between analytical and numer-137

ical results. They found that the results of the linear stability analyses, in terms of the138

direction of wave propagation (upstream, downstream) and amplification or damping of139

perturbations, agree with numerical simulations for small perturbations. All these stud-140

ies showed that, in contrast to the studies related to the initiation and growth of ripples141

and dunes, the classical Exner equation with well-known equilibrium sediment transport142

predictors such as Meyer-Peter and Müller (1948) and Engelund and Hansen (1967), proves143

adequate for linear stability analyses of bed waves with lengths larger than the water depth.144

None of these studies validated quantitatively the results of the analysis for non-infinitesimal145

bed perturbations.146

The objective of this paper is to establish and understand the extent to which the147

results of linear stability analyses for bed waves longer than the water depth can be ap-148

plied as rapid assessment tool for large-scale morphodynamic development in lowland149

rivers under varying discharges, where perturbations in the flow and the river bed are150

not infinitesimally small. We express the validity range in terms of the Froude number151

F and relative amplitude of the bed waves (ratio of amplitude to water depth). For the152

numerical simulations, the geometry and hydrology of the Meuse River in the Nether-153

lands were adopted as a starting point, where subcritical flow conditions predominate.154

However, the initial and boundary conditions were varied to cover a wide range of sub-155

critical flow conditions.156

Our linear stability analysis differs slightly from previous studies in that the length157

of the perturbations is linked to the period of the flood wave. This variable length is in-158

troduced through a parameter E, which is further explained in Section 2. The analysis,159

based on linearisation of the terms in the governing equations, provides relations for mi-160

gration celerity and damping of flow and bed waves. We test a solution that is consis-161

tent with the spatial-mode analysis of Grijsen and Vreugdenhil (1976), which differs from162

the temporal-mode analysis (e.g. Lanzoni et al., 2006). The analysis shows that the gov-163

erning parameters agree with other analyses in terms of the Froude number, the degree164

of unsteadiness, the strength of bed friction, the wave length of the bed perturbation and165

the sediment load.166

Hereafter, we compare the propagation and damping of bed waves from the sta-167

bility analysis with results from a one-dimensional full-dynamic numerical model with168

which we simulated low-amplitude perturbations of the flow and the river bed. The ini-169

tial and boundary conditions of the numerical simulations do not exactly match the lin-170

ear stability analysis, because the latter represents an initial-value problem for an un-171

bounded domain. Nonetheless, the numerical results provide a direct comparison to the172

analytical results. Additionally, simulations with larger (longer and higher) flow and bed173
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waves are used to define the range within which the analytical results may be used as174

a rapid assessment tool for morphological development in lowland rivers. Although the175

spatial-mode analysis forms the starting point of the paper, a comparison with the more176

frequently applied temporal-mode analysis is also performed.177

The structure of the remainder of this paper is as follows. Section 2 describes the178

linear stability analysis, providing analytical expressions of migration celerity and damp-179

ing. The same section introduces the numerical model ELV and describes the simula-180

tions performed. Results of the linear stability analysis, the comparison with numeri-181

cal results and assessment of the validity range of the analytical relations are given in182

Section 3. Practical application of the results, comparison with the temporal-mode anal-183

ysis and further simplification of the analysis are discussed in Section 4.184

2 Methods185

2.1 Model Equations186

We consider unidirectional flow over an erodible bed and assume bed elevation and187

sediment transport per unit width to be averaged over local fluctuations. These local fluc-188

tuations may relate to bedforms that are incorporated into a roughness parameter. The189

one-dimensional governing equations describing flow and bed evolution read as:190

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
+ g

∂z

∂x
= −g

u2

C2h
(1)191

∂h

∂t
+ h

∂u

∂x
+ u

∂h

∂x
= 0 (2)192

∂z

∂t
+

∂s

∂x
= 0 (3)193

s = f(u) (4)194

which include the 1D Saint-Venant equations for conservation of mass and momentum195

of water (Eq. 1 and Eq. 2), the continuity equation for sediment (Eq. 3) and a capacity-196

limited sediment transport predictor (Eq. 4), implicitly assuming small bed slopes. The197

latter two equations together form the Exner equation. Herein:198

t = time (s)199

x = longitudinal co-ordinate (m)200

u = water velocity averaged in a cross-section (m/s)201

h = water depth (m)202

z = bed level (m)203

C = Chézy coefficient for hydraulic roughness (m1/2/s)204

s = sediment transport per unit of width (bulk volume) (m2/s)205

g = acceleration due to gravity (m/s2)206

This set of equations is used in dimensional form for engineering practice and form the207

basis for the linear stability analysis and the numerical models applied in this study.208

2.2 Linear Stability Analysis209

The theory of linear stability analysis provides insight in the physics of flow and210

sediment transport, and offers a first approximation of the celerity of migration and damp-211

ing (or amplification) of bed perturbations. Table 1 presents an overview of existing the-212

oretical one-dimensional analyses of river dynamics and morphodynamics for perturba-213

tions with wave lengths (much) larger than the water depth. The differences in exist-214

ing analyses relate to details of the mathematical problem addressed in the study, and215
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the choice of the normal modes adopted for solving the linearized set of equations. Ei-216

ther the wave number k or the wave frequency ω is assumed complex, which will be fur-217

ther explained later in this section.218

Table 1. Overview of existing theoretical 1D analyses of hydrodynamic and morphodynamic

model equations in case of supra-bedform perturbations (wave length >> water depth). HY

= hydrodynamic equations. MO = morphodynamic equations. ODE = ordinary differential

equation. PDE = partial differential equations. u/s = upstream. d/s = downstream. Solutions

proceed directly from boundary conditions, using a Laplace transform of the PDE, or based on

substitution of exponential functions exp(ikrx− kix− iωrt+ ωit) for an infinitely large domain.

