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List of main symbols

x̄ Position along the fault
t̄ Time
ū Slip
τ̄ Shear stress
τ̄f Frictional stress
Γ̄ Boundary conditions: imposed-stress (Γ = 0) or imposed-displacement (Γ = 1)
γ̄ Elastic modulus parameter
τ̄k Pre-stress
d̄c Critical weakening distance

Ḡc = d̄c/2 Fracture energy
K̄ One-dimensional stress intensity factor
W̄b Breakdown work
Ēel Elastic energy
Ēkin Kinetic energy
W̄ext External work
v̄c Rupture propagation speed
ūp Final slip (i.e. after rupture arrest)
β̄ Numerical damping
L̄ Length of the domain
L̄ Rupture length
L̄arr Arrest length
x Position
t Time
ui Displacement
û0 Imposed displacement at the top boundary
〈ui〉 Average displacement over the block height
σij Cauchy stress tensor
σn Normal stress at the interface
τf Frictional (shear) stress at the interface
H Height of the solid block
λ Lamé first coefficient
G Shear modulus
ρ Solid density
µs Static friction coefficient
µk Dynamic friction coefficient
dc Critical slip weakening distance
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S.1. One-dimensional elastodynamic model

Let us consider the linear elastic block and associated system of coordinates presented

in Figure 2. For each coordinate (i = x, y, z), the balance of linear momentum writes:

ρ
∂2ui
∂t2

=
∂σxi
∂x

+
∂σyi
∂y

+
∂σzi
∂z

, (S.1)

where σij are the components of the Cauchy stress tensor and ui is the displacement field.

Next, we assume that the normal stress is homogeneous and constant (σyy(x, y, z, t) ≡ σn)

and that the elastic fields are invariant in the out-of-plane direction (∂ui/∂z = 0), such

that the momentum balance equation becomes

ρ
∂2ui
∂t2

= Λ
∂2ui
∂x2

+
∂σyi
∂y

. (S.2)

The equation above applies equivalently to mode II displacement, for which i corresponds

to x and Λ = λ + 2G, and to mode III displacement, for which i corresponds to z and

Λ = G. The height of the system H is assumed to be small compared to the other

dimensions of the problem, such that variations of ui over y are small and the momentum

balance can be solved in average across the height (Bouchbinder et al., 2011; Bar-Sinai

et al., 2013). At time t = 0, the system is initially at rest, such that one can define the

height-averaged displacement field as

〈ui〉y(x, t) =
1

H

∫ H

0

(
ui(x, y, t)− ui(x, y, 0)

)
dy, (S.3)

with ui(x, y, 0) corresponding to the initial static displacement field. Using the definition

of 〈ui〉y, both sides of Eq. (S.2) are integrated between zero and H to obtain the following

one-dimensional formulation:

Hρ
∂2〈ui〉y
∂t2

= HΛ
∂2〈ui〉y
∂x2

+ σyi(x,H, t)− σyi(x, 0, t). (S.4)
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Next, the boundary conditions on the top and bottom surfaces need to be applied. The

shear stress on the bottom surface corresponds to the frictional stress:

σyi(x, 0, t) ≡ τf (x, t). (S.5)

On the top surface, two kinds of boundary conditions can be considered:

stress− controlled : σyi(x,H, t) ≡ τ0(x) (S.6)

displacement− controlled : ui(x,H, t). ≡ û0(x) (S.7)

For imposed stress, the value of the shear stress at the top boundary is fixed, whereas for

imposed displacement σyi(x,H, t) evolves with interfacial slip. To estimate this evolution,

the displacement field through the height of the block can be expressed as the following

Taylor expansion

ui(x, y, t) = ui(x,H, t) + (y −H)
∂ui(x, y, t)

∂y
|y=H +O

(
(y −H)2

)
. (S.8)

In the right-hand side of the equation above, the first term corresponds to the imposed-

displacement û0, the derivative in the second term corresponds to σyi(x,H, t)/G and the

third term accounts for higher-order contributions that can be neglected as variations of

ui through H are small. Invoking that the initial static displacement field corresponds to

ui(x, y, 0) = û0(x)y/H, the height-averaged displacement can be integrated following Eq.

