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Key Points: 22 

• An overall greening trend was found in the AEB expecially in Northwest China, Qinghai 23 
Tibet Plateau, and Western Asia during 2001-2021. 24 

• Precipitation had the dominant control effect in arid zones, vegetation change in hyper-25 
arid zones was most closely associated with TWSA. 26 

• A significant expansion of irrigated cropland (agricultural development) in hyper-arid 27 
zones was positively correlated with greening.  28 
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Abstract 29 

A large portion of Central-Western Asia is made up of contiguous closed basins, collectively 30 
termed as the Asian Endorheic Basins (AEB). As these retention basins are only being 31 
replenished by the intermittent precipitation, increasing droughts in the region and a growing 32 
demand for water have been presumed to jointly contributed to the land degradation. To 33 
understand the impact of climate change and human activities on dryland vegetation over the 34 
AEB, we conducted trend and partial correlation analysis of vegetation and hydroclimatic change 35 
from 2001 to 2021 using multi-satellite observations, including vegetation greenness, total water 36 
storage anomalies (TWSA) and meteorological data. Here we show that much of the AEB 37 
(65.53%) exhibited a greening trend over the past two decades. Partial correlation analyses 38 
indicated that climatic factors had varying effects on vegetation productivity as a function of 39 
vegetation types and aridity. In arid AEB, precipitation dominated the vegetation productivity 40 
trend. Such a rainfall dominance gave way to TWSA dominance in the hyper-arid AEB. We 41 
further showed that the decoupling of rainfall and hyper-arid vegetation greening was largely due 42 
to a significant expansion (17.3%) in irrigated cropland across the hyper-arid AEB. Given the 43 
extremely harsh environment in the hyper-arid AEB, our results therefore raised the concerns on 44 
the ecological and societal sustainability in this region, where a mild increase in precipitation 45 
might not be able to catch up the rising evaporative demand and water consumption resulted 46 
from global warming and irrigation intensification. 47 

Plain Language Summary 48 

Asian Endorheic Basins (AEB), including Central Asia, Caspian Sea, Mongolia Plateau, 49 
Northwest China, Qinghai Tibet Plateau, and Western Asia, are typical drylands that have fragile 50 
ecosystems. Increased water demand from agricultural expansion have been presumed to jointly 51 
contributed to the land degradation over the AEB. Here we analyzed the vegetation greening 52 
pattern and the relationship with hydroclimatic driving factors and land use change. Results 53 
showed that much of the AEB exhibited a greening trend over the past two decades. We also 54 
found that the hyper-arid vegetation greening was largely due to the irrigation intensification, 55 
leading to the overexploitation of groundwater signified by an alarming rate of persistent decline 56 
in groundwater. This paper offers valuable insight into the ecological responses to climate and 57 
human activities in the AEB and can hence guide large-scale sustainable development plans to 58 
address the challenges of future climate change in an extremely vulnerable environment. 59 

 60 

1 Introduction 61 

Drylands cover approximately 41% of the Earth’s land surface and are commonly 62 
characterized by scarce water resources (Smith et al., 2019). Dryland vegetation forms a vital 63 
component that provides essential services to the terrestrial ecosystem, and supports biodiversity, 64 
livelihoods, and food production (Riis et al., 2020; Ukkola et al., 2021). The Asian Endorheic 65 
Basins (AEB) scattered across Central Asia, Caspian Sea, Mongolia Plateau, Northwest China, 66 
Qinghai Tibet Plateau, and Western Asia, are emblematic arid and semi-arid dryland ecosystems. 67 
These basins retain water, but are replenished intermittently, thus making the ecosystems 68 
vulnerable to extreme climate events (Jiao et al., 2021; Li et al., 2015; Pan et al., 2019). In 69 
addition, the population of the AEB has exploded over the last ten years, and these regions are 70 
thought to house nearly 278 million people (3.6% of the global population) (CIESIN, 2018). 71 



manuscript submitted to replace this text with name of AGU journal 

 