Description Equations
Substitution of exponential functions Boundary

conditions
References

kr ki ωr ωi

Backwater effects HY, ODE - - - -
d/s+
∆(z + h)

Bélanger (1828)

Flood propagation with
temporal damping

HY, PDE 2π/L 0 2πc/L −4π2D/L2 - Ponce and Simons (1977)

Flood propagation with
spatial damping

HY, PDE 2π/L 1/LD 2πc/L 0 - Grijsen and Vreugdenhil (1976)

Propagation of
infinitesimal perturbations

MO, PDE 2π/L 0 2πc/L 0 - De Vries (1965), De Vries (1966)

Morphodynamic wave
and diffusion character

MO, PDE 2π/L 0 2πc/L −4π2D/L2 - Vreugdenhil (1982), Lanzoni et al. (2006)

Response to downstream
water level

MO, PDE - - - -
d/s+
∆(z + h)

De Vries (1973), De Vries (1975)

Aggradation due to
sediment overloading

MO, PDE - - - -
u/s+
∆s

Ribberink and Van der Sande (1985)

Present study MO, PDE 2π/L 1/LD 2πc/L 0 - -

Our linear stability analysis starts by assuming small perturbation of water depth,219

flow velocity and bed level:220

h = ho + h′
221

u = uo + u′
222

z = zo + z′223

The subscript o indicates the steady uniform reference situation. The superscript ′ in-224

dicates a small perturbation to the steady uniform reference situation.225

Substitution of these expressions for h, u and z in equations 1 to 4, and combin-226

ing the equations to a single equation in one of the parameters, yields:227

∂2h′

∂t2
+ c

∂2h′

∂x∂t
−D

∂3h′

∂x2∂t
+M1

∂3h′

∂t3
+M2

∂3h′

∂x∂t2
+M3

∂3h′

∂x3
= 0 (5)228

where:229

c = 1.5uo (m/s)230

D = houo

2io
(1− F 2 + 1

ho

∂f(u)
∂u

∣∣∣
o
) (m2/s)231

M1 = uo

2gio
(s)232

M2 = uo
2

gio
(m)233

M3 = −uo
2

2io

∂f(u)
∂u

∣∣∣
o

(m3/s2)234

F = u√
gh

∣∣∣∣
o

(-)235
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Similar equations can be obtained for u′ and z′. Eq. 5 can be solved analytically by as-236

suming a periodic solution for the water depth of the form:237

h′ = hoĥ× ei(kx+ωt) (6)238

where:239

ho = steady uniform water depth (m)240

ĥ = dimensionless depth amplitude function (-)241

k = wave number (m-1)242

ω= frequency (t-1)243

i =
√
−1244

Two approaches can be adopted to obtain a solution for the perturbed variables (Drazin245

& Reid, 2004), a temporal-mode analysis and a spatial-mode analysis. In the temporal-246

mode analysis, the frequency ω is assumed complex and the wave number is real and equal247

to kr = 2π
L , where L is the wave length. In the spatial-mode analysis, the wave num-248

ber k is assumed complex and the wave frequency ω real and equal to ωr = 2π
T , where249

T is the wave period. The complex roots, i.e. either ω or k, determine the propagation250

and damping of perturbations in the flow and at the riverbed.251

Many of the studies in Table 1 adopted the temporal mode in the analysis, assum-252

ing the perturbation wave number real (kr = 2π
L ). Drazin and Reid (2004) describe that253

the physical properties of spatial modes are closer to the instability phenomena observed254

in most experiments on parallel flow, compared to temporal modes. In this study we ex-255

tend the spatial-mode analysis by Grijsen and Vreugdenhil (1976). The corresponding256

waves proceeding from a spatial-mode analysis can pragmatically be interpreted as gov-257

erned by boundary conditions, which are important in engineering practice. Strictly speak-258

ing, however, this type of linear analysis does not build on boundary conditions, but rather259

on a solution in an unbounded domain. The choice of the period of the proxy for the up-260

stream boundary condition, i.e. the flow time series, sets the wave length of bed pertur-261

bation in the river, which is further elaborated in Section 2.3.4. The solution (Eq. 6),262

with known wave period T and thus known ωr represents this boundary condition.263

Our approach allows a comparison between the results of the linear stability anal-264

ysis and numerical simulations with a discharge time series at the upstream boundary265

and a bed perturbation as initial condition across the 1D model domain.266

In the spatial-mode analysis, the wave number k is complex267

k = kr + iki (7)268

where kr determines the migration celerity c of the water and bed waves,269

c = − ω

kr
(m/s) (8)270

and ki determines the damping of water and bed waves271

Ld =
1

ki
(m) (9)272

Ld is called the relaxation or damping length over which the amplitude of a wave is damped273

by a factor e−1. c and Ld are the characteristic wave properties. For convenience, the274

wave number is first made dimensionless.275

k̂ = k̂r + ik̂i = kxo (−) (10)276

in which the characteristic length scale xo is defined as277

xo =
QoT

Boho
= uoT (m) (11)278
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Herein, Qo is the undisturbed flow and Bo the undisturbed width. Substitution of Eq.279

(10) and the solution, Eq. (6), in Eq. (5) leads to a third-order algebraic equation in the280

dimensionless wave number k̂:281

Ψ

2πF 3E
(k̂)3 +

1

F 3E
(1− F 2 +Ψ)(k̂)2 − 4π

FE
k̂ + 3ik̂ − 4π2

FE
+ 4πi = 0 (12)282

with three governing dimensionless parameters; F , Ψ and E:283

Ψ = n
so
qo

= dimensionless transport parameter (13)284

E =

√
g3T 2

C4h
(−) (14)285

Herein, n is the power in the sediment transport relation s = m un. The parameter E286

describes the influence of unsteadiness and non-uniformity of the flow on a scale larger287

than the local flow depth. Grijsen and Vreugdenhil (1976) introduced this parameter in288

their analysis of the flow equations and they defined typical values of E. For tidal waves,289

E takes a value of about 102 and for flood waves, E ≈ 103−5 104. In our analysis we290

deal with the flood wave scale, so values of E are large. In Section 2.3.4 and Section 3.3291

it is explained that larger values for E mean larger values for the wave length of bed per-292

turbations.293

The solution of Eq. (12) consists of three roots for k̂. These roots determine the294

characteristic wave properties (migration celerity and damping) of both water and bed295

waves. Two roots describe damping and propagation of water waves and the third root296

describes the damping and propagation of the bed wave. In subcritical conditions the297

migration celerity of bed waves is much lower than of water waves. Therefore the mor-298

phodynamic root can easily be identified. The real part of the roots describes the mi-299

gration celerity of the waves (Eq. (15)) and the imaginary part describes the damping300