(S.3) as:

〈ui〉y(x, t) =
1

2
û0(x)− H

2G
σyi(x,H, t). (S.9)

From the equation above, σyi(x,H, t) can then be expressed as an initial shear stress τ0

related to the imposed displacement minus the elastic relaxation resulting from slip:

σyi(x,H, t) =
G
H

(
û0(x)− 2〈ui〉y(x, t)

)
≡ τ0(x)− 2G

H
〈ui〉y(x, t). (S.10)
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Using Eqs. (S.5), (S.6) and (S.10), the momentum equation (S.4) can be re-written as:

∂2〈ui〉y
∂t2

=
Λ

ρ

∂2〈ui〉y
∂x2

− Γ
2G
ρH2
〈ui〉y +

1

ρH

(
τ0(x)− τf (x, t)

)
, (S.11)

where Γ is a binary parameter being equal to zero for stress boundary condition, and

equal to one for displacement boundary condition on the top surface.

Following the normalization procedure summarized in Table S1, the one-dimensional

momentum equation above can be re-written in the dimensionless form:

∂2ū

∂t̄2
=
∂2ū

∂x̄2
− Γγ̄ū+ τ̄ , (S.12)

which is Eq. (1) in the main text. In Table S1, the dimensionless shear stress is defined

with respect to the static µs and kinematic µk coefficient of friction. For the example

of linear slip-weakening friction with only positive slip velocities, the shear stress can be

expressed as function of the deviation from residual friction τ̄f :

τ̄(x̄, t̄) = τ̄k(x̄)− τ̄f (x̄, t̄)


> τ̄k − 1 , if ˙̄u = 0

= τ̄k − (1− ū/d̄c) , if 0 ≤ ū ≤ d̄c

= τ̄k , if ū > d̄c

, (S.13)

with d̄c being the critical slip distance and τ̄k the dimensionless residual friction defined in

Eq. (3). Equation (S.13) also describes Amontons-Coulomb friction in the limit d̄c = 0.
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S.2. Parameters and convergence of the numerical scheme

As described in Section 3 of the main text, the one-dimensional model is solved in space

using a central finite-difference scheme with uniform grid size ∆x̄ and integrated in time

following Euler-Cromer scheme (Cromer, 1981), with uniform time step ∆t̄. At time step

j and element i, the integration of a slipping portion of the interface writes

¨̄uji =
ūji+1 − 2ūji + ūji−1

(∆x̄)2
− Γγ̄ūji + τ̄i + β̄

˙̄uji+1 − 2 ˙̄uji + ˙̄uji−1

(∆x̄)2
,

˙̄uj+1
i = ˙̄uji + ¨̄uji∆t̄,

ūj+1
i = ūji + ˙̄uj+1

i ∆t̄.

(S.14)

The one-dimensional model in its discretized model (S.14) is similar to the dynamics of

Burridge-Knopoff models whose governing equation has the generic form:

mü− k(ui+1 − 2ui + ui−1) + lui − η(u̇i+1 − 2u̇i + u̇ki−1) = fi, (S.15)

with m being the mass of the block, k, l respectively the longitudinal and leaf spring

constants and fi the driving force. As described by Knopoff and Ni (2001), at the tip

of a propagating rupture, the moving boundary between sticking and slipping portion

of the fault creates numerical oscillations that can be removed by introducing a viscous

damping term η. A spectral analysis of Eq. (S.15) shows that setting η =
√
km implies

that the spurious oscillations with grid-size wavelength are critically damped (Amundsen

et al., 2012). In practice, Burridge-Knopoff models typically use a value of η =
√

0.1km

which provides the best compromise between reducing the numerical oscillations and not

damping the physical rupture dynamics (Knopoff & Ni, 2001; Amundsen et al., 2012).

This value is adopted in our one-dimensional simulations with Amontons-Coulomb fric-

tion law. Using the analogy between Eqs. (S.14) and (S.15), this corresponds to m = 1,

k = (∆x̄)−2 and β = η(∆x̄)2 =
√

0.1km(∆x̄)2 =
√

0.1∆x̄. This relative viscous damping
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term reduces the convergence rate from quadratic to linear but guarantees the stability of

the numerical scheme for discontinuous problems as shown in Figure S1. ∆x̄ ≤ 4 ·10−3 to-

gether with the Courant-Friedrichs–Lewy condition (Courant et al., 1928), ∆t̄ ≤ 0.1∆x̄,

have been adopted in the simulations reported in the present study to guarantee the

numerical convergence.

