MOTIVATIONS

e Surface waves propagating in sedimentary basins strongly affect earthquake ground motions and cause strong damage (Kawase, 1996)
e Bowden & Tsai (2017) proposed a 1-D semi-analytical method to predict surface-wave basin amplification between two sites

e 1-D approximation of the near-surface geologic structure does not account for path etfects (reflections, conversions)

=
\also extend the current 1-D theory to more complex multi-dimensional basin structures.
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1 - SEMI-ANALYTIC MODELS
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e Approximation of reflection/transmission coef.

where A, wave amplitude at the surface, by of Its and Yanovskaya (1985)
un (0) surface-wave elgerium“on mp. at the S‘;rface' e Numerical code for transmission coef. by Datta (2018) named
U group velocity, Io = [y p(2)(u1(2)” + u2(2)")dz Surface Wave Reflec. Trans. ( )

e Neglect path effects (reflections and

mode conversions)

: computed using Computer Program in Seismology (Herrmann, R. B., 2013).
: high-order numerical axisymmetric solutions from SPECFEM package (Komatitsch & Vilotte 1998).

e Neglect body-wave diffraction at the basin edge
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2 - SIMULATION SETUP
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e Relationships between v,,v; and p are extracted from (Brocher, 2005)
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4 -1D FUND.-MODE AMPLIFICATION 5 - LATERAL RESONANCE

— 1D trans Amplification in the center of a homogeneous basin
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against velocity contrasts for
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e Discrepancies between pure 1D theory and trans. coef. come

. ) . e (lose to the basin edges and /or as the surface-wave wavelength
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to predict the surface-wave amplification

6 - LOS ANGELES BASIN AMPLIFICATION

o extracted from SCEC Community Velocity Model (CVM-54.26, Lee (2014)) w/ sharp velocity jump
e Basin edge location is chosen at the largest horizontal shear-velocity jump (d ~ 66 km)

e Transmission coefficients are computed from the 1D profiles beneath the stations

Signal at x = 4 km
from basin boundary
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Geometry of the simulation - Los Angeles basin 1D w/ trans. fund. + 1% mode
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CONCLUSIONS AND FUTURE WORK

e 1D Theory o
= (over-predict. < 30% of max. amp.) o amplification
?;Sb rock 9.5 and Rayleigh-to-Love conversions

o and subsequent path effects

e Approximate trans./reflec. coefficients:
= can very well reproduce amplitude and variations of the amp. in axisym. basins

=
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w/ sharp vertical boundaries