(Eq. (16)).301

c = −2πuo

k̂r
(15)302

Ld =
uoT

k̂i
=

uoEC2h1/2

k̂ig3/2
(16)303

2.3 Numerical Model Simulations304

2.3.1 Introduction305

To assess the applicability of the results of the linear stability analysis, numerical306

model simulations are performed. As the linear stability analysis is based on infinites-307

imal perturbations, numerical simulations with such perturbations should agree with the308

theoretical results, at least for the initial values. Simulations with non-infinitesimal per-309

turbations and on longer time scales may or may not agree with results from the linear310

stability analysis, which is here being verified. For this verification we concentrate on311

the propagation of bed waves. The results for the damping of bed waves are presented312

as well. However, the numerical diffusion of mathematical models may hamper a fair com-313

parison with the damping from the linear stability analysis.314

2.3.2 Model Description315

The numerical modelling code ELV is selected (Chavarŕıas, Stecca, et al., 2019),316

which is a Matlab code for modelling morphodynamic processes on a one-dimensional317
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domain. ELV has been successfully applied in various studies and proved stable and ac-318

curate (Arkesteijn et al., 2019, 2021; Blom et al., 2017; Chavarŕıas, Arkesteijn, & Blom,319

2019). ELV solves the full set of equations (1 through 4) in an uncoupled way, with an320

implicit Preissmann scheme for flow and a first-order forward Euler upwind scheme for321

morphology. This is called the unsteady model. The model can readily be used to test322

simplified models, in which terms in the Saint-Venant equations are neglected. This sim-323

plification is planned in a follow-up study, so ELV was chosen at this stage as the mod-324

elling framework.325

A selection of the simulations with ELV was repeated using the extensively tested326

and widely applied SOBEK-RE model. This model with a less diffusive numerical scheme327

has been developed by Deltares in the Netherlands and was validated in numerous stud-328

ies and applications (Ji et al., 2003). The main objective of validating ELV with SOBEK-329

RE is to verify whether numerical aspects, such as numerical diffusion, may hamper a330

comparison between results of a linear stability analysis and model simulations.331

2.3.3 Model Set-Up332

For performing simulations that can be compared to results from the linear sta-333

bility analysis, a one-branch model was constructed with characteristics as in Table 2.334

The geometry is inspired by The Meuse River in the Netherlands. However, upper lim-335

its of bed slope and grain diameter exceed field values of the Meuse River, to cover also336

larger values of the Froude number F , while keeping the sediment transport constant.337

Table 2. Model set-up for simulation with ELV

Characteristic Value/description

model length 10-25 km
channel width (no floodplains) B 100 m
hydraulic roughness, Chézy value C 40 m1/2s−1

bed slope ib 0.0001 to 0.0022
space step ∆x 2.5-25 m
time step ∆t 1-5 sec
sediment transport s uniform sediment, transport predictor of Engelund

and Hansen (1967)
grain diameter D50 0.002 to 0.35 m
upstream boundary conditions time series for discharge and equilibrium sediment

transport
downstream boundary condition uniform flow conditions (stage-discharge relation

for uniform flow)

The branch length was chosen long enough to prevent any impact of the model bound-338

aries on the area of interest, i.e. the area where a bed perturbation propagates and damp-339

ens. It was chosen short enough to allow for reasonable simulation times, for a simula-340

tion period of 1 to 3 years. The smallest space step, for the simulations with infinites-341

imal bed perturbations, amounted to 2.5 m (see below). For these simulations with a du-342

ration of 1 year, a branch length of 10 km was selected. For simulations with larger bed343

perturbations, the space step could be enlarged. A branch length of 25 km was selected344

for 3-year period simulations. For exact comparison with the linear stability analysis re-345

sults, a simple rectangular cross-section with fixed width was adopted. The width of 100346

m was selected arbitrarily. A constant Chézy value of 40 m1/2/s was adopted, but could347

be changed if desired. Changing the Chézy value, while maintaining the same values for348

water depth, velocity, Froude number F and bed load Ψ, will change the bed slope, D50349
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and the parameter E. The linear stability analysis demonstrates that for small Froude350

numbers (<0.3) the impact of changes in bed slope, D50 and E on the relative celerity351

and damping of bed waves is negligible. This was confirmed by an additional simulation352

for F=0.2 and C=45 m1/2/s in the supplementary material (Barneveld, 2022).353

The Froude number F is a key parameter in the linear stability analysis. In this354

study, we focus on rivers with Froude numbers for which decoupling of the equations for355

flow and sediment transport is possible in numerical simulations. De Vries (1973), Morris356

and Williams (1996), Sieben (1996), Sieben (1999) and Cui et al. (2005) show that this357

is possible if Froude numbers are smaller than 0.7 to 0.8. In this study, we selected the358

range of F between 0.1 and 0.6 for the numerical simulations. With the selected Chézy359

value of 40 m1/2/s, the corresponding range in bed slope ib is between 0.0001 and 0.0022.360

To select the space step, a sensitivity analysis was carried out for the model with a length361

of 25 km and a bed perturbation of 1 km in length. Simulations were carried out for Froude362

numbers of 0.4 and 0.6. The space step was reduced from 100 to 50, 25 and 12.5 m. The363

time step was reduced accordingly, maintaining the Courant–Friedrichs–Lewy or CFL364

condition below 1, to have sufficient numerical accuracy of the simulations. The anal-365

ysis showed that the difference between a spatial step of 25 m and 12.5 m was negligi-366

ble, so 25 m was small enough. A second criterion was to schematize the bed perturba-367

tion with at least 20 grid points. For the simulations performed, the minimum selected368

space step was therefore 2.5 m.369

In the theoretical analysis, the sediment transport and its non-linear response to370

flow, expressed with the parameter n, are important. For a meaningful comparison be-371

tween theory and numerical simulations, we selected a sediment transport predictor with372

an unequivocal value of n. Many sediment transport predictors are used in engineering373

practice. For this research the frequently used sediment transport predictor of Engelund-374