S.3. Pulse equations

The pulse equation can be expressed by integrating the total energy between the nucle-

ation position x̄ = 0 and the position of the leading head of the pulse L̄(t̄) at time t̄ using

Eqs. (12) to (14). Next, we assume that the width of the pulse is much smaller than the

total ruptured length. This assumption allows us 1) to neglect the contribution of the

kinetic energy which is only non-zero within the pulse and 2) to substitute ū(x̄, t̄) by the

final slip ūp(x̄) observed in the wake of the pulse. The total energy at time t̄ writes then:

Ē(t̄) =

∫ L̄(t̄)

0

{
τ̄kūp − W̄b −

1

2

(∂ūp
∂x̄

)2

− 1

2
γ̄ū2

p

}
dx̄. (S.16)

We next use integration by parts and the fact that ūp is zero at the two bounds of the

integral above to rewrite the equation as:

Ē(t̄) =

∫ L̄(t̄)

0

{
τ̄kūp − W̄b +

1

2
ūp
∂2ūp
∂x̄2

− 1

2
γ̄ū2

p

}
dx̄ (S.17)

Finally, the total energy should be conserved throughout pulse propagation, which implies

that:

dĒ

dL̄
= 0 = τ̄kūp − W̄b +

1

2
ūp
∂2ūp
∂x̄2

− 1

2
γ̄ū2

p. (S.18)

This pulse equation can be used to predict the final slip observed in the wake of pulse-

like rupture as function of the profile of shear stress lumped in τ̄k(x̄) and the interface

breakdown energy described by W̄b.
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S.3.1. Amontons-Coulomb friction

With Amontons-Coulomb friction, the breakdown work is negligible (W̄b = 0). Exclud-

ing the trivial solution ūp = 0, the final slip is given by the following second-order linear

pulse equation:

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k. (S.19)

This pulse equation can be used for example to predict how ūp decays within a stress

barrier by defining the initial value problem up(x̄
′ = 0) = 2τk,0/γ̄ with x̄′ = x̄− x̄b, which

has a general solution given by two constants C1 and C2:

ūp(x̄
′) =

2τ̄k,b
γ̄

+ C1 exp(−x̄′
√
γ̄) + C2 exp(x̄′

√
γ̄). (S.20)

Neglecting the growing exponential C2, the following exponential decay can be predicted

ūp(x̄
′) =

2

γ̄

(
τ̄k,b + (τ̄k,0 − τ̄k,b) exp(−x̄′

√
γ̄)
)
. (S.21)

Remembering that in the case of stress barrier τ̄k,b < 0, the equation above has a positive

root ūp(x̄′ = L̄arr) = 0 which can be used to predict the critical barrier length:

L̄arr = γ̄−
1
2 ln

( τ̄k,0 − τ̄k,b
−τ̄k,b

)
. (S.22)

Another prediction can be made by searching C1 and C2 such that both ūp(x̄′) and its

first derivative are zero at x̄′ = L̄arr and corresponds to:

ūp(x̄
′) =

−2τ̄k,b
γ̄

(
cosh

(
(x̄′ − L̄arr)

√
γ̄
)
− 1
)
. (S.23)

In such case, the theoretical prediction of the arrest length becomes

L̄arr = γ̄−
1
2 arccosh

( τ̄k,0 − τ̄k,b
−τ̄k,b

)
. (S.24)

The two predictions (S.21) and (S.23) are compared to the the slip profile obtained from

numerical simulation in Figure S2.
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S.3.2. Slip-weakening friction with ūp ≤ d̄c

Such case describes frictional weakening which does not reach a residual value. The

breakdown work depends on the final slip ūp

W̄b(ūp) =

∫ ūp

0

τ̄f (ū) dū =

∫ ūp

0

(1− ū

dc
) dū = ūp

(
1− ūp

2d̄c

)
, (S.25)

and leads to a similar pulse equation:

∂2ūp
∂x̄2

=
(
γ̄ − 1

d̄c

)
ūp − 2(τ̄k − 1). (S.26)

S.3.3. Slip-weakening friction with ūp > d̄c

If one assumes that frictional weakening and associated breakdown work reach constant

values (W̄b = d̄c/2), the pulse equation becomes non-linear:

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k +
d̄c
ūp
. (S.27)

S.3.4. Steady-state energy balance

Thøgersen, Aharonov, Barras, and Renard (2021) derived the steady-state pulse solution

for Amontons-Coulomb friction and homogeneous stress condition. The steady-state pulse

has a width

ω̄ = π

√
v̄2
c − 1

γ̄
=

πτ̄k√
γ̄(1− τ̄ 2

k )
(S.28)

over which the slip evolves as

ū(ξ̄) =
τ̄k
γ̄

(
1− sin(πξ̄/ω̄)

)
, (S.29)

with ξ̄ ∈ [−ω̄/2, ω̄/2] being a co-moving frame of reference centered at the position of

peak slip velocity. Integrating the steady state solution between −ω̄/2 and ω̄/2 following

