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Abstract13

Predicting secondary organic aerosol (SOA) formation relies either on extremely detailed,14

numerically expensive models accounting for the condensation of individual species or15

on extremely simplified, numerically affordable models parameterizing SOA formation16

for large-scale simulations. In this work, we explore the possibility of creating a random17

forest to reproduce the behavior of a detailed atmospheric organic chemistry model at18

a fraction of the numerical cost. A comprehensive dataset was created based on thou-19

sands of individual detailed simulations, randomly initialized to account for the variety20

of atmospheric chemical environments. Recurrent random forests were trained to pre-21

dict organic matter formation from dodecane and toluene precursors, and the partition-22

ing between gas and particle phases. Validation tests show that the random forests per-23

form well without any divergence over 10 days of simulations. The distribution of errors24

shows that the sampling of initial conditions for the training simulations needs to focus25

on chemical regimes where SOA production is the most sensitive. Sensitivity tests show26

that specializing multiple random forests for a specific chemical regime is not more ef-27

ficient than training a single general random forest for the entire dataset. The most im-28

portant predictors are those providing information about the chemical regime, oxidants29

levels and existing organic mass. The choice of predictors is crucial as using too many30

unimportant predictors reduces the performances of the random forests.31

Plain Language Summary32

Organic compounds constitute a significant fraction of atmospheric particles and33

thus have an impact on health and climate. Predicting the contribution of organic com-34

pounds to atmospheric particles is extremely complex because of the very large number35

of different chemical species potentially condensing into the aerosol phase. Air quality36

and climate models usually rely on simplified, empirical approaches to predict organic37

aerosol mass concentrations, based on laboratory experiments. In this work, we apply38

a machine learning approach to construct a tool that behaves like the most detailed or-39

ganic chemistry model, for a numerical cost affordable by air quality and climate mod-40

els. Building upon this method, it will be possible to bring the complexities of organic41

chemistry to large-scale models.42

1 Introduction43

Secondary organic aerosol (SOA) constitutes a major fraction of atmospheric par-44

ticles worldwide. It is composed of a multitude of organic compounds (e.g. Kourtchev45

et al., 2016). Our current understanding and modeling of SOA formation processes are46

highly uncertain (Pai et al., 2020) and involve representing the complex interplay between47

gas-phase oxidation and condensation of semi- and low-volatile organic species. SOA mod-48

els need to include processes such as (i) the multi-step oxidation of the large variety of49

organic compounds emitted naturally and by human activities, (ii) the condensation of50

semi-volatile species to the particle phase and (iii) the heterogeneous and in-particle re-51

activity of condensed species. This complexity can only be represented in models that52

explicitly account for aerosol physico-chemical processes. In these so-called explicit mod-53

els, the aim is to represent the fate of each individual chemical species through individ-54

ual reactions, which can number in the 109 range (e.g. Aumont et al., 2005). The Gen-55

erator of Explicit Chemistry and Kinetics for Organics in the Atmosphere (Aumont et56

al., 2005) is an example of such a model able to generate chemical mechanisms that ex-57

plicitly describe the oxidation of organic compounds in the atmosphere, as well as their58

condensation into the particle phase (Camredon et al., 2007). It has previously been used59

to study SOA formation in various settings such as atmospheric chamber experiments60

(La et al., 2016), sensitivity studies (Valorso et al., 2011; Aumont et al., 2012; Hodzic61
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et al., 2015) and urban plume modeling (Lee-Taylor et al., 2015; Mouchel-Vallon et al.,62

2020).63

Because of their size, explicit mechanisms like those generated by GECKO-A can-64

not be used in 3D air quality models, which rely on empirical SOA parameterizations.65

The volatility basis set (VBS, Donahue et al., 2006) and its derivatives (e.g., Donahue66

et al., 2011; Cappa & Wilson, 2012) are the most prevalent representations of SOA chem-67

istry in this field. In such models, simplifications are made to represent SOA formation68

by grouping organic species of similar properties into discretized bins, i.e., volatility or69

oxidation state are the typically chosen properties for the VBS bins. This approach has70

been presented by Pankow et al. (2015) as the anonymized view of SOA modeling, as71

opposed to the molecular view of SOA modeling used by explicit models.72

Previous attempts have been made to bring the molecular view of SOA modeling73

to 3D models. Li et al. (2015) included the near explicit Master Chemical Mechanism74

(MCM v3.2, Saunders et al., 2003; Jenkin et al., 2003), in the Community Multiscale Air75