Hansen with n=5 was selected (Engelund & Hansen, 1967). This formula for total sed-375

iment transport does not account for a threshold of motion and is widely used for sand-376

bed rivers. To ease the comparison between results of the linear stability analysis and377

numerical modelling results, we use identical sediment transport formulas for all com-378

putations. We apply the Engelund-Hansen transport predictor for low and high Froude379

numbers and for fine as well as coarse bed material. The Engelund-Hansen predictor may380

not be the most appropriate formula for prediction of transport of coarse sediments, but381

is applied while using the value of D50 to reach the desired sediment transport capac-382

ity. We assume that the comparison between linear stability analysis and numerical mod-383

elling based on the non-linear predictor of Engelund-Hansen (n=5) will also be repre-384

sentative when other sediment transport predictors are used.385

For subcritical flow, conditions are needed at the upstream boundary for flow and386

sediment transport. As the objective of the simulations is to simulate the migration of387

bed waves in the time-space domain, we schematize the bed wave as a perturbation of388

the bed. At the upstream boundary, an equilibrium sediment transport load is imposed,389

which means that the sediment load fed to the model equals the sediment transport ca-390

pacity for the actual discharge at the first calculation point. This guarantees a stable riverbed391

in the upstream part of the model. To perturb the flow, a boundary condition is imposed392

composed of a base flow magnitude, a peak flow magnitude, and a wave period T . The393

linear stability analysis is based on a sinusoidal shape of perturbations, but in our nu-394

merical simulations we adopt a more natural shape of the hydrodynamic wave, based on395

the Dimensionless Unit Hydrograph (DUH) method. By doing so, the application in en-396

gineering practices can be better assessed, and we verified that the impact of this choice397

on the results is negligible. The relation for discharge Q, based on the gamma relation398

for the DUH method, reads (USDA, 2007):399

Q = Qbase + (Qp −Qbase)e
m

[
t

tp

]m [
e
(−m( t

tp
))
]

(17)400
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with:401

Qp = peak discharge (m3/s)402

Qbase = base discharge (m3/s)403

e = Euler’s number equal to 2.7183404

m = gamma equation shape factor (-)405

t
tp
= ratio of the time of DUH coordinate to time to peak of the DUH406

With values of m = 15 and tp = 20 days, we generate a discharge time series at407

the upstream boundary with repeating flood waves of an approximate duration of 25 days408

(T ), interrupted by periods of approximately 20 days with base flow. Figure 1 shows an409

example for a flood wave with a base flow of 500 m3/s and a peak discharge of 1,500 m3/s,410

characteristic of the Meuse River in the Netherlands. Simulations with small perturba-411

tions of the base flow are performed as well (see Table 3 in Section 2.3.4).412

Figure 1. Sample flood wave boundary condition.

The wave period T of 25 days determines the parameter E in the governing equa-413

tion of the linear stability analysis (Eqs. 12 and 14). Depending on the Froude number,414

E varies between 15,000 and 30,000 (for F=0.6). At the downstream boundary, one con-415

dition for the flow is required, for which the water level corresponding to normal flow416

is chosen.417

2.3.4 Performed Simulations418

Governing parameters in the linear stability analysis are F , E and Ψ. We are in-419

terested in the validity of the theoretically derived migration celerities for lowland rivers420

with Froude numbers up to 0.6 and hydrological conditions and sediment load charac-421

teristic for such environments. The parameter E is determined by the wave period of the422

flood wave, which we set at 25 days in a 45 days time domain. For the dimensionless trans-423

port parameter Ψ we adopted a value of 5.15 ·10-5. Increasing the Froude number un-424

der conditions of constant Ψ means that the grain size increases.425
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First, we performed numerical simulations with small perturbations of the flow and426

the riverbed. We derived consistent combinations of the upstream boundary condition427

for flow and initial conditions for the bed perturbation. The wave period of the flow bound-428

ary condition determines the parameter E. With selected values of F and Ψ, the roots429

for the dimensionless wave number k̂ (Eq. 10) can be determined, providing the migra-430

tion celerity of the bed wave (Eq. 15). Eq. (8) and ω (= 2π
T ), which is known, determine431

the value of kr, which sets the wave length L of the bed wave (using kr = 2π
L ). In this432

way, wave lengths of the bed perturbation of 107 m (F=0.1) to 446 m (F=0.6) were de-433

rived.434

To assess the validity of the results of the linear stability analysis for these infinites-435

imal perturbations at t=0, as well as for larger perturbations and for larger time scales436

(up to 3 years), a more elaborate set of simulations was performed, as summarized in437

Table 3.438

Table 3. Numerical simulations performed to validate results from the linear stability analysis.

Set Qbasea

(m3/s)
Qtopb

(m3/s)
Heightc

(m)
Lengthd (m) Run du-

ration
(yr)

Comment

1 500 505 0.005 matching to
flow (107-
446 m)

1 base set

2 500 505 0.005 3000 3 long bed wave
3 500 1500 0.1-0.5 3000 3 large flow and bed

waves

abase flow boundary condition
bpeak flow boundary condition
cheight bed perturbation (bed wave)
dwave length bed perturbation (bed wave)

3 Results439

3.1 Migration Celerity Inferred From Linear Stability Analysis440

The migration celerity of flow and bed waves follows from Eq. 15. For the bed waves,441

the dimensionless relative celerity is analyzed, which reads:442

crel =
c

uo
= −2π

k̂r
(18)443

Figure 2 shows the results of this relative celerity for various combinations of E, F and444

Ψ. Figure 2 shows that for values of Ψ equal to or below 1·10−5, the results are insen-445

sitive to E when Froude numbers are below 0.6. The results for different values of E are446

very similar for these conditions. When sediment transport increases, the parameter E447

becomes more important. When E increases, the relative celerity decreases and may (es-448

pecially for larger values of Ψ) even decrease with increasing Froude numbers. This is449

due to the increasing diffusive character of bed waves, causing a decrease in the migra-450

tion celerity of bed perturbations when Froude numbers increase. This has previously451

been described by Lisle et al. (2001) and Lanzoni et al. (2006), and will be elaborated452

on in Section 3.2.453
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Figure 2. Relative celerity of bed waves in the linear stability analysis.