Eqs. (12) and (13), one can compute the mechanical (reversible) energy stored within the
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steadily travelling pulse:

Epulse =
1

2

∫ ω̄/2

−ω̄/2

{(∂ū
∂x̄

)2

+ γ̄ū2 +
(∂ū
∂t̄

)2}
dx̄ =

πτ̄k(1 + τ̄ 2
k )

2γ̄3/2
√

1− τ̄ 2
k

. (S.30)

S.4. Crack equations

S.4.1. Steady-state solution under homogeneous stress conditions

A crack-like rupture involves different energy transfer than the pulse-like rupture dis-

cussed in the previous section. To complement the steady-state pulse solution (S.29) from

Thøgersen et al. (2021), we derive hereafter an equivalent self-similar crack solution un-

der homogeneous prestress τ̄k. Figure S3 presents three different simulations of crack-like

rupture (Γ = 0) under three different homogeneous pre-stress conditions. Under such con-

ditions, the crack reaches constant propagation speed such that, in the co-moving frame

ζ̄ = x̄/L̄, self-similar profiles are observed for the acceleration ¨̄u, the rescaled velocity ˙̄ut̄−1

and the rescaled displacement ū t̄−2. From these results, one can postulate the following

self-similar solution:

ū = t̄ 2F(ζ̄), with ζ̄ =
x̄

v̄ct̄
,

˙̄u = t̄H(ζ̄), with H(ζ̄) = 2F(ζ̄)− ζ̄F ′(ζ̄),

¨̄u = J (ζ̄), with J (ζ̄) = 2F(ζ̄)− 2ζ̄F ′(ζ̄) + ζ̄2F ′′(ζ̄),

(S.31)

where F(ζ̄) is the self-similar crack displacement solution to be determined. First, this

solution needs to satisfy the one-dimensional momentum balance Eq. (1), which becomes

in the new frame of reference:

2F − 2ζ̄
dF
dζ̄

+ (ζ̄2 − 1

v̄2
c

)
d2F
dζ̄2

= τ̄k. (S.32)

Eq. (S.32) is a Cauchy-Euler equation that reduces to

2C − 2A

v̄2
c

= τ̄k, (S.33)
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for homogeneous τ̄k and if F has a quadratic form F = Aζ̄2 +Bζ̄ +C. A single quadratic

solution could not match the simulation profiles, such that the following bi-quadratic

solution was postulated:

F(ζ̄) =


A1ζ̄

2 +B1ζ̄ + C1, if ζ̄ < ζ̄c

A2ζ̄
2 +B2ζ̄ + C2, if ζ̄ > ζ̄c

(S.34)

Next, the following conditions are imposed

• Zero slip and slip velocity at the fixed boundary on the left of the domain: F(ζ̄ =

0) = H(ζ̄ = 0) = 0;

• Zero slip and slip velocity at the tip of the crack: F(ζ̄ = 1) = H(ζ̄ = 1) = 0;

• Continuity of slip and slip velocity at ζ̄ = ζ̄c;

• The two polynomials should satisfy the momentum balance relationship of Eq. (S.33).

They provide seven conditions to determine the seven unknowns of the self-similar

solution which becomes

F(ζ̄) =


τ̄kv̄

2
c

(
− 1

2
ζ̄2 +

ζ̄

v̄c + 1

)
, if ζ̄ <

1

v̄c
τ̄kv̄

2
c

2(v̄2
c − 1)

(
ζ̄2 − 2ζ̄ + 1

)
, if ζ̄ >

1

v̄c
.

(S.35)

Note that ζ̄c = v̄−1
c corresponds to the characteristic line x̄ = t̄ describing the wave speed

propagation. The crack solution corresponds then to the combination of a subsonic and a

supersonic contribution. For Amontons-Coulomb friction, supersonic rupture speeds are

in agreement with the prediction of Amundsen et al. (2015):

v̄c =
1√

1− τ̄ 2
k

, (S.36)

which is used in Figure S3 to validate the self-similar solution against the different simula-

tions with no free parameter. Next, the crack energy balance can be studied by inserting
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the self-similar solution of Eq. (S.31) into Eqs. (12), (13), and (14):

Eel + Ekin = Wext (S.37)

1

2

∫ L̄

0

(∂ū
∂x̄

)2

dx̄+
1

2

∫ L̄

0

(∂ū
∂t̄

)2

dx̄ =

∫ L̄

0

τ̄kūdx̄ (S.38)