Quality model (CMAQ, Foley et al., 2010). MCM is a near explicit mechanism, as some76

simplifications are made to simplify its development such as removing unlikely reaction77

channels and simplifying the oxidation of minor or unknown products. At the time MCM78

therefore used approximately 17 000 reactions involving approximately 6000 species to79

represent the progressive oxidation of 142 primary hydrocarbons. Although the imple-80

mentation of MCM in CMAQ was able to reproduce reasonably well the observed SOA81

surface concentrations over eastern US for a case study, this approach did not have fur-82

ther applications to our knowledge, and was limited by the considerable computational83

cost required to run regional scale simulations.84

Lannuque et al. (2018) created VBS-GECKO, an empirical VBS parameterization85

where the stoichiometric coefficients were optimized to fit data produced from GECKO-86

A runs instead of being fitted to empirical data. Their method had the advantage of pa-87

rameterizing the model over the multi-day simulated aging of SOA, which cannot be ob-88

tained from the shorter chamber studies used to derive traditional VBS parameteriza-89

tions. Lannuque et al. (2020) ran VBS-GECKO in an air quality model (Menut et al.,90

2013) and showed that VBS-GECKO was producing more SOA in the summer over Eu-91

rope compared to the traditional SOA parameterization that is based on laboratory data92

(Couvidat et al., 2012). Because, in essence, their resulting model was a linear combi-93

nation of multiple VBS produced for different levels of pollution, it relied on the assump-94

tion that atmospheric chemistry behaves linearly between the selected chemical regimes.95

As a result, VBS-GECKO may have been applied outside of its application domain.96

Here, we propose to use a machine learning (ML) approach to bring the molecu-97

lar view to 3D chemistry-climate models across a range of chemical regimes represen-98

tative of tropospheric conditions. Machine learning techniques have been applied pre-99

viously for air quality forecasts (Liao et al., 2020) demonstrating that it is possible to100

run a trained artificial intelligence in a 3D model. Keller and Evans (2019) used the GEOS-101

Chem chemical mechanism solver to train multiple random forests that were then able102

to emulate the chemical solver behavior in that same model for various pollutant, for a103

fraction of the computational cost of the default GEOS-Chem model. Kelp et al. (2020)104

improved on this method by using a unique neural network to predict 20 chemical species.105

They implemented it in GEOS-Chem (Kelp et al., 2022), achieving stable one-year sim-106

ulations for ozone prediction with less than 10% bias compared to the reference and re-107

ducing computational times by a factor of five. The motivation of these previous stud-108

ies stems from reducing the costs of calculating chemistry, that is usually taking from109

50% to 90% of the computational costs of running global chemistry models such as GEOS-110

Chem (Keller & Evans, 2019).111

Schreck et al. (2022) recently presented a neural network approach to emulate the112

behavior of idealized GECKO-A simulations for the SOA formation following the oxi-113
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Table 1. Environmental and chemistry parameters used for generating the GECKO-A box-

model dataset.

Parameter Range Parameter Range

Latitude [°] −80–80 Relative humidity [%] 3–102
Temperature [K] 216–313 Atmospheric pressure [atm] 0.5–1.02

Preexisting aerosol seed [µgm−3] 0.03–340 Initial NOx [ppb] 10−4–42
Initial precursor [ppb] 0–16 Initial CO [ppb] 33–1012

Initial O3 [ppb] 1–100 NO Emission [molec cm−2 s−1] 107–109

dation of three individual precursors reacting with OH under varied environmental con-114

ditions. While this work showed the ability of neural networks to reproduce idealized ox-115

idation situations, it showed their limitations when extrapolated to realistic simulations116

with diurnally varying conditions. The results indicate that this type of system needs117

to be trained with a dataset representative of the conditions in which it will be applied.118

In this paper, we train a random forest on a dataset constructed with multiple GECKO-119

A simulations, with the primary aim of predicting SOA mass from the oxidation of toluene120

and dodecane for realistic atmospheric conditions over a range of chemical regimes cov-121

ering daytime and nighttime oxidation by the main oxidants (OH, O3 and NO3). Our122

objective is to build an empirical SOA model that is able to reproduce the aerosol mass123

that a complex, explicit mechanism would predict, at a numerical cost that is compa-124

rable to that of reduced chemical mechanisms currently used in large-scale models.125

2 Methods126

2.1 Reference Organic Chemistry Mechanisms127

The Generator for Explicit Chemistry of Organics in the Atmosphere (GECKO-128

A, Aumont et al., 2005) is a software tool allowing the automatic generation of detailed129

multi-generational organic chemistry mechanisms. It is based on state-of-the-art knowl-130

edge of atmospheric organic chemistry and structure activity relationships (SAR) (e.g.,131