Climate change coupled with the increasing demand for water and other resources by people 72 
threatens the ecological and social sustainability of the AEB (Safriel et al., 2008). Consequently, 73 
disentangling the impact of climate change on vegetation in the AEB is of great importance for 74 
regional sustainable development (Liu et al., 2018; Wei et al., 2021).  75 

A large proportion of bare land and limited water resources make the AEB prone to land 76 
degradation and desertification. Studies on global vegetation dynamics suggest that vegetation 77 
change in the Anthropocene shows a high degree of spatial heterogeneity and varies greatly 78 
across different ecosystems, which makes challenges in global change prediction (Mander et al., 79 
2017; Xing et al., 2022; Zeng et al., 2021). In Northwest China, the eastern section of the AEB, 80 
vegetation showed a greening trend since 1982 (Jiang et al., 2018). The greening trend was 81 
mainly found in mountainous areas and oases, while the shrublands, grasslands, and deserts 82 
experienced degradation (Wang et al., 2021; Liang et al., 2020). In Central Asia, the middle 83 
section of the AEB, studies revealed a significant greening trend from 1982 to 1994, but then 84 
turned to be brown afterward (Luo et al., 2020; Yin et al., 2016). Similar to Northwest China, the 85 
browning trend in Central Asia was mainly in deserts and grassland (Xing et al., 2022; Yuan et 86 
al., 2021).  87 

However, spatially heterogeneous process of greening and browning and poorly 88 
understanding of a suite of hydroclimatic factors make it be challenging to predict the influence 89 
of the climate in future years (Na et al., 2021; Piao et al., 2020). Precipitation has been 90 
recognized as the major factor that regulates vegetation growth in drylands (Liu et al., 2021; 91 
Yang et al., 2021), but temperature also plays a role as it affects water availability by altering the 92 
atmospheric water demand via the potential evapotranspiration (Nagler et al., 2007). Recent 93 
studies have suggested that geohydrological factors such as Terrestrial Water Storage (TWS) can 94 
also affect dryland vegetation productivity (Seka et al., 2022; Zhang et al., 2022), in some cases, 95 
the relative importance of TWS may even surpass precipitation (e.g., Yang et al., Cao et al. 96 
2022). To further complicate the ability to predict vegetation change, human activities including 97 
farming, infrastructure construction, and industrial water consumption can have different impacts 98 
on vegetation (Chen et al., 2020; Li et al., 2022a).  99 

The intersection of these factors means that predicting and modeling ecosystem change 100 
can be extremely challenging, particularly across an area as spatially heterogeneous as the EEB 101 
(Mohamed et al., 2018). Therefore, it is expected to capture the spatially explicit characterization 102 
of the trend in vegetation productivity with consideration of not only precipitation and 103 
temperature but also water storage and human activity. To address this issue, we have employed 104 
the highly-calibrated MODIS data spanning the last two decades to examine changes in 105 
vegetation productivity with the development of this region. Instead of using the potentially 106 
outdated GIMMS NDVI3g dataset in most modeling efforts for the region, we use the MODIS 107 
data, hoping to not only characterize the spatial patterns of change in the EEB, but also to 108 
identify generalizable spatial patterns and provide insight into the underlying mechanisms that 109 
dictate varying sensitivities of the ecosystem to hydroclimatic change. 110 

The overarching aim of this study is to quantify changes in vegetation productivity within 111 
the EEB over the past two decades, and to identify any hydroclimatic factor that appears to drive 112 
or predict this change. Specifically, our objectives are to 1) characterize the temporal trend of 113 
integrated MODIS EVI (IntEVI), a satellite proxy of vegetation productivity, in growing season 114 
from 2001 to 2021 over the EEB; 2) quantify the driving factors of the IntEVI trend at each pixel 115 
including precipitation, temperature, and terrestrial water storage; and to 3) generalize the 116 
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relative role of hydroclimatic condition and vegetation types on the relationships between 117 
vegetation productivity and hydroclimatic factors across these endorheic dryland ecosystems. 118 