Figure 3 illustrates a Ψ value typical for lowland rivers, such as the River Meuse454

in the Netherlands. This case is used for the comparison with the numerical results in455

the next section.456

Figure 3. Relative celerity of bed waves in the linear stability analysis for Ψ = 5.15 · 10−5.
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3.2 Numerical Modelling Results457

From the simulations with a hydraulic upstream boundary condition and initial per-458

turbation of the riverbed, the propagation of this bed perturbation was simulated for 3459

consecutive periods of 45 days. In each period, a flood wave of 25 days occurred (Fig-460

ure 1). The period of 45 days was selected by taking the Meuse River in the Netherlands461

as an example, where the annual sediment transport is known to be mainly concentrated462

in a period of this duration, normally in the winter season.463

Figures 4 and 5 give examples of the propagation of the initial perturbation of the464

riverbed for Froude numbers of 0.2 and 0.6, respectively. The figures show that for F=0.2465

the bed perturbation clearly translates in downstream direction, while damping takes466

place. For F=0.6 translation is small and diffusion of the bed perturbation in time dom-467

inates.468

Figure 4. Simulated relative bed level (relative to bed slope) of a bed wave for F=0.2. The

space step in this simulation was 25 m.

The differences in translation for different Froude numbers have been studied fur-469

ther by analyzing the migration celerity of the bed perturbations during the initial stage470

of the simulations. Again, a simulation period of 45 days was chosen for this analysis.471

Results for F between 0.2 and 0.6 are presented in Figures 6 and 7, respectively, show-472

ing the migration celerity of the crest of a bed perturbation in time. Figure 6 shows that473

for F=0.2 the bed perturbation migrates at a constant speed. For F=0.6 (Figure 7) the474

speed of the bed perturbation is more than halved in the 45 days of simulation.475

The results of the ELV simulations for higher Froude numbers, F=0.4 and 0.6, were476

tested with the one-dimensional numerical model SOBEK-RE. The simulations with SOBEK-477

RE, with identical boundary conditions, setting of numerical parameters and time and478

space step, showed a similar diffusive character of bed perturbations for high Froude num-479

bers. This supports the results of the ELV simulations.480

Lisle et al. (2001) studied translation and diffusion for gravel-bed rivers. They based481

their analysis on the MPM (Meyer-Peter & Müller, 1948) bed load transport predictor,482
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Figure 5. Simulated relative bed level (relative to bed slope) of a bed wave for F=0.6. The

space step in this simulation was 25 m.

Figure 6. Simulated migration celerity cb of the peak of the bed wave in first year for F=0.2.

but results provide general aspects of wave behaviour for other transport predictors as483

well. They present the following equation separating terms associated with translation484

of bed perturbations from those associated with diffusion.485
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Figure 7. Simulated migration celerity cb of the peak of the bed wave in first year for F=0.6.

∂z

∂t
=

Kqc
1/2
f

Rs(1− p)

[
∂z2

∂x2
+

(
∂

∂x
(1− F 2)

∂h

∂x

)
+ ....

]
(19)486

where K is an empirical constant in the MPM equation, q is the unit water discharge,487

p is the bed porosity and Rs is the submerged specific gravity of sediment. The unspec-488

ified terms within the brackets are non-uniform flow terms, which are small for F<1. The489

first term within the brackets expresses the rate of wave diffusion. The second term ex-490

presses the rate of translation. The term 1-F 2 clearly indicates that translation decreases491

with increasing F . For those cases, diffusion dominates. Physically, this means that dif-492

fusion becomes more important when the dimensions of bed perturbations (i.e. height493

and wave length) become significant compared to the flow characteristics (i.e., the wa-494

ter depth and the length of backwater curve). This explains that for large Froude num-495

bers, with smaller water depth and shorter backwater curves (i.e. Figure 5), diffusion496

of a bed wave is larger than for conditions with small Froude numbers (i.e. Figure 4).497

It is also in agreement with the reduced relative celerities in Figure 2 for larger values498

of E and F . Section 3.3 considers how diffusion changes the results from the linear sta-499

bility analysis.500

Lisle et al. (2001) also refer to a well-documented example for the Navarro River501

in California in 1995 (Sutherland et al., 2002). Landslide material that entered the steep502

gravel-bed river (bed slope of 0.0028), formed a bed wave that dispersed upstream and503

downstream and mostly disappeared within a few years with no measurable translation.504

3.3 Comparison between Linear Stability Analysis results and Numer-505

ical Simulations506

The results from the numerical simulations are compared with the results from the507

linear stability analysis in Figure 8. The figure shows that for both values of Ψ results508

of the linear stability analysis and numerical simulations agree for infinitesimal pertur-509
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Figure 8. Comparison between relative celerities of bed perturbations from linear stability

analysis (lines) and numerical simulations (markers) for Ψ = 2 · 10−4 and Ψ = 5.15 · 10−5.

bations with a wave length coupled to the value of E, at t=0 (+ markers; Perturbations510

theory, t=0 yr). The numerical results are in good agreement with the area delimited511

by the lines for E=10,000 (F=0.1) and E=30,000 (F=0.6). When the wave length of512

bed perturbations increases to 3,000 m (open box markers; Perturbations long, t=0 yr)513

the simulated initial migration celerities decrease for Froude numbers of 0.4 and higher.514

This is due to the increased diffusive character of the bed wave, as explained in the pre-515

vious section. The linear stability analysis captures this. As already mentioned in Sec-516

tions 2.2 and 2.3.4, the period of the upstream boundary condition and the wave length517

of bed perturbation in the river are coupled in the linear stability analysis. This means518

that the parameter E and wave length L are coupled, which is manifest as a relation in519

Figure 9. For moderate Froude numbers, up to 0.3, this relation is close to linear. For520

higher Froude numbers, the increase in parameter E accelerates with increasing wave521

length L.522

For Ψ = 5.15 ·10−5 the validity range of the results of the linear stability analy-523

sis was assessed further. By choosing a wave length of 3,000 m, the parameter E increases524

to 350,000-500,000 for the range of Froude numbers considered. Figure 8 shows that for525