Atkinson, 1997; Raventos-Duran et al., 2010) to estimate unknown reaction kinetics and132

thermodynamics. It calculates the gas-particle partitioning of individual organic species133

based on estimates of their volatility (Valorso et al., 2011). In the present study, chem-134

ical mechanisms were generated for the oxidation by OH, NO3 and O3 of toluene (C7H8)135

and dodecane (C12H26), two compounds emitted by anthropogenic activities. Currently,136

GECKO-A only includes gas-phase oxidation and condensation of semi-volatile organic137

compounds. There are no heterogeneous processes and no aerosol phase processes (e.g.,138

oligomerization) included in the model. The resulting toluene full oxidation mechanism139

contains 8560 species involved in 47 349 chemical reactions, including 4536 gas-aerosol140

equilibrium reactions. The oxidation mechanism for dodecane was completed to the 4th141

generation. This was done in order to reduce the generated mechanism to a manageable142

size for the purpose of this work. The resulting dodecane oxidation mechanism contains143

75 745 species involved in 465 751 chemical reactions, including 20 968 gas-aerosol equi-144

librium reactions.145

2.2 Dataset Construction146

To create the dataset used to train and evaluate the random forest model, we ran147

a large set of simulations for toluene and dodecane. Each simulation is performed for 230148

hours with a uniformly sampled set of randomly chosen initial conditions and external149

forcing (see Tab. 1). Temperature, relative humidity and atmospheric pressure are se-150
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lected in ranges typical of values found in the lower troposphere. This ensures that the151

SOA emulator will have the correct sensitivity to changes in these parameters through152

the effects of (i) temperature on reaction rates and SOA evaporation, (ii) relative hu-153

midity on OH formation and (iii) pressure on third-body reaction rates. Initial concen-154

trations of precursors, NOx and CO are randomly picked to cover a wide range of chem-155

ical regimes. The latitude is varied from 80°S to 80°N to ensure that the model does not156

fit to a specific diurnal cycle. All model simulations start at 10:00am UTC and simu-157

late a diurnal light cycle defined by the chosen latitude. The model time-step length is158

5 minutes. After initialization, the precursor, NOx , O3, and CO freely react without con-159

straints. The other external forcing (temperature, relative humidity, pressure, latitude,160

NO emissions, seed) are maintained constant for the whole simulation. The simulated161

photochemistry leads to the multi-generational formation of semi- and low-volatile sec-162

ondary organic compounds that can condense to form SOA.163

2.2.1 Outcomes164

In this work, the aim is to predict the distribution of organic species between gas
and aerosol phases. In order to build a flexible approach that will allow future develop-
ments such as adding additional phases (e.g., aqueous phase) and predicting organic mat-
ters properties (e.g., solubility for deposition of organic vapors and particles), the first
chosen outcome is the total organic mass mt [µgm−3]:

mt = mg +ma (1)

mg and ma are respectively the total gas- and particle-phase organic mass. The goal is165

to have only one outcome mt in mass concentration units (µgm−3) and predict the con-166

tributing phases to the total mass as fractions of this mt. We arbitrarily chose to pre-167

dict gaseous mass fraction γ (mg = γ × mt). ma can then be derived as ma = (1 −168

γ)×mt.169

Following the method of Keller and Evans (2019), we also established a variance170

criterion to decide whether the random forest should predict the value of the predictor171

or its trend. For stability and better performances, stable and unstable outcomes are iden-172

tified. This classification is based on the standard deviation of the ratio between post-173

and pre- numerical time-step solve value. This ratio was calculated for each outcome and174

each time-step on the whole training dataset. The standard deviation of these ratios was175

calculated and if the value of this standard deviation is below a threshold of 0.07, the176

outcome is classified as stable and its trend is predicted. Otherwise, the outcome is un-177

stable and its direct value is predicted. For the two outcomes used in this work, we found178

that the value of the total mass outcome mt is unstable and needs to be directly pre-179

dicted, while the gas phase fraction γ is stable and its trend is predicted.180

2.2.2 Predictors181

We selected the predictors based on parameters relevant to SOA formation (see Tab.182

2). The concentration of the precursor as well as the main daytime oxidants (OH, O3)183

and the aerosol seed concentrations have been chosen for their key role in SOA forma-184

tion. The pressure and temperature modulate the kinetics that control gas-phase oxi-185

dation. Temperature is also very important for the condensation of vapors. The solar186

zenith angle and the photolysis rate of NO2 represent the influence of the diurnal cycle187

on gas kinetics.188

At each time-step of the GECKO-A simulations, predictors are computed before189

chemistry is integrated, and outcomes are computed after the solver has finished. 4000190

simulations (≈ 1 × 106 time-steps) where produced for each precursor, resulting in a191

total of 8000 simulations (≈ 2× 106 time-steps).192
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Table 2. List of predictors and outcomes used for training the random forests.