2 Materials and Methods 119 

2.1 Study Area 120 

The Asian endorheic basins (AEB) are located in the Asian inland, which is commonly 121 
divided into six major geographic units: Central Asia (CA), Caspian Sea (CS), Mongolia Plateau 122 
(MGP), Northwest China (NC), Qinghai Tibet Plateau (QTP), and Western Asia (WA) (Fig. 1). 123 
The entire AEB spans from the latitude of 34.43°E to 119.98°E and the longitude of 13.92°N to 124 
56.24°N, with a total area of 1.34×107 km2, and is known to be one of the most ecologically 125 
fragile regions in the world (Yu et al., 2016; Huang et al., 2016; Mu et al., 2021). In this region, 126 
the average annual temperature ranges from -19°C to 27°C, and the total annual precipitation 127 
varies between less than 50 mm to more than 800 mm. 128 

 129 

Figure 1. Spatial extent and elevation of the Asian Endorheic Basins (AEB). 130 

We identified our study area based on the map of the Endorheic Basins boundary from 131 
the National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn/en/) and the 132 
HydroSHEDS (http://www.hydrosheds.org). A summary of these regions is shown in Table 1. 133 

Table 1. Overview of six inland regions in the AEB. 134 

Basin Name Area 
(×104km2) 

Average 
Altitude 

(m) 
Aridity 
Index 

TEM   
(℃) 

PRE    
(mm) 

Total Population 
in 2020 (×104) 
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Centra Asia 339.4 697.8 0.21 8.6 338.3 8781.0 
Caspian Sea 159.1 471.5 0.25 10.2 421.3 5425.6 

Mongolia 
Plateau 162.7 1430.0 0.14 4.0 180.8 424.3  

Northwest 
China 169.3 1828.8 0.11 6.7 140.7 2982.9  

Qinghai Tibet 
Plateau 97.5 4551.4 0.16 -3.9 212.7 110.1  

Western Asia 317.9 928.0 0.05 22.5 118.3 10076.2 
Asian 

Endorheic 
Basin 

1245.9 1651.3 0.15 8.0 235.4 27800.1  

2.2 Land-cover types data 135 

We used the GLC_FCS30 global ecosystem types data which contained 29 types and had 136 
a spatial resolution of 30 m (Liu et al., 2021b). The product was generated based on a novel and 137 
automatic land-cover monitoring strategy designed to couple continuous land-cover change 138 
detection models with dynamic updating algorithms. The continuous time-series surface 139 
reflectance from Landsat imagery from 1984 to 2020 and local adaptive modeling were used to 140 
produce the global 30-m land-cover dynamic monitoring products. A summary on the area and 141 
fraction of each ecosystem type in the study area is shown in Table 2, and the spatial distribution 142 
of ecosystem types in 2020 is shown in Figure 2a. 143 

Table 2. Ecosystem types in Asian endorheic basins in 2000 and 2020. 144 

Name 
2000 2020 

Area (×104 
km²) 

Percentage 
(%) Area (×104 km²) Percentage 

(%) 
Bare areas 746.76  44.30  722.85  42.88  
Grassland 317.60  18.84  308.82  18.32  

Sparse vegetation 239.97  14.24  249.07  14.77  
Shrubland 101.62  6.03  110.93  6.58  

Rainfed cropland 141.31  8.38  145.60  8.64  
Irrigated cropland 47.77  2.83  48.58  2.88  

Forest 40.05  2.38  41.03  2.43  
Water body 23.48  1.39  24.61  1.46  
Permanent 
ice/snow 15.12  0.90  16.21  0.96  