⇔ t̄3

2v̄c

∫ 1

0

(
F ′(ζ̄)

)2

dζ̄ +
t̄3v̄c
2

∫ 1

0

(
H(ζ̄)

)2

dζ̄ = t3v̄cτ̄k

∫ 1

0

F(ζ̄)dζ̄ (S.39)

⇔ τ̄ 2
k v̄

2
c t̄

3

6(v̄c + 1)2
+

τ̄ 2
k v̄

3
c t̄

3

6(v̄c + 1)2
=

τ̄ 2
k v̄

2
c t̄

3

6(v̄c + 1)
. (S.40)

Equation (S.40) is satisfied for any rupture speed v̄c and at any time step t̄ and confirms

the validity of the self-similar solution of Eq. (S.31). The left-hand side of Eq. (S.40)

corresponds to the mechanical energy stored in the crack that can be defined as,

Ēcrack =
τ̄ 2
k L̄

3

6v̄c(v̄c + 1)
, (S.41)

which is equivalent to Eq. (S.30) for slip pulse. Ēcrack corresponds to the amount of

external work that is released by the rupture and converted into internal energy.

As discussed in the main text, Ēcrack can be used to derive Ḡ, the fracture mechanics

energy release rate (see Eq. (29)). Next, the one-dimensional dynamic fracture energy

balance (Ḡ = Ḡc) can be used to define the crack propagation criterion:

d̄c ≤
τ̄ 2
k x̄

2
b

v̄c(v̄c + 1)
≡ d̄0

c . (S.42)

If satisfied, the condition Eq. (S.42) implies that the rupture releases enough energy to

advance through the barrier. In practice, d̄0
c systematically underestimates the fracture

energy d̄c required to arrest the rupture. Indeed, if the condition of Eq. (S.42) is violated,

the propagating crack dissipates more energy than it releases such that rupture will arrest

once the internal energy available in the 1D system is dissipated. The arrest condition

should also account for the length over which the crack stops, such that the crack arrest
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condition rather writes

d̄c >
τ̄ 2
k (x̄b + L̄arr)

2

v̄c(v̄c + 1)
≡ d̄∗c . (S.43)

In the equation above, L̄arr can be estimated as the ruptured length required for the

fracture energy to dissipate the internal energy. Unlike rupture in infinite domain, the

energy released by the one-dimensional rupture remains close to the interface and the

internal energy is given by Ēcrack defined in Eq. (S.41), such that

L̄arr =
τ̄ 2
k x̄

3
b

3d̄cv̄c(v̄c + 1)
∼=

τ̄ 2
k x̄

3
b

3v̄c(v̄c + 1)

v̄c(v̄c + 1)

τ̄ 2
k x̄

2
b

=
1

3
x̄b, (S.44)

where the last approximation corresponds to d̄c ≈ d̄0
c . Combining equation (S.43) and

(S.44) together with the relationship (S.36) between rupture speed and prestress derived by

Amundsen et al. (2015), the minimal value of d̄c required to arrest a steadily propagating

crack corresponds then to

d̄∗c(τ̄k, x̄b) =
(4x̄b

3

)2

(1− τ̄ 2
k )
(

1−
√

1− τ̄ 2
k

)
. (S.45)

S.4.2. Linearly decaying pre-stress

In this section, we aim to derive a solution for the final slip observed after the prop-

agation of a crack-like rupture through decaying profile of pre-stress. Both linear decay

τ̄k = 1− ᾱx̄ and quadratic decay τ̄k = 1− λ̄x̄2 are discussed. First, we use the crack ar-

rest conditions in absence of fracture energy (K̄(L̄arr) = 0) to predict the arrest position

being respectively L̄arr = 2/ᾱ and L̄arr =
√

3/λ̄. Next we define the following system of

coordinates ψ̄ = x̄/L̄arr and consider the following cubic slip profile ūp(ψ̄) = Cψ̄(1− ψ̄)2,

which is defined to satisfy the no-slip boundary condition (ūp(0) = 0) as well as zero slip

(ūp(1) = 0) and zero longitudinal stress (∂ūp(1)/∂ψ̄ = 0) at the arrest position. The

remaining constant C is set such that ūp satisfies the crack energy balance, which implies
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that the elastic strain energy present in the system after the rupture

Ēel =
1

2

∫ 1

0

(∂ūp
∂ψ̄

)2

L̄−1
arr dψ̄ =


ᾱ

30
C2√
λ̄

3

C2

15

(S.46)

corresponds to the work injected in the system by the external forces during the rupture

W̄ext =

∫ 1

0

τ̄k(ψ)ūp(ψ)L̄arr dψ̄ =


ᾱ−1 C

30√
3

λ̄

C
30

(S.47)

The rupture energy balance leads then to respectively C = ᾱ−2 and C = 1.5λ̄−1 and the

following slip profile

ūp(ψ̄)

ū∗p
=

27ψ

4
(1− ψ)2, (S.48)

with the peak value of frictional slip corresponding respectively to ū∗p = 4ᾱ−2/27 and

ū∗p = 2λ̄−1/9 and being observed at one third of the total rupture length (ψ̄max = 1/3).