s

Predictors [units] Outcomes [units] (prediction method)

Temperature [K] Total organic mass [µgm−3] (direct)
Water vapor concentration [molec/cm3] Organic gaseous fraction [dimensionless] (trend)

Pressure [atm]
Solar zenith angle [deg]

JNO2 [s−1]
NO [molec/cm3]
NO2 [molec/cm3]
O3 [molec/cm3]
OH [molec/cm3]

H2O2 [molec/cm3]
CH2O [molec/cm3]

Aerosol seed mass [µgm−3]
Total organic mass [µgm−3]

Organic gaseous fraction [dimensionless]
Organic aerosol fraction [dimensionless]

Precursor [molec/cm3]

The collection of all predictor and outcome values at every time-step therefore con-193

stitutes a dataset representative of what the integration of an explicit chemical scheme194

would produce for a given predictor over one time-step. The random forest has to be re-195

current to autonomously predict chemistry over multiple time-steps as both outcomes196

(i.e., total organic mass and its gas phase fraction) are also predictors.197

2.3 Random Forest Regression198

We use Python libraries scikit-learn (Pedregosa et al., 2011) to fit the random forests,199

and dask (Dask Development Team, 2016) to handle parallelization of the code on the200

NCAR CISL supercomputers (Computational and Information Systems Laboratory, 2017).201

Keller and Evans (2019) trained individual random forests for each of their out-202

comes, and integrated the random forest model within GEOS-Chem at each model time-203

step. We chose to train only one random forest that predicts all outcomes simultaneously,204

i.e., each tree predicts a vector of values instead of predicting single values. This approach205

has the advantage of reducing model bias by implicitly accounting for correlations be-206

tween outcomes. As the dataset contains values spanning many orders of magnitude, it207

was successively log-transformed, power-transformed and normalized to map the data208

as close as possible to a Gaussian distribution. The training dataset was shuffled prior209

to the regression procedure to avoid bias related to the random forest learning a specific210

diurnal cycle.211

Hyperparameters for the random forest were tuned automatically during the ran-212

dom forest training with the scikit-learn library. The number of decision trees is the most213

important hyperparameter because it impacts both the numerical cost of running the214

random forest as well as the quality of the random forest. Random forest’s training con-215

figurations were tested with 10, 50, 75 and 100 decision trees. The random forest hyper-216

parameters optimization consistently selected 50 trees, which is the same number of de-217

cision trees that were selected in Keller and Evans (2019).218
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Figure 1. Time evolution of precursor oxidation, organic gas and organic aerosol formation

from toluene and dodecane oxidation for representative training simulations.

3 Results219

3.1 Training Dataset Characterization220

Fig. 1 depicts the typical time evolution of a few randomly selected simulations from221

the validation dataset. As expected, the precursor is progressively oxidized during the222

ten days of the simulation. The kinetics of this decay depends on the concentration of223

the precursors’ oxidants: OH (daytime) and NO3 (nighttime) for dodecane, OH, O3 (day-224

time) and NO3 (nighttime) for toluene. Given that concentrations of these oxidants on225

randomly selected initial and environmental conditions in each simulation, the decay ki-226

netics vary for each simulation. The oxidation of the precursor leads to the progressive227

formation of gaseous organic compounds. Depending on the availability of oxidants, the228

formation of these secondary organic compounds can peak early in the simulation as in229

simulations 8007 and 8027 in Fig. 1. On the other hand, the evolution displays a char-230

acteristic stepwise diurnal profile, with the organic mass increasing during daytime when231

photochemistry can take place. After the peak of the quicker oxidation simulations, the232

total organic mass decreases because the oxidation products are ultimately lost to the233

terminal CO2 formation step. As their oxidation progresses, the secondary gaseous com-234

pounds become more oxidized and are able to condense onto the pre-existing aerosol seed,235

forming secondary organic aerosol (SOA). SOA formation therefore highly depends on236

the availability of oxidants. For instance, simulation 1069 displays a typical case of a slow237

precursor decay causing the slow formation of secondary organic compounds with almost238

no SOA production.239

As shown in Fig. 1 on a few sample simulations, this work is aimed at reproduc-240

ing a large variety of situations, with the SOA formation behavior that non-linearly de-241

pends on multiple parameters. Figure 2 depicts the distribution of SOA mass yield as242

a function of key parameters describing the chemical regimes controlling SOA formation.243

The precursor controls the total amount of organic carbon that is available to form244

