Neethal Thomas

and 4 more

We have carried out a statistical study of neutral atmospheric parameters in the mesosphere lower thermosphere (MLT) region, by utilizing simultaneous measurements from the EISCAT VHF radar and sodium LIDAR collocated at  Tromsø , Norway. This study focuses on the incoherent scatter (IS) spectral width, which is a function of the ion-neutral collision frequency, ion temperature, (equal to neutral temperatures in the D-region), and ion mass. Using the neutral temperatures obtained from LIDAR, and ion mass estimated using a chemistry model, we have measured the ion-neutral collision frequency in the 80-100 km altitudes by fitting the spectral width. The study shows that the current widely used formulae underestimate the ion-neutral collision frequency on average by 1.53\(\pm\)0.24 in comparison to the measurements. Also, the measured collision frequencies showed large temporal variations due to neutral density fluctuations, indicating the presence of atmospheric waves. The amplitudes of these waves are found to be as large as 50% of the background densities. This suggests that individual spectral width measurements are likely influenced by these random neutral density fluctuations, which can have a significant impact on the IS temperature fits. In addition, for altitudes below 85 km, the ion mass increases drastically indicating the presence of heavy cluster ions. The dominance of heavy ions makes it further challenging to extract the temperature values from the spectral width at these altitudes. In light of these observations, the inherent limitations of inferring temperatures from IS spectral width in the MLT altitudes are studied.

Kaoru Sato

and 28 more

An international joint research project, entitled Interhemispheric Coupling Study by Observations and Modelling (ICSOM), is ongoing. In the late 2000s, an interesting form of interhemispheric coupling (IHC) was discovered: when warming occurs in the winter polar stratosphere, the upper mesosphere in the summer hemisphere also becomes warmer with a time lag of days. This IHC phenomenon is considered to be a coupling through processes in the middle atmosphere (i.e., stratosphere, mesosphere, and lower thermosphere). Several plausible mechanisms have been proposed so far, but they are still controversial. This is mainly because of the difficulty in observing and simulating gravity waves (GWs) at small scales, despite the important role they are known to play in middle atmosphere dynamics. In this project, by networking sparsely but globally distributed radars, mesospheric GWs have been simultaneously observed in seven boreal winters since 2015/16. We have succeeded in capturing five stratospheric sudden warming events and two polar vortex intensification events. This project also includes the development of a new data assimilation system to generate long-term reanalysis data for the whole middle atmosphere, and simulations by a state-of-art GW-permitting general circulation model using reanalysis data as initial values. By analyzing data from these observations, data assimilation, and model simulation, comprehensive studies to investigate the mechanism of IHC are planned. This paper provides an overview of ICSOM, but even initial results suggest that not only gravity waves but also large-scale waves are important for the mechanism of the IHC.