The solution (S.48) is shown by the white dashed line in Fig. 8 in comparison with

simulations.

S.5. Connection with existing linear elastic fracture mechanics models

Linear elastic fracture mechanics provides an elegant and robust framework to describe

the arrest of frictional rupture in lab experiments. The small-scale yielding assumption

behind linear elastic fracture theory implies that the material behavior is everywhere linear

elastic, apart from a region near the fracture tip which is of negligible size compared to any

other representative length scale of the problem. The most frequent boundary conditions

assumed unbounded elastic domain under constant stress, which allows for expressing the

crack arrest criterion as function of the energy released at the tip of the crack per unit

crack surface growth:

G ∼ K2

2G
. (S.49)
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G is often referred to as the energy release rate and is function of the stress intensity

factor K that characterises the amplitude of the stress concentration near the crack tip.

For example, the stress intensity factor of a mode-II crack of size L at the edge of a

semi-infinite domain is given by the integration of the pre-stress (Kammer et al., 2015):

K(L) =
2√
πL

∫ L

0

(τ0 − µkσn)M(ξ/L)√
1− (ξ/L)2

dξ, (S.50)

with M(ξ/L) = 1 + 0.3(1 − (ξ/L)5/4). Using the two equations above, crack arrest is

predicted as soon as the fracture energy of the interface exceeds the energy release rate:

G(L) ≤ Gc. (S.51)

Such dynamics is similar to the one predicted in the one-dimensional domain under stress-

controlled boundary conditions. Two notable differences arise from the small-H approxi-

mation. First, the energy release rate scales as Ḡ ∼ L̄2 (see Eq.(29)) whereas it scales as

G ∼ L in the unbounded domain approximation. This difference is caused by the introduc-

tion of an additional characteristic length scale (H) in the one-dimensional system. The

same quadratic scaling is also observed in the energy release rate controlling the tensile de-

lamination of double cantilever beam with similarly large aspect ratio (Anderson, 2005).

Second, the tip singularity is regularized over the thickness H in the one-dimensional

model, such that K̄ does not describe the stress singularity, but rather the resultant

stress at the tip, as evident in the integration of K̄(L̄) in Eq. (27), the one-dimensional

equivalent of Eq. (S.50).

Another useful type of boundary conditions assumes rupture propagating between two

thin-strips loaded by an imposed-displacement at the boundary (Marder, 1998; Weng &
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Ampuero, 2019). In such geometry, the energy release rate rather writes:

G0 =
(τ0 − µkσn)2H

G
. (S.52)

Assuming small acceleration, Marder (1998) derives an approximate equation of motion

for linear elastic tensile fracture in the thin-strip setup, which was recently adapted to

frictional rupture by Weng and Ampuero (2019):

Gc = G0

(
1− v̇rH

A(vr)

)
, (S.53)

with vr being the rupture speed and A a positive function of vr. An important differ-

ence is that ruptures in the thin-strip geometry are pulse-like, whereas crack-like ruptures

are promoted in the unbounded elastic domain. Another difference with the unbounded

configuration described in Eq. (S.51) is that the thin-strip introduces some inertia in the

crack equation of motion in Eq. (S.53) that stretches the arrest of the rupture over some

finite arrest length. Such configuration is then equivalent to the displacement-controlled

boundary conditions of the one-dimensional model. Whereas the analogy between un-

bounded domain and one-dimensional stressed-controlled setup was qualitative, the one-

dimensional model under displacement-controlled boundary conditions directly describes

the thin-strip geometry and the analogy is quantitative. For example, both in Eq. (S.53)

and Eq. (21), the rupture will decelerate and ultimately arrest if

(τ0 − µkσn)2H

G
≤ Gc. (S.54)

Moreover, the predictions of the two models show a similar trend in the limit d̄c → d̄∗c .