SOA. Both dodecane and toluene SOA yields are not constant as a function of the pre-245

cursor concentration. This is a typical illustration of the non-linearity of SOA formation246

and atmospheric chemistry in general. As precursor mixing ratios increase, the precur-247

sor becomes a significant competitor for oxidants, slowing the formation of later gener-248
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Figure 2. Dependence of average organic aerosol mass and aerosol mass yield as a function of

the chemical environment.

ations organic compounds that are more likely to efficiently contribute to SOA. This hy-249

pothesis is confirmed by the fact that the dodecane SOA yield decay starts for lower pre-250

cursor mixing ratios, which is explained by the faster reaction rate of dodecane with the251

main oxidant OH compared to toluene (kdodecane + OH,298 = 1.32×10−11 cm3/molec/s252

vs. ktoluene + OH,298 = 5.6× 10−12 cm3/molec/s, Mellouki et al., 2021).253

As the seed concentrations were selected over a wide range (see Tab. 1), the lim-254

iting effect of low pre-existing seeds can only be seen in the lowest chosen concentrations,255

below 40 µgm−3. In the rest of the range of seed concentrations, SOA yield has iden-256

tical distribution probability. In our simulations, as the nature of this seed is not accounted257

for, the fact that seed is present is enough to trigger SOA condensation and it is rarely258

limiting.259

The NOx mixing ratios control the formation of ozone and OH through the pho-260

tolysis of NO2 and the reaction of ozone with NO. However the relationship of NOx with261

oxidants levels is not trivial and also depends on the concentrations of organic compounds.262

Here, the simulated higher SOA yields at lower NOx levels could be explained by the role263

of NOx on the oxidation of organic compounds. After the initial oxidation step form-264

ing a peroxy radical (RH + OH
+O2→ RO2 + H2O), the peroxy radical can react with NO265

to form an alkoxy radical that can fragment, leading to more volatile compounds that266

are less likely to form SOA. If NO concentration is low enough, peroxy radicals are more267

likely to react with HO2 and other peroxy radicals to form more oxidized species that268

are more likely to form SOA. This can explain the higher SOA yields at lower NOx shown269

on Fig. 2. This effect is better seen after defining the RO2 regime R as:270

R =
kRO2 + NO ×NO

kRO2 + NO ×NO+ kRO2 + HO2 ×HO2
(2)

where kRO2 + NO = 7.7×10−12 cm3 molec−1 s−1, kRO2 + HO2
= 5.1×10−12 cm3 molec−1 s−1.271

This ratio indicates which pathway is favored for RO2 radicals: when R = 1, they only272

react with NO and when R = 0 they never react with NO. For dodecane, Fig. 2 shows273

that from R = 0.4 to R = 1, the median value of the SOA yield decreases from 60%274

to less than 1%. Below R = 0.4, the SOA yield decreases down to less than 1% at R =275

0.15. This low yield for low R values can be explained by low levels of oxidants limit-276

ing SOA production in very low NOx situations. For toluene, this peak in SOA yield hap-277

pens around R = 0.5 with a median value of 19 %. It is less marked than for dodecane278

because the impact of the RO2 + NO reaction pathway on fragmentation is lower on cyclic279

and shorter molecules like toluene and its oxidation products (Aumont et al., 2013).280
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Figure 3. Boxplot distribution of Pearson correlation coefficients for testing individual time-

step predictions (black) and full simulation runs (yellow) for toluene and dodecane simulations.

The middle lines of the boxplots are the median, the top and bottom of the boxes denote the 1st

and 3rd quartiles and the whiskers extend to the 5th and 95th percentiles of the distribution.

For both precursors, the SOA yield increases with ozone mixing ratios. Higher ozone281

mixing ratios are associated with higher OH concentrations, which can explain higher282

SOA yields.283

3.2 Training Dataset Size284

Two kinds of tests are presented for each validation simulation. First, the random285

forest was tested on each time-step individually by the reference predictors as inputs and286

comparing the random forest output with the reference outcomes. The resulting Pear-287

son correlation coefficients (r) distributions are shown on Fig. 3 (black boxplots), as a288

function of the number of points used for training the random forest. With the excep-289

tion of a few outliers, the random forest is very accurate to predict outcomes on a sin-290

gle time-step, even with only 50 000 training points. The Pearson correlation coefficient291

displays median values around r = 0.99 for both toluene and dodecane.292
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Figure 4. Time-series of three toluene and three dodecane sample experiments, comparing the

reference (dashed lines) and the random forest recurrent simulations (continuous lines) for the

predicted organic gas (black) and aerosol (orange) mass.