Froude numbers under 0.3 the impact of longer bed perturbations on the migration celer-526

ity is small, as the dependence on E is small. The simulated migration celerities of bed527

perturbations are fairly constant in time (Figure 6) and agree with results from the lin-528

ear stability analysis. For Froude numbers up to and including 0.6, the linear stability529

analysis still predicts the initial migration celerities quite accurately when adopting E=500,000.530

For Froude numbers of 0.4 and higher the diffusive character is such that the wave length531

in time increases (Figure 5), the value of E increases (Figure 9) and the migration celer-532

ity thus decreases. The migration celerity from the linear stability analysis is an upper533

limit, and the deviation from the real migration celerity increases in time (x markers;534

Perturbations long, t=3 yr). This decrease in time is clearly shown in Figure 7.535
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Figure 9. Relation between wave length L and parameter E in the linear stability analysis for

Ψ = 5.15 · 10−5.

When the flow variations and perturbations in the bed are large (in height and length),536

the deviations between linear stability analysis and numerical results increase. The open537

circle markers (Perturbations large&long, t=3 yr) in Figure 8 represent simulations with538

a peak of the flood wave of 1,500 m3/s (base flow = 500 m3/s) and bed waves of 50 cm539

for F=0.1-0.4 and 10 cm for F=0.5-0.6. Under those conditions, the relative celerities540

increase compared to the simulations with small perturbations in the bed profile and the541

flow. This can be explained by the value of Ψ, which increases when the discharge in the542

simulations increases. In Figure 10, the simulation results with large perturbations of543

Figure 8 have been repeated, and results from the linear stability have been added when544

values of Ψ are based on the average sediment transports during the simulation (filled545

circle markers). The increase of values for Ψ brings results from the linear stability anal-546

ysis and numerical simulations closer, especially for moderate Froude numbers (F=0.1-547

0.3). However, the relative celerities in this range of Froude numbers are still underes-548

timated by the linear stability analysis. The increased non-linear effects due to the larger549

perturbations of the flow and the riverbed are responsible for this and, as expected, not550

reproduced by the linear stability analysis. This is further elaborated upon in the next551

section and in Figure 14.552

3.4 Damping of Bed Waves553

From the linear stability analysis (Eq. 16) and the numerical simulations, the damp-554

ing length or relaxation length of bed waves can be derived. From the conditions and555

simulation related to Ψ = 5.15 · 10−5 (Figure 8) the results for the damping are pre-556

sented in Figure 11. For the infinitesimal and relatively short bed waves (+ marker, Per-557

turbations theory), the simulations show much more damping for Froude numbers up558

to 0.4. For longer and higher bed waves, the results from the linear stability analysis and559

numerical simulations show better agreement (values of E are in the range of 350,000560

to 500,000).561
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Figure 10. Relative celerity of large bed perturbations: linear stability analysis results based

on initial sediment transport (solid lines) and based on average sediment transport during the

simulations (filled circles), compared to the numerical results (open circles). Values of Ψ increase

up to 7.0− 7.5 · 10−5.

4 Discussion562

Strictly speaking, the mathematical problems solved by the linear stability anal-563

ysis and numerical computation are not equivalent. The linear stability analysis solves564

an initial-value problem, whereas the numerical computation requires an initial condi-565

tion and boundary conditions. Moreover, the flood waves used as boundary conditions566

in the numerical computations deviate from the harmonic functions assumed in the lin-567

ear stability analysis. We have assumed that this does not seriously alter key character-568

istics such as migration celerity and damping.569

The predictive value of the analytical approach is large when the diffusive charac-570

ter of bed waves is small, which appears to be related to the Froude number. For Froude571

numbers up to 0.3, diffusion of bed perturbations is normally small and migration celer-572

ities derived from the linear stability analysis are representative, even on longer time scales.573

This agrees with a threshold of F equal to 0.4 for translation in uniform sediment found574

by Lisle (2007). When dimensions of the bed perturbations increase compared to the depth575

and the backwater length, the diffusive character of bed waves increases. Nonetheless,576

linear stability analysis can still provide a good estimate of the initial migration celer-577

ity of bed perturbations. However, as the wave length of a bed perturbation grows in578

time, the appropriate parameter to be selected in the linear stability analysis also changes.579

The initial choice of the parameters overestimates the migration celerity of bed pertur-580

bations in time when the Froude number exceeds 0.3. The importance of the Froude num-581

ber and relative dimensions of the bed perturbations confirms results from Lisle et al.582

(2001) and the theoretical analysis by Vreugdenhil (1982). The diffusion coefficient D,583

defined by Vreugdenhil (1982) as D= 1
3C

2Ψh2/u, the wave number k and the migration584

celerity c determine how diffusive the system is. Therefore, the Péclet number P=cL/D585
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Figure 11. Comparison between damping of bed perturbations from linear stability analysis

(lines) and numerical simulations (markers) for Ψ = 5.15 · 10−5. ’Perturbations theory’ represent

infinitesimal perturbations with a wave length coupled to the value of E. For the other simula-

tions the wave length increased to 3,000 m, while for ’Perturbations large & long, Qwave’ the bed

wave amplitude increased and a flood wave was applied.

(where L is the wave-length) is relevant, which can be considered as the ratio of advec-586

tion to the rate of diffusion. For high values of P , the system behaves as a pure diffu-587

sion equation and, vice versa, as a pure convection equation when P is small. Of course,588

the wave length of a convective wave can grow in time and diffusion will increase. Im-589

portantly, the Froude number F and Péclet number P are related. For high Froude num-590

bers, backwater curves are short. The wave length of bed waves thus becomes relatively591

long, compared to the backwater curve.592

G. Seminara (pers. comm., 2021) proposed that a more simple analytical expres-593

sion for the relative celerity of bed waves may be possible, given that two of the deter-594

mining parameters in the analysis are either very small (Ψ) or very large (E). As this595

insight was not published previously, we elaborated this further. When we expand the596

solution for the dimensionless wave number as597

k̂ =
k̂−1

Ψ
+ k̂0 + k̂1Ψ+ ... , (20)598

we express E in terms of Ψ assuming that599

E =
E0

Ψ
(21)600

and we stop at the leading order, Eq. 12 can be written as:601

(̂k−1)
2 + 2π(1− F 2)k̂−1 + 6iπF 3Eo = 0 (22)602

The solution reads:603
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k̂−1 = π(1− F 2)

[
−1±

√
1− i

6

π

EoF 3

(1− F 2)2

]
(23)604

With Eq. 18, the relative celerity for the bed wave can be assessed again. Combining605

this with Figure 2 yields Figure 12. The results are almost identical, meaning that Eq.606

23 indeed can be used for lowland rivers.607

Figure 12. Relative celerity of bed waves: comparison of simplified results (black dotted line,

Eq. 23) with original results of Figure 2.

