References
Alley, R. B., Horgan, H. J., Joughin, I., Cuffey, K. M., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., & Bassis, J. (2008). A Simple Law for Ice-Shelf Calving. Science , 322 (5906), 1344–1344. https://doi.org/10.1126/science.1162543
Ashmore, D. W., Hubbard, B., Luckman, A., Kulessa, B., Bevan, S., Booth, A., Munneke, P. K., O’Leary, M., Sevestre, H., & Holland, P. R. (2017). Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing. Journal of Geophysical Research: Earth Surface , 122 (5), 1139–1153. https://doi.org/10.1002/2016JF004047
Bassis, J. N., Berg, B., Crawford, A. J., & Benn, D. I. (2021). Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science , 372 (6548), 1342–1344. https://doi.org/10.1126/science.abf6271
Bassis, J. N., & Ultee, L. (2019). A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers.Journal of Geophysical Research: Earth Surface , 124 (8), 2036–2055. https://doi.org/10.1029/2019JF005160
Bassis, J. N., & Walker, C. C. (2012). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , 468 (2140), 913–931. https://doi.org/10.1098/rspa.2011.0422
Bell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J. (2018). Antarctic surface hydrology and impacts on ice-sheet mass balance.Nature Climate Change , 8 (12), 1044–1052. https://doi.org/10.1038/s41558-018-0326-3
Benn, D. I., Warren, C. R., & Mottram, R. H. (2007). Calving processes and the dynamics of calving glaciers. Earth-Science Reviews ,82 (3–4), 143–179. https://doi.org/10.1016/j.earscirev.2007.02.002
Blair, J. B., Hofton, M. A., & Rabine, D. L. (2018). Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products . http://lvis.gsfc.nasa.gov
Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M. P., & Seroussi, H. (2012). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law. Geophysical Research Letters , 39 (18). https://doi.org/10.1029/2012GL053317
Bulthuis, K., Arnst, M., Sun, S., & Pattyn, F. (2019). Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. The Cryosphere , 13 (4), 1349–1380. https://doi.org/10.5194/tc-13-1349-2019
Christie, F. D. W., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., & Dowdeswell, J. A. (2022). Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation. Nature Geoscience ,15 (5), 356–362. https://doi.org/10.1038/s41561-022-00938-x
Clerc, F., Minchew, B. M., & Behn, M. D. (2019). Marine Ice Cliff Instability Mitigated by Slow Removal of Ice Shelves. Geophysical Research Letters , 46 (21), 12108–12116. https://doi.org/10.1029/2019GL084183
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., & Zwinger, T. (2021). Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization.Nature Communications , 12 (1), 2701. https://doi.org/10.1038/s41467-021-23070-7
DeConto, R. M., & Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature , 531 (7596), 591–597. https://doi.org/10.1038/nature17145
Druez, J., McComber, P., & Tremblay, C. (1989). Experimental results on the tensile strength of atmospheric ice. Transactions of the Canadian Society for Mechanical Engineering , 13 (3), 59–64. https://doi.org/10.1139/tcsme-1989-0010
Dupont, T. K., & Alley, R. B. (2005). Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters , 32 (4). https://doi.org/10.1029/2004GL022024
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., & Wernecke, A. (2019). Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature , 566 (7742), 58–64. https://doi.org/10.1038/s41586-019-0901-4
Fang Wang, Bamber, J. L., & Xiao Cheng. (2015). Accuracy and Performance of CryoSat-2 SARIn Mode Data Over Antarctica. IEEE Geoscience and Remote Sensing Letters , 12 (7), 1516–1520. https://doi.org/10.1109/LGRS.2015.2411434
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., & Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change. In V. Masson-Delmott, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1211–1362). Cambridge University Press. 10.1017/9781009157896.011
Gardner, A. S., Fahnestock, M. A., & Scambos, T. A. (2019).MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1 . https://doi.org/10.5067/IMR9D3PEI28U
Glasser, N. F., & Scambos, T. A. (2008). A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. Journal of Glaciology , 54 (184), 3–16. https://doi.org/10.3189/002214308784409017
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D., & Edwards, T. L. (2019). Global environmental consequences of twenty-first-century ice-sheet melt. Nature ,566 (7742), 65–72. https://doi.org/10.1038/s41586-019-0889-9
Holland, P. R., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern, R. J., Jenkins, A., & Tedesco, M. (2011). The air content of Larsen Ice Shelf. Geophysical Research Letters , 38 (10), n/a-n/a. https://doi.org/10.1029/2011GL047245
Howat, I. M., Joughin, I., Tulaczyk, S., & Gogineni, S. (2005). Rapid retreat and acceleration of Helheim Glacier, east Greenland.Geophysical Research Letters , 32 (22). https://doi.org/10.1029/2005GL024737