However, for practical application the random forest needs to be run recurrently.293

This means that for the second test in Fig. 3 (orange boxplots), as well as the rest of294

this paper, the random forest is constrained with the initial conditions and the environ-295

mental conditions from the reference simulation. At the end of each time-step, the pre-296

dicted outcomes are used in the input predictors for the next time-step. In these vali-297

dation tests, the recurrent random forest model accumulates errors with time. This is298

reflected in the median r values decreasing compared to individual time-steps tests to299

approximately r = 0.98 for toluene and r = 0.96 for dodecane. The r values are also300

more spread with the interquartile range for 100 000 points increasing from 0.002 to 0.05301

for toluene and from 0.003 to 0.09 for dodecane. Increasing the number of points used302

to train the random forest slightly improve the r scores. For toluene, using 500 000 or303

1 000 000 points provides similar performances while for dodecane, using 1 000 000 points304

still increases r and reduces the interquartile range. We could not test higher numbers305

of training points due to the limited size of the created dataset, but it seems that above306

500 000 training points, the gains are marginal at best for the considered precursors.307

3.3 Sample Simulations Tests308

To illustrate the behavior of the recurrent random forest model, Fig. 4 displays the309

recurrent random forest results on the same sample simulations that were shown on Fig.310

1. The associated relative errors on predicted aerosol mass are shown on Fig. 5. The ran-311

dom forest is able to reproduce the timeseries of gas and aerosol mass in all but one of312

the examples (simulation 1053). For these simulations, the random forest can reproduce313

the typical stepwise daytime growth of organic mass of the slower oxidation simulations314

(simulation 1069, 1091 and 8011), as well as reproducing the peaking growth of organic315

mass for faster oxidation simulations (8007 and 8027). For all simulations (except 1053),316

the relative error tends to be the highest for the first five days of the simulations, con-317

verging towards errors lower than 10% for the last five days. Finally, for the worst ran-318

dom forest simulation in this sample (1053), the model exhibits errors around ±100%319

after 2 days and cannot recover from the accumulated errors. The relative error remains320

between 50% and 100% but not producing any unrealistic mass concentrations.321
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Figure 5. Time-series of the relative error on predicted aerosol mass for three toluene and

three dodecane sample experiments shown on Fig. 4.
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3.4 Errors Distribution322

In order to identify the type of situations where the random forest is not able to323

reproduce the explicit model behaviour, we examine the distribution of the normalized324

root mean square error (NRMSE) defined below:325

NRMSE =

√∑N
i=1 (yi−ŷi)2

N

Q3 −Q1
(3)

yi and ŷi are the ith reference and predicted aerosol mass respectively, N is the num-326

ber of time-steps and Q3−Q1 is the difference between the first and the third quartiles.327

The validations random forest simulations were split in four categories, depending on their328

NRMSE. The distributions of environmental conditions according to this split are dis-329

played on Fig. 6.330

First the existing seed concentration distribution does not vary with the quality331

of the random forest simulations. As was shown above on Fig. 2, the aerosol mass yields332

dependence on seed concentration is low, which explains why the random forest perfor-333
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Figure 7. Boxplots of the Pearson correlation coefficients distribution for the toluene and

dodecane validation simulations for the original random forests (black) and the three specialized

random forests: low NOx (orange), mid NOx (blue) and high NOx (green).

mances are not sensitive to this variable. As long as some seed aerosol is available, the334

system is not sensitive to its mass concentrations.335

For toluene, the lower quality random forest simulations (third and fourth NRMSE336

quartiles) are typically described with lower NOx regimes: on average R ≈ 0.82 for the337

first two NRMSE quartiles, compared to R = 0.7 and R = 0.65 for the last two NRMSE338

quartiles. The third and fourth NRMSE quartiles simulations also exhibit higher OH mix-339

ing ratios: OH3rdquartile
median = 0.04 ppt and OH4thquartile

median = 0.07 ppt compared to OH1stquartile
median =340

0.01 ppt for the first quartile. The aerosol mass yields (≈ 12 − 13 %) are similar for341

all quartiles. The non-linear dependence of the SOA yield on the RO2 regime (Fig. 2)342

seems to be the determining factor for toluene simulations. Under-representing lower RO2343

regimes in the training dataset therefore has a strong impact on the random forest per-344

formances. In our case, this under-representation is the likely the consequence of the sim-345

ple random selection of the training simulations environmental conditions.346

Dodecane lower quality simulations are heavily skewed towards simulations with347

high NOx regimes (R4thquartile
median = 1 vs R1stquartile

median = 0.87) and lower OH mixing ratio348

(OH4thquartile
median = 8.8 × 10−5 ppt vs OH1stquartile

median = 3.7 × 10−3 ppt) and lower aerosol349

mass yields (Y4thquartile
median = 0.68 % vs Y1stquartile

median = 8.1 %). This behaviour difference350

between toluene and dodecane may be explained by the number of dodecane training351