Impervious 
surfaces 4.80  0.28  9.09  0.54  

Wetlands 7.06  0.42  9.04  0.54  

2.3 Aridity index data 145 

To better understand the dependence of vegetation response to hydroclimatic factors, we 146 
used an aridity index (AI) to describe the long-term background climate of each pixel obtained 147 
from the Global Aridity Index and Potential Evapotranspiration (ETo) Meteorology Database v2 148 
(https://cgiarcsi.community/). AI is defined as: 149 
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𝐴𝐼 = 𝒐                                                                            (1) 150 

where P is the annual precipitation (mm), and ET0 is the annual average potential 151 
evapotranspiration (mm). The P was obtained from the WorldClim2 Global Meteorology Data 152 
(https://www.worldclim.org/), while the ET0 was derived from the monthly averaged data in the 153 
Global-ETo and further aggregated to generate annual average values (MA-ETo). The aridity 154 
zones of the study area based on the AI are presented in Table 3, and Figure 2(d) shows the 155 
aridity classes of the study area. 156 

Table 3. Summary of the study area based on aridity index. 157 

AI Value Aridity Class* Area 
(×104 km²) 

Percentage 
(%) 

0-0.05 Hyper-arid 309.8  26.5  
0.05-0.2 Arid 558.8  47.7  
0.2 – 0.5 Semi-arid 264.5  22.6  

0.5 – 0.65 Semi-humid 20.7  1.8  
> 0.65 Humid 17.2  1.5  

* Classification is based on the UNEP (The United Nations Environment Programme, 158 
https://www.unep.org/). 159 
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Forecasts) (https://cds.meteorology.copernicus.eu). ERA5-land is a reanalysis dataset which 167 
provides a consistent view of the evolution of land variables over several decades at an enhanced 168 
resolution compared to ERA5, providing a reliable record of past climate conditions (Hersbach et 169 
al., 2020; Dee et al., 2011). 170 

Global precipitation measurement (GPM) dataset, a monthly precipitation record, was 171 
obtained from the NASA GES DISC at NASA Goddard Space Flight Center at a spatial 172 
resolution of 0.1° × 0.1° (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06). The GPM is 173 
an international satellite mission designed to provide next-generation observations of rain and 174 
snow worldwide. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is the unified 175 
algorithm that provides rainfall estimates by interpolating data from all satellite microwave or 176 
microwave-corrected infrared precipitation and monthly precipitation gauge records (Huffman et 177 
al., 2019a, b). Here we converted the monthly data with the unit of mm/hr into the total 178 
precipitation amount during the measurement period. The GPM version 6 record is only 179 
available from June 1, 2000, to September 1, 2021, and the missing data from 2021 are filled by 180 
using the values of data in the same months from 2016-2020. 181 

2.5 GRACE Total Water Storage Anomalies (TWSA) data 182 

GRACE Total Water Storage Anomalies (TWSA) data were obtained from The Physical 183 
Oceanography Distributed Active Archive Center (PODAAC) and processed by Jet Propulsion 184 
Laboratory (JPL) (NASA/JPL, 2019). This dataset contains gridded monthly global water 185 
storage/height anomalies derived from GRACE and GRACE-FO observations by using the 186 
Mascon approach (Version2/RL06). TWSA data are always used for analyzing ocean, ice, and 187 
hydrology phenomena, and are provided in equivalent water thickness units (cm) with a spatial 188 
resolution of 0.5° ×  0.5° (Landerer et al., 2020). The data are available for every month since 189 
April 2002 to the present, although there are 33 months with missing data. The averaged values 190 
of the same month in the most recent five data-available years were used to fill the gaps. We also 191 
used this dataset to calculate the cumulative TWSA, or cTWSA, which represented the long-term 192 
departure of TWSA from its “normal” cycle. This approach is widely used for quantitatively 193 
estimating the variation of TWSA in response to environmental or anthropogenic interference (Li 194 
et al., 2022b). cTWSA is calculated as follows: 195 𝑐𝑇𝑊𝑆𝐴 = ∑ 𝑇𝑊𝑆𝐴                                                            (2) 196 

where k is the kth year of the time series, i is the serial number, i.e. 1-20 from 2002 to 2021. 197 