In our analysis so far, we performed a spatial-mode analysis because it fits more608

closely to boundary-value problems solved by numerical models. A temporal-mode anal-609

ysis is briefly elaborated upon for comparison. In the temporal-mode analysis, Eq. (12)610

transforms into an equation for the dimensionless complex frequency ω̂.611

F 2(ω̂)3 + (2i− 2L̂F 2)(ω̂)2 + (−3L̂i− (L̂)2(1− F 2 +Ψ))ω̂ + (L̂)3Ψ = 0 (24)

where:612

L = wave length of disturbance (m)613

Lo = ho

io
(m)614

L̂ = 2πLo

L (-)615

ω̂ = ω̂r + iω̂i = dimensionless complex frequency616

Herein, ω̂i determines the damping of water and bed waves:617

Ld = − c

ω̂i
(25)

and ω̂r determines the migration celerity of the water and bed waves, according to:618

ĉ =
c

uo
=

L
T

uo
=

ω̂r

k̂
. (26)
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Solving Eq. 24 again provides the roots determining propagation and damping of dis-619

turbances of flow and at the bed. The character of this equation agrees with the deriva-620

tion of Lanzoni et al. (2006) (their Eq. 14).621

Figure 13 presents the results of the linear stability analyses adopting spatial and622

temporal modes, as well as the simulated results. Both spatial-mode and temporal-mode623

analyses accurately predict the initial migration celerities of infinitesimal bed perturba-624

tions. For longer bed perturbations (L=3,000 m) both approaches are accurate for Froude625

numbers up to and including F=0.3. For larger Froude numbers, the spatial-mode anal-626

ysis excellently represents the initial migration celerities and provides an upper limit for627

the subsequent migration celerities of bed perturbations. The temporal-mode analysis628

gives somewhat smaller migration celerities, matching better to the migration celerities629

that occur later in the simulation. Therefore, the temporal mode proves more suitable630

for longer-term prediction of bed disturbance celerities.631

Figure 13. Migration celerities according to the linear stability analysis based on spatial and

temporal modes for short and long bed waves, compared to simulated results.

In the domain where analytical models represent the exact solution, they can be632

used to verify the discretization approach and solution method in numerical models. For633

infinitesimal and matching perturbations of flow and the riverbed (Section 2.3.4), the634

analytical approach provides the exact solution of initial migration celerity and damp-635

ing of water and bed waves. This provides valuable validation material for any one-dimensional636

modelling system, to test whether the processes are correctly implemented, the numer-637

ical scheme is appropriate and the numerical parameters and time and space step are638

properly selected.639

For small and moderate Froude numbers (F ≤0.3), the linear stability analysis pro-640

vides a good first estimate for small perturbations, but underestimates the migration celer-641

ities when bed waves become larger, and non-linearity and diffusion increase (see Fig-642

ure 10). Figure 14 shows an example of the ratio of the migration celerity of a bed wave643
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from numerical simulations and migration celerity from the linear stability analysis, based644

on spatial modes. A value of 1 on the vertical axis means a perfect match. The horizon-645

tal axis shows the relative amplitude of the bed wave, which is defined as the ratio be-646

tween the amplitude of the bed wave and the undisturbed water depth. For a bed wave647

of 1 m high and a water depth of 4 m, the multiplication factor is almost 4 for the ini-648

tial migration celerity, and halves after 3 years. The multiplication factor shows an al-649

most linear relation with relative wave amplitude for the initial value of the migration650

celerity, and this relation flattens for longer simulation times. G. Seminara (pers. comm.)651

suggested that, due to the quasi-linear dependence of the multiplication factor on the652

relative amplitude, a weakly nonlinear analysis might be successful in extending theo-653

retical predictions beyond the linear approximation. Indeed, this could be worth con-654

sidering.655

The relations derived from Figure 14 could be used as a first pass for the correc-656

tion factor of the migration celerity of the linear stability analysis, although it is based657

on simulations for one Froude number only, and general applicability has not yet been658

proven. The impact of a flood wave as upstream boundary (Figure 1) is shown by the659

open squares in Figure 14. The impact is negligible at t=0 because the discharge is equal660

to the undisturbed discharge and therefore water depth and flow velocity assume the undis-661

turbed values. After 3 years, the overall migration celerity increased compared to the662

initial migration celerity, due to higher flow velocities and sediment transport rates dur-663

ing flood periods. For realistic flood wave conditions, the appropriate choice of the pa-664

rameters E, F and Ψ therefore becomes less straightforward, even more so when flood665

waves dampen in the downstream direction.666

Figure 14. Ratio between simulated perturbation migration celerities and corresponding

migration celerities from linear stability analysis as a function of bed wave amplitude to water

depth ratio for F=0.2.