simulations available for higher NOx regimes, which include many outliers (1236 outliers352

out of 2568 point for the highest RO2 regime bin on Fig. 2) in terms of aerosol yield. The353

random forest is therefore not able to reproduce the complex behaviour of dodecane SOA354

formation in this specific regime. In this case, the complexity of the dodecane oxidation355

for very high NOx situations cannot be properly reproduced by the random forest with356

the given training dataset.357
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Figure 8. Predictors relative importance for the toluene (black) and dodecane (orange) ran-

dom forests. The rank of each predictor is indicated at the top of the bars.

A possible way to improve the ability of the system to reproduce the complex re-358

lationship between R and SOA formation is to create independent random forests spe-359

cialized for specific RO2 regimes. To test this hypothesis, the training dataset was split360

in three separate sets according to the initial RO2 regimes: a low NOx set (R < 0.3,361

100 280 training points for toluene, 72 200 points for dodecane), a mid NOx set (0.3 <362

R < 0.7, 594 780 points for toluene,268 640 points for dodecane) and a high NOx set363

(R > 0.7, 363 170 points for toluene, 650 900 points for dodecane). Three specialized364

random forests were therefore trained on these three datasets for each precursor.365

Figure 7 displays the distribution of Pearson correlation coefficients for the toluene366

and dodecane validation simulations for each specialized random forest compared to the367

original random forest trained with 1 000 000 points. For toluene simulations, all the spe-368

cialized random forests display similar performances to the original random forest: for369

low NOx , rmedian = 0.98, for mid NOx , rmedian = 0.99 and for high NOx ,rmedian =370

1.0. Similarly for dodecane simulations, all specialized random forests exhibit performances371

similar to the original one, with median r values ranging frm 0.98 to 0.99.372

It is likely that the potential improvement caused by specializating the random forests373

over different RO2 regimes is negatively compensated by performance reduction caused374

by a lower number number of training points. Furthermore, in the dodecane case, spe-375

cializing a random forest for high NOx does not have a significant impact on the num-376

ber of validation outliers in this regime.377
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3.5 Predictors Importance378

After training the random forest, it is possible to estimate the relative importance379

of the chosen predictors by counting their occurrences as threshold criteria in individ-380

ual nodes (Fig. 8). For both toluene and dodecane, the most important predictor for or-381

ganic mass is the total organic mass in the previous time-step. This finding is consistent382

with the fact that total organic mass is one of the predicted outcomes by the random383

forests. CH2O and H2O2 are the second and third (resp. third and second) most impor-384

tant predictors for dodecane (resp. toluene). Since higher H2O2 concentrations are in-385

dicative of low NOx situations, H2O2 can be considered as a proxy for the RO2 regime.386

CH2O is the only predictor related to secondary organic gaseous species and could be387

interpreted as a proxy for organic gases formation.388

The water vapor concentration and organic gaseous fraction (mg) are the fourth389

most important predictors for dodecane and toluene respectively. Since the random forests390

are predicting the trend of mg, it is logical that its previous step value is a significant391

predictor. The importance of water vapor is likely related to its role in OH production.392

O3 is the fifth most important predictor for both precursors. The information brought393

by the ozone predictor is related to general oxidants levels, the diurnal cycle as well as394

the RO2 regime. NO2 is the sixth most important predictor for dodecane while it is the395

precursor’s concentration for toluene. These two predictors provide information about396

the diurnal cycle, the oxidants levels as well as the potential for secondary organic mat-397

ter production. The seventh is the organic gaseous mass fraction for dodecane and NO2398

for toluene. The precursor’s concentration and temperature are the eighth most impor-399

tant predictors for dodecane and toluene respectively. For both precursors, the organic400

aerosol fraction (ma) is the ninth most important predictor. Because the gaseous mass401

fraction is a more important predictor for both precursors, ma only provides complemen-402

tary information. The remaining predictors only have negligible contributions to the ran-403

dom forests. Since we’ve shown that SOA formation is not sensitive to pre-existing par-404

ticle seed (see Fig. 2) it is logical that this predictor is not important. Predictors directly405

related to the diurnal cycle (JNO2 and solar zenith angle) are unimportant here, mean-406

ing that there is enough information provided by the time evolution of ozone and pre-407

cursor concentrations to control for daytime vs. nighttime organic matter production.408

Similarly, the precursor decay as well as ozone concentrations give enough information409

related to oxidant concentrations and RO2 regime, explaining the weak importance of410