2.6 MODIS Enhanced Vegetation Index data 198 

The Enhanced Vegetation Index (EVI) is widely used as a proxy of canopy “greenness”, 199 
which is defined as an integrative composite property of green leaf area, green foliage cover, 200 
structure, and leaf chlorophyll content (Huete et al., 2002; Glenn et al., 2008). EVI was 201 
developed based on the 1st-order Beer's law application of canopy radiative transfer, optimizing 202 
the combination of reflectance in the red, near-infrared (NIR), and blue bands, thus effectively 203 
reducing soil background influences and atmospheric noise variations (Huete, 1988; Huete et al., 204 
2002, 2006). EVI is calculated thusly:  205 𝐸𝑉𝐼 =  2.5 × 𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑𝜌𝑁𝐼𝑅+6𝜌𝑟𝑒𝑑−7.5𝜌𝑏𝑙𝑢𝑒+1                                                    (3) 206 
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𝑟 = ∑ ( )̅( )∑ ( )̅ ∑ ( )                                                   (7) 228 

where n is 21, and i is the serial number, i.e. 1-21 from 2001 to 2021. 𝚤 ̅is the mean value of the 229 
serial number, IntEVIi is the value of IntEVI in the ith year, 𝐼𝑛𝑡𝐸𝑉𝐼 is the average IntEVI from 230 
2001 to 2021. When slope > 0% ∙ yr-1, IntEVI shows an increasing trend. When slope < 0% ∙ yr-1, 231 
IntEVI shows a decreasing trend. The grading criteria for the trend of IntEVI changes is shown 232 
in Table 4. 233 

Table 4. IntEVI changing trend grading criteria (Liu et al., 2020) 234 
IntEVI trend grading criteria Grade 

P-value < 0.05 AND slope > 0% ∙ yr  Significant increase 

P-value > 0.05 AND slope > 0% ∙ yr  Slight increase 

P-value > 0.05 AND slope < 0% ∙ yr  Slight decrease 

P-value < 0.05 AND slope < 0% ∙ yr  Significant decrease 

2.8 Partial Correlation Analysis 235 

Partial correlation analysis was used to analyze the relationship between IntEVI change 236 
and the changes in any given hydroclimatic variable (Zhao et al., 2015; Ge et al., 2018). By using 237 
partial correlation analysis, it is able to remove the obfuscating effects of collinearity in 238 
hydroclimatic variables. The partial correlation coefficient of variables x and y when z is fixed is 239 
calculated (Du et al., 2020): 240 𝑟 , = ( )( )                                                               (8) 241 

where rxy,z is the first-order partial correlation coefficient, i is IntEVI, y and z are hydroclimatic 242 
factors such as temperature, precipitation, or TWSA. rxy, and both rxz, and ryz are Pearson 243 
correlation coefficients. 244 

The coefficient representing the relationship between IntEVI and certain hydroclimatic 245 
factors with the other two being fixed was calculated as the second-order partial correlation 246 
coefficient (𝑟 , ) (Xie et al., 2019): 247 𝑟 , = 𝒙𝒚,𝒛 𝒙𝒘,𝒛 𝒚𝒘,𝒛𝒙𝒘,𝒛𝟐 ( 𝒚𝒘,𝒛𝟐)                                                   (9) 248 

where rxy,z, rxw,z, and ryw,z represent partial correlations among variables x, y, when controlling 249 
variables z and w in the first order. 250 

T test is then used to analyze the relationship between IntEVI and hydroclimatic factors, 251 
and the significance test at p=0.05 level was conducted in the correlation analysis. 252 
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3 Results 253 