In the Dutch main rivers, morphological changes are ongoing due to historical works667

and changes of many kinds. New plans are being developed and climate is changing. To668
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assess the impact on riverbed morphology, long-term predictions are required. The lin-669

ear stability analysis allows for a rapid assessment of how fast bed waves, induced by changed670

boundary conditions or measures, travel through the river, and indicate when they may671

cause problems and require management efforts at downstream locations. The Meuse672

River is used as an example for assessment of the applicability. In the downstream part673

of the river, where the bed slope is small and multiple weirs have been implemented, Froude674

numbers are moderate (on average 0.2 or lower), even during floods. In the upstream675

part of the Dutch Meuse River, referred to as the Common Meuse, slopes are 5 times676

higher, the river is free flowing, and the Froude numbers can take a value of up to 0.5,677

or locally even higher. This means that the analytically derived bed wave migration celer-678

ity will be an overestimation in the Common Meuse, because diffusion is high and wave679

lengths of bed waves are important (reflected in values of E). These wave lengths will680

change in time. In the downstream part of the Meuse River, bed waves have a translat-681

ing character and the linear stability analysis provides a good estimate of the migration682

celerity of low-amplitude bed waves with various wave lengths.683

For the Meuse River insufficient data were available to check the results of the lin-684

ear stability analyses. Two other cases were selected for which field data on celerities of685

bed waves are available: the Fraser River in Canada and the Waal River in the Nether-686

lands. The complete analyses for both rivers are presented in the supplementary mate-687

rial. Along the Fraser River, gold mining between 1858 and 1909 added large amounts688

of sediment to the river’s natural sediment load. Ferguson et al. (2015) and Nelson and689

Church (2012) reconstructed the impact of the additional sediment supplies on the mor-690

phodynamics. Nelson and Church (2012) estimated that the annual travel distance of691

placer mining sediment was most likely 3.1 km in the Fraser River between Marguerite692

and Hope. The linear stability analyses are based on an average bed slope of 0.001, a693

Froude number at mean annual flood in the range 0.45-0.56 and an annual bed mate-694

rial load of 700,000 m3. According to both spatial mode and temporal mode analyses,695

the propagation celerity is in the range of 2.25-3.3 km/yr, which matches the most likely696

celerity according to Nelson and Church (2012).697

The Waal River in the Netherlands is the main branch of the Rhine delta. The ge-698

ometry of the river bed of the Waal River has been monitored every two weeks by multi-699

beam surveys in the period from 2005 to 2020. These surveys provide detailed informa-700

tion on the propagation of bed waves. Gensen and Van Denderen (2022) performed a701

wavelet analysis on the 2 weekly measurements to filter out bed waves with lengths be-702

tween 300 to 4,000 m. On the relatively straight Middle Waal section, the celerity of these703

bed waves appeared to be 1.1 to 1.4 km/yr. The linear stability analyses are based on704

data from Van Denderen and Van Hoek (2022) and Paarlberg and Schippers (2020) (av-705

erage bed slope of 0.0001, Froude number equal to 0.15) and Frings et al. (2019) (an-706

nual bed material load of 333,333 m3). Based on the flow conditions at the average river707

discharge for the period 2005-2021, the spatial mode and temporal mode analysis pro-708

vide a propagation celerity of 1,222 m/yr, which is within the range of the measured val-709

ues reported by Gensen and Van Denderen (2022).710

Figure 11 shows that for the shorter bed waves of 107 m (F=0.1) to 446 m (F=0.6)711

(Section 2.3.4), damping in the numerical simulations exceeds the damping of the lin-712

ear stability analysis when F ≤ 0.4. For longer bed waves, linear stability analysis and713

numerical results agree much better. In the supplementary material it is shown that the714

damping length from the spatial-mode analysis and from the temporal-mode analysis match715

well in this range of the Froude number, and the choice of mode does not explain the716

deviations as found. The explanation could be related to numerical diffusion in ELV for717

shorter bed waves, which could be a subject of future study.718
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5 Conclusions719

A spatial-mode linear stability analysis was performed of the one-dimensional Saint-720

Venant-Exner equations, with a focus on subcritical flow with Froude numbers F up to721

0.6 and river bed waves with wave lengths larger than the water depth. The linear sta-722

bility analysis has yielded explicit relations to estimate migration celerities and damp-723

ing lengths of flow and bed perturbations. The results were compared to numerical model724

simulations with ELV, which in turn were verified by several additional model runs with725

SOBEK-RE. The comparison shows that migration celerities from the linear stability anal-726

ysis and numerical results agree well for infinitesimal perturbations at t=0. Regarding727

the initial response of these infinitesimal perturbations of the flow and morphology, the728

linear stability analysis can be used to validate numerical modelling codes.729

For Froude numbers exceeding 0.3, bed waves show an increasingly diffusive char-730

acter, where wave length increases and migration celerities decrease in time. For these731

conditions, the linear stability analysis based on spatial modes provides an upper limit732

of the migration celerity of bed perturbations. A temporal-mode linear stability anal-733

ysis proves more suitable for longer-term prediction of the migration celerity. When per-734

turbations are higher or longer, attaining dimensions that are significant compared to735

water depth or the length of the backwater curve, non-linear processes prevail and the736

diffusive character gains strength. For Froude numbers up to 0.3, the theoretical migra-737

tion celerities are a good estimate for perturbations even for longer periods of develop-738

ment, as long as the amplitudes of the bed waves are smaller than about 5% of the depth.739

When perturbations have larger amplitudes, the linear stability analysis underestimates740

the initial migration celerity by 50% or more, which is why a correction factor is required.741

This correction factor is shown to be exponentially dependent on the relative amplitude742

(the amplitude to water depth ratio). Application of a correction would extend the ap-743

plicability range of the linear stability analysis as a rapid assessment tool, but this needs744

a broader validation.745

For Froude numbers of 0.4 and higher, the diffusive character causes an overesti-746

mation of the bed wave migration celerities by the linear stability analysis in the longer747

term, especially in case of the spatial-mode analysis. At the same time, non-linearity causes748

an underestimation by the linear stability analysis. The net impact of diffusion depends749

on the balance of these two effects, and is likely dependent on the value of the Froude750

number. As an example, the linear stability analysis may be used as a rapid assessment751

tool for bed waves up to 0.5 m high in the lower part of the River Meuse, referred to as752

the Sand Meuse. In the upstream steeper part of the river, the Common Meuse, the Froude753

numbers are higher, diffusion is larger and the linear stability analysis based on spatial754

modes loses predictive power, especially when longer periods of development are consid-755

ered.756

The linear stability analyses were applied to the Fraser River in Canada and Waal757

River in the Netherlands. This shows that even when Froude numbers are as high as 0.56758

the propagation celerities of bed waves can be assessed realistically when average flow759

conditions and annual sediment loads are known.760
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