Figure S4 compares the arrest length of one-dimensional simulations discussed in Fig. 5B

of this paper to the following approximation proposed in the equation (22) of Weng and

Ampuero (2019) to describe the rupture arrest observed in 2.5-dimensional earthquake
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simulations, which can be written in our dimensionless formulation as:

L̄arr =
α−0.6
s − 1

0.72(d̄c/d̄∗c − 1)
, (S.55)

with αs =
√

1− v̄2
c defined for subsonic rupture velocity in two- and three-dimensions

elastodynamics. As discussed by (Amundsen et al., 2015), one-dimensional elastodynam-

ics promotes rupture speed which are faster than the one-dimensional wave speed (see Eq.

(S.36)), which explains the large value (v̄c = 0.975) that should be used in Eq. (S.55)

to describe the one-dimensional simulations in Fig. S4. For large d̄c → d̄∗c , the small-

scale yielding assumption is no longer valid such that linear elastic fracture mechanics

prediction does not capture the plateau observed with the one-dimensional model.

S.6. Seismic data from 2019 Ridgecrest Mw7.1 earthquake

The data plotted in the panel (c) of Figure 9 are computed from the surface fault slip

caused by theMw7.1 Ridgecrest earthquake and inverted from optical image correlation by

Chen et al. (2020). First, the strike parallel slip profile inverted from images of Sentinel-1

shown in the figure 2c of Chen et al. (2020) are digitized. Next, the non-dimensional

variables ūp and x̄ are computed respectively from the slip and the distance along strike

using Table S1 (mode-II column) and assuming the following parameters: H = 1 [km],

σn = 200 [MPa], (µs − µk) = 0.7 [-], G = 35 [GPa] and the Poisson’s ratio ν = 0.25 [-].

As shown in Figure S5, ūp(x̄) is then interpolated by a cubic spline used to evaluate its

second derivative and to compute τ̄k from the pulse equation Eq. (33) with ð set as 2

(negligible fracture energy).
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S.7. Stress drop and back-propagating front with displacement-controlled

boundary conditions (Γ = 1)

The displacement field along the interface before ū = 0 and after ū = ūp should sat-

isfy the momentum equation (1) with zero acceleration. Before the rupture, this static

equilibrium implies that the dimensionless stress τ̄ = 0, which means that the frictional

stress at the interface equates the initial stress in the bulk (τ̄f = τ̄k). After the rupture,

the dimensionless stress becomes

τ̄ = τ̄k − τ̄f = γ̄ūp −
∂2ūp
∂x̄2

. (S.56)

Moreover, one knows that the final slip should approximately satisfy the pulse equation

(33), which implies that

γ̄ūp −
∂2ūp
∂x̄2

= ðτ̄k. (S.57)

Combining Eqs. (S.56-S.57), one obtains that the frictional stress at the interface after

the rupture corresponds to τ̄f = (1− ð)τ̄k, which leads to the following stress drop:

∆τ̄f = ðτ̄k. (S.58)

For the largest admissible fracture energy (i.e. d̄c = d̄∗c and therefore ð = 1), the stress

drop corresponds to ∆τ̄f = τ̄k, which means that the rupture completely releases the

initial shear stress (τ̄f = 0). Conversely, for negligible fracture energy, ð = 2 and the

frictional stress after failure becomes τ̄f = −τ̄k. In dimensional unit, such overshoot can

inverse the sign of the shear loading at the interface after the rupture.

If at the end of the rupture, the interface is strained with negative shear stress, it can

host a secondary rupture with reverse (i.e. negative) slip and slip velocity. The same 1D

pulse theory can be used to describe the propagation of this reverse secondary rupture.
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First, one need to define the negative pre-stress, the equivalent of Eq.(3) but for negative

slip velocity:

τ̄−k (x̄) =
τ0(x̄)/σn + µk

µs − µk

= τ̄k(x̄) +
2µk

µs − µk

≡ τ̄k(x̄) + ϑ̄. (S.59)

Second, one defines the displacement due to the secondary rupture front only, ū− =

−(ū− ūp), where the minus sign is there to ensure that ū− > 0. With this two ingredients,

the momentum equation within the secondary rupture writes:

−¨̄u− =
∂2(ūp − ū−)

∂x̄2
− γ̄(ūp − ū−) + τ−k , (S.60)

which can be further simplified using Eqs. (S.57) and (S.59) into

¨̄u− =
∂2ū−

∂x̄2
− γ̄ū− + (ð− 1)τ̄k − ϑ̄. (S.61)

In the equation above both ū− and ¨̄u− are positive such that the theory developed in this

paper to describe slip pulse can be applied to describe the dynamics of secondary slip

fronts governed by Eq. (S.61). From the original one-dimensional momentum equation