OH and NO predictors.411

Since the contributions of the various predictors are dominated by only a few of412

them, we trained new random forests only using the 8 most important predictors for each413

precursor: mt, CH2O, H2O2, H2O, O3, NO2 , mg and the precursor concentration for414

dodecane and mt, H2O2, CH2O, mg, O3, the precursor concentration, NO2 and temper-415

ature for toluene. Figure 9 compares the Pearson correlation coefficients (r) and NRMSE416

scores calculated for each validation simulation (359 for each precursor) of the random417

forest trained with the 16 original predictors with the random forest trained with the418

eight most important identified predictors (see Fig. 8).419

Reducing the number of predictors for dodecane improves r for 239 (67%) valida-420

tion simulations, with an average r increase of 272%. The NRMSE decreased for 212421

(59%) dodecane validation simulations, with an average NRMSE reduction of 59%. For422

160 (45%) of the dodecane validation simulations, both r and NRMSE are improved.423

Reducing the number of predictors leads to an improvement of r for 212 (62%) toluene424

validation simulations, with an average r increase of 2%. The NRMSE decreased for 190425

(53%) toluene validation simulations, with an average NRMSE reduction of 40%. For426

148 (41%) of the toluene validation simulations, both r and NRMSE are improved.427
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Figure 9. Scatterplot of the validation simulations’ Pearson correlation coefficients (r) as

a function of their NRMSE for toluene (top row) and dodecane (bottom row), for the random

forests trained with the 16 originally selected predictors (ALL, left column) and the random

forests trained with only the eight most important predictors (HALF, left column). The colors

depict whether r, NRMSE or both scores are improved when reducing the number of predictors.

As shown in Fig. 9, reducing the number of predictors is beneficial for the worst428

performing simulations, especially for dodecane. For both toluene and dodecane, the ma-429

jority of validation simulations are improved when halving the number of predictors. How-430

ever, 7 out of the 8 selected predictors are shared by both random forests. The relative431

importance and ranks of the predictors differ between both random forests. There is there-432

fore no guarantee that different precursors have the same optimal number of predictors433

and that they share the same predictors.434

4 Conclusions435

In this work we trained two recurrent random forests to predict organic mass pro-436

duction in both gas and aerosol phases resulting from toluene and dodecane oxidation.437

The random forests were trained on a dataset created with the GECKO-A explicit or-438

ganic chemistry box model. The dataset contains a series of single box-model simula-439

tions covering a wide range of environmental conditions to ensure that the resulting ran-440

dom forests are able to reproduce the complex relations between organic aerosol produc-441

tion and the chemical environment. The resulting random forests show very good per-442

formances in predicting organic mass evolution in varied conditions when tested on a sim-443

ilar random set of box-model simulations. The distribution of errors in testing simula-444

tions highlights however the importance of carefully preparing the training dataset. Our445

results suggest that random sampling over a range of possible environmental conditions446

is insufficient to build a robust training dataset, and that is is more important to prop-447

erly sample a range of more complex chemical parameters such as the RO2 regimes (R).448
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We have shown that the range of R that needs focus depends on the precursors. For in-449

stance, the dodecane random forest has weaker performance for high R whereas the toluene450

random forest has lower performance for medium R values. However, creating multiple451

random forests each trained over a smaller range of R does not lead to more robust re-452

sults than a single random forest. It seems more efficient to add additional training data453

points for the poorly performing RO2 regimes.454

The selection of predictors is also a crucial step. We have shown that it is possi-455

ble to increase the random forest performance by reducing the number of predictors to456

the most important ones. However, there is no reason to think that these predictors have457

to be the same for different precursors, highlighting the care that must be taken in their458

selection. In this work, we selected the most important predictors by first training a ran-459

dom forests with a wide selection of predictors, and then training a new random forest460

with only the most important predictors identified in the first random forest.461

In this work, we have therefore shown the feasibility of building random forests that462

behave like a detailed chemical mechanism for predicting secondary organic mass and463

its partitioning between gas and particle phases. There are still some limitations to over-464

come before the implementation of the random forest SOA emulator within a chemistry-465

climate model. First, even if the random forests are performing well, there are still some466

critical outliers at the validation stage (e.g., high NOx dodecane). More work needs to467

be focused at removing these outliers because falling in one of these bad cases in a 3D468

model run would likely make the full simulation diverge. Second, the random forests were469

each trained to reproduce the oxidation of a single precursor. Additional studies are re-470

quired to quantify whether it is important to represent the interactions of multiple pri-471

mary hydrocarbons, their competition for oxidants, and the impact on the resulting SOA472

formation.473
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