Joughin, I., Smith, B. E., Shean, D. E., & Floricioiu, D. (2014). Brief Communication: Further summer speedup of Jakobshavn Isbræ. The Cryosphere , 8 (1), 209–214. https://doi.org/10.5194/tc-8-209-2014
Kingslake, J., Ely, J. C., Das, I., & Bell, R. E. (2017). Widespread movement of meltwater onto and across Antarctic ice shelves.Nature , 544 (7650), 349–352. https://doi.org/10.1038/nature22049
Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li, H., Spergel, J. J., & van Wessem, J. M. (2020). Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature ,584 (7822), 574–578. https://doi.org/10.1038/s41586-020-2627-8
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., Berthier, E., & Nagler, T. (2020). Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proceedings of the National Academy of Sciences , 117 (40), 24735–24741. https://doi.org/10.1073/pnas.1912890117
Medley, B., Neumann, T. A., Zwally, H. J., & Smith, B. E. (2020). Forty-year Simulations of Firn Processes over the Greenland and Antarctic Ice Sheets. The Cryosphere Discussions , 1–35. https://doi.org/10.5194/tc-2020-266
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J. L., Prats-Iraola, P., & Dini, L. (2022). Rapid glacier retreat rates observed in West Antarctica. Nature Geoscience ,15 (1), 48–53. https://doi.org/10.1038/s41561-021-00877-z
Mobasher, M. E., Duddu, R., Bassis, J. N., & Waisman, H. (2016). Modeling hydraulic fracture of glaciers using continuum damage mechanics. Journal of Glaciology , 62 (234), 794–804. https://doi.org/10.1017/jog.2016.68
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., … Young, D. A. (2020). Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience ,13 (2), 132–137. https://doi.org/10.1038/s41561-019-0510-8
Mouginot, J., Scheuchl, B., & Rignot, E. (2017). MEaSUREs Annual Antarctic Ice Velocity Maps, Version 1 . NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/9T4EPQXTJYW9
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Rica, C., DeConto, R. M., Ghosh, T., Hay, J., Islands, C., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., Biesbroek, R., Buchanan, M. K., … Pereira, J. (2019). Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities .
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vaňková, I., Dixon, T. H., Walker, R. T., & Holland, D. M. (2019). Ice-cliff failure via retrogressive slumping. Geology , 47 (5), 449–452. https://doi.org/10.1130/G45880.1
Petrovic, J. J. (2003). Mechanical properties of ice and snow.Journal of Materials Science , 38 , 1–6.
Rack, W., & Rott, H. (2004). Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Annals of Glaciology , 39 , 505–510. https://doi.org/10.3189/172756404781814005
Rebesco, M., Domack, E., Zgur, F., Lavoie, C., Leventer, A., Brachfeld, S., Willmott, V., Halverson, G., Truffer, M., Scambos, T., Smith, J., & Pettit, E. (2014). Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica. Science ,345 (6202), 1354–1358. https://doi.org/10.1126/science.1256697
Robel, A. A. (2017). Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications ,8 (1), 14596. https://doi.org/10.1038/ncomms14596
Scambos, T. A., Berthier, E., & Shuman, C. A. (2011). The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Annals of Glaciology , 52 (59), 74–82. https://doi.org/10.3189/172756411799096204
Scambos, T. A., Bohlander, J. A., Shuman, C. A., & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters ,31 (18). https://doi.org/10.1029/2004GL020670
Schlemm, T., & Levermann, A. (2021). A simple parametrization of mélange buttressing for calving glaciers. The Cryosphere ,15 (2), 531–545. https://doi.org/10.5194/tc-15-531-2021
Studinger, M. (2014). IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2 . NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/CPRXXK3F39RV
Thomas, R., & Studinger, M. (2010). Pre-IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 1 . NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/6C6WA3R918HJ
Ultee, L., & Bassis, J. (2016). The future is Nye: An extension of the perfect plastic approximation to tidewater glaciers. Journal of Glaciology , 62 (236), 1143–1152. https://doi.org/10.1017/jog.2016.108
Weertman, J. (1974). Stability of the Junction of an Ice Sheet and an ice Shelf. Journal of Glaciology , 13 (67).
Wise, M. G., Dowdeswell, J. A., Jakobsson, M., & Larter, R. D. (2016). Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. Nature , 550 , 506–510. https://doi.org/10.1038/nature24458
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., & Kern, M. (2015). Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere , 9 (3), 957–969. https://doi.org/10.5194/tc-9-957-2015
Xian, X., Chu, M. L., Scavuzzo, R. J., & Srivatsan, T. S. (1989). An experimental evaluation of the tensile strength of impact ice.Journal of Materials Science Letters , 8 (10), 1205–1208. https://doi.org/10.1007/BF01730071