(1), frictional rupture are possible if τ̄k = 0. Similarly, using the updated momentum

equation above (S.61), secondary rupture front are possible if:

τ̄k(ð− 1)− ϑ̄ > 0. (S.62)

The equation above only guarantees that the rupture is energetically admissible. As dis-

cussed for Eq. (8), the criterion (S.62) is a necessary condition for back-propagating

rupture but is not sufficient. To observe secondary rupture fronts, a local stress concen-

tration is also required to trigger nucleation and typically arises once the main front is

arrested by a sharp barrier. Figure S6 shows examples of secondary fronts nucleating at

the location of a stress barrier and propagating backward following the prediction of Eq.

(S.62).
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Physical quantities Variables Mode II rupture Mode III rupture

Characteristic wave speed c =

√
Λ

ρ

√
λ+ 2G
ρ

√
G
ρ

Characteristic displacement U = Hσn
µs − µk

Λ
Hσn

µs − µk

λ+ 2G
Hσn

µs − µk

G

Characteristic time T =

√
H2ρ

Λ

√
H2ρ

λ+ 2G

√
H2ρ

G

Dimensionless distance x̄ x
1

H
x

1

H

Dimensionless displacement ū =
〈ui〉y
U

〈ux〉y
U

〈uz〉y
U

Dimensionless shear stress τ̄ =
T 2

ρUH
(τ0 − τf )

σ0
xy/σn − τf/σn
µs − µk

σ0
yz/σn − τf/σn
µs − µk

Dimensionless stiffness γ̄ =
2G
Λ

2G
λ+ 2G

2

Table S1. Summary of the non-dimensionalization procedure used in the present

study. The elastic parameter Λ is equal to λ + 2G for Mode II rupture, and G for Mode

III rupture.
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Figure S1. Convergence study of the arrest length L̄arr for a pulse like rupture

stopped by a stress barrier with τk,0 = 0.6 and τk,b = −0.3. The black stars show the

set of parameters chosen in this paper. (A) Simulated arrest length for different mesh

sizes ∆x̄ and damping parameter β̄. (B) Evolution of the absolute error (using L̄arr for

∆x̄ = 10−3 as the reference value of each case). The purple curves show linear and

quadratic convergence rates.
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ūp ∼ cosh ((x̄′ − L̄arr)

√
γ̄)

Figure S2. Decay of the final slip observed when a pulse-like rupture is arrested by a

stress barrier. The simulation (blue line) is compared to two theoretical predictions derived

from the pulse arrest equation (17). The red and yellow curves correspond respectively

to Eq. (S.21) and (S.23).
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Figure S3. The three rows correspond to crack-like ruptures under three different

homogeneous pre-stress τ̄k of 0.25, 0.5, and 0.75 from top to bottom. Space-time maps

of the rupture are shown on the left column, with the red dashed line highlighting the

steady state velocity v̄c used in the theoretical predictions. The color coding shows the

slip velocity. In the right column, the associated slip profile along the interface is shown at

different time steps by the solid lines. Curves are collapsed by using the spatial coordinates

ζ̄ and rescaling the slip by t̄2. The red dashed lines show the self-similar solution ū =

t2F(ζ̄) according to Eq. (S.35) with no adjustable parameter.

November 17, 2022, 6:26pm



X - 26 :

Figure S4. Evolution of the arrest length for pulse-like ruptures that arrest on a

fracture energy barrier. The colored data are identical to the one displayed in Fig. 5B.

The black line shows the prediction of Weng and Ampuero (2019) using Eq. (S.55) and

v̄c = 0.975.
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Figure S5. Dimensionless slip versus distance along the fault used to generate Fig.

9c. The blue curve shows the raw data digitized from the figure 2c of Chen et al. (2020)

after non-dimensionalization. The yellow curve shows the cubic spline interpolation used

to evaluate the second-order derivative of ūp.
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Figure S6. Secondary rupture fronts causing negative slip and propagating from the

arresting barrier towards the hypocenter (a.k.a. back-propagating fronts). Snapshot are

all taken at the same time step after the arrest of the main rupture front by a stress

barrier. The same background stress (black dashed line) is used for the four simulations

and corresponds to τ̄k = 0.6 as well as d̄c = 0. The colored lines show the slip velocity

profiles observed at the same time step after the arrest of the main front for different

values of ϑ̄. As predicted by Eq. (S.62), back propagating fronts nucleate when τ̄k > ϑ̄.
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