3.1 Trends in temperature, precipitation, and TWSA across the AEB over the past two 254 
decades  255 

More than 80% of the AEB became increasingly warmer at an average rate of 0.03℃/yr 256 
(p<0.05) from 2001 to 2021 (Fig. 4a, Fig. 5a). Although annual precipitation over the entire AEB 257 
presented less variation, certain regions had much greater spatial variability in precipitation trend 258 
than in temperature (Fig. 4a, Fig. 5b). Northwest China and Western Asia have gradually become 259 
wetter, especially in the Hindu Kush Mountains, Aral Sea Basin, and Balkhash Lake, with each 260 
having increasingly wetter years at a rate of approximately 10mm/yr (p<0.05)(Fig. 5b). By 261 
contrast, Central Asia and the Caspian Sea, especially in the (semi-) humid zones, have gradually 262 
become drier at the rate of -5mm/yr (p<0.05) (Fig. 5b). 263 

From 2002 to 2021, 68.64% of the AEB showed a significant decrease in TWSA. The 264 
entire region was impacted, and the average TWSA of the AEB decreased at a rate of 0.35 cm/yr 265 
(p<0.01) despite maintaining seasonal fluctuations (Fig. 4b). The cumulative TWSA (cTWSA) 266 
was -42.2 cm until 2021 (Fig. 4b). Interestingly, several areas, such as the QTP and north of the 267 
CA (Fig. 5c) showed the opposite trend with a significant increase in TWSA, although these 268 
areas account for less than 17.4 % of the AEB.  269 
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Reviewing the impacts of land cover type on vegetation change, we found that irrigated 365 
cropland ’greened-up’ the most over the last 20 years, particularly in hyper-arid zones, and likely 366 
represented oases cultivation efforts in basins and their surrounding regions (such as Tarim River 367 
Basin in the southern Tianshan Mountains). We also found the same directional trend in a few 368 
scattered areas in some mountainous regions (such as Hindu Kush Mountains), consistent with 369 
results from Ma et al. (2019) and Zhao et al. (2022), albeit these changes were less pronounced 370 
than those observed in oases. Similarly, greening trends were observed in the oases of Northwest 371 
China perhaps due to the creation of artificial oases as a means of agricultural development (Ma 372 
et al., 2019; Ning et al., 2021).  373 

While previous studies have suggested that vegetation has degraded in Central Asia and 374 
the Caspian Sea, our study did not confirm this as we only observed a fluctuating IntEVI, at least 375 
within the past two decades (Hao et al., 2022; Li et al., 2015; Xu et al., 2016). We speculate that 376 
the discrepancy between our results and the previous ones can be attributed to several reasons. 377 
One possible explanation is the difference in sampling data. Previous studies mainly used the 378 
GIMMS3g NDVI from NOAA/AVHRR sensors to detect vegetation trends during 1982-2015 379 
(Du et al., 2019; Du et al., 2020; Li et al., 2015; Yuan et al., 2021; Yuan et al., 2022), while in 380 
this study, we used the better calibrated MODIS vegetation indices products to analyze the trend 381 
from 2001-2021. Vegetation in Central Asia and the Caspian Sea had indeed experienced 382 
accelerating greening to browning reversals since 1994 (Pan et al., 2018), however, in the late 383 
1990s, this degradation gradually slowed down and stalled especially in northern mid-latitude 384 
(Yin et al., 2016). As we excluded data during that period of degradation, our results did not 385 
include the browning observed in the mid 1990’s. Similarly, our results may be skewed spatially. 386 
For example, in this study, Kazakhskiy Melkosopochnik (KM), where grassland covered more 387 
than 70% of the areas and was also found to be the severest degradation region in Central Asia 388 
(Li et al., 2015; Xu et al., 2016), was excluded from the AEB, which likely masked a large 389 
proportion of browning (Dubovyk et al., 2016; Liu et al., 2021a).  390 

4.2 Potential factors driving widespread greening trend in the AEB 391 

It is reasonable to expect that water, represented in both input (precipitation) and loss 392 
(evapotranspiration), is a major factor influencing the large-scale patterns of vegetation growth 393 
in the AEB. Precipitation is the major and direct water supply of soil moisture in the AEB (Wang 394 
et al., 2020), and unsurprisingly the relationship between IntEVI and precipitation showed an 395 
overall highly positive correlation (Fig. 8b, Fig. 9). However, we also found an interesting 396 
TWSA-driven pattern, especially the contrasting and dominant impact in Northwest China and 397 
Qinghai Tibet Plateau. According to the land surface water balance equation, TWSA variation is 398 
mainly influenced by hydroclimatic and anthropogenic water consumption. Therefore, TWSA 399 
may be considered an integrative indicator of the water cycle (Pan et al., 2017), drought/soil 400 
moisture (Pokhrel et al., 2021), and human activity intensity (An et al., 2021). 401 

The change in irrigated cropland indicated that human irrigated agriculture has intensified 402 
by 17.3% and 4.3% in hyper-arid and arid zones (Fig. 10), respectively, during the past two 403 
decades. Irrigated cropland has expanded by more than 58% since the 1990s (Fu et al., 2022), 404 
furthermore, a previous study suggested that approximately 70% of the increase in actual 405 
evapotranspiration was attributed to increased river diversions for irrigation from groundwater 406 
and glacial melt runoff, and this human disturbance is captured by changes in TWSA (Liu, 407 
2022). With consideration of our results, this may indicate that human water consumption in the 408 



manuscript submitted to replace this text with name of AGU journal 

 

driest zones during the past several decades likely induces a more severe water scarcity in the 409 
future, ultimately forming a vicious negative feedback loop. Our results imply that this 410 
speculation could explain the observed sensitivity of vegetation in the Caucasus region and the 411 
Aral Sea Basin to TWSA, given both their history of agricultural development and “hot-dry” 412 
climate change (Dehghanipour et al., 2020; Ghale et al., 2018; Yang et al., 2021).  413 

Human change, however, is not all negative. Revegetation and restoration programs also 414 
likely contributed to the greening trend as we observed across the region. For example, the 415 
Chinese government has implemented many ecological restoration projects in Northwest China 416 
(Cao et al., 2020; Viña et al., 2016; Wang et al., 2014; Yuan et al., 2014). These projects have 417 
positive effects on the local environment (Dong et al., 2019; Wang et al., 2022; Yu et al., 2022) 418 
and their contributions to the observed greening trend are revealed in this study (Fig. 5c-d). 419 
However, it is worth noting that revegetation and ecological restoration projects also artificially 420 
change the water supply-demand relationship (Cao et al., 2022), and in arid regions such as the 421 
AEB, especially where precipitation is the single water supply, these restoration projects may 422 
need to refocus, and re-prioritize sustainable constraints imposed by the regional water 423 
availability, now and in the future (Du et al., 2021). 424 

4.3 Limitations and future perspectives 425 

From the data perspective, the 2-m air temperature data derived from the ERA-5 426 
reanalysis dataset is a derivative product generated by combining model data with observations 427 
from all sites across the world (Hersbach et al., 2020). Data quality is thus determined by the 428 
number and the representativeness of weather stations. The potential to generalize this data is 429 
highly variable, and depends on a host of factors, including topography. Meanwhile, due to the 430 
coarse spatial resolution (0.5°), GRACE-TWSA pixels at the junction of basins, especially basins 431 
with small areas, may actually cover different natural geographical units. For example, pixels in 432 
the southern Tarim River Basin cover parts of the Kunlun Mountains, which doesn’t belong to 433 
this basin (Fig. 5c).  434 

We integrated the MOD13C2 EVI from the growing season as the indicator of vegetation 435 
productivity. Other vegetation parameters such as LAI and GPP were also adopted to analyze 436 
global vegetation characteristics and the response to climate change (Piao et al., 2014; Zhu et al., 437 
2016). Although these vegetation indices and parameters showed a consistent trend, 438 
discrepancies were also observed (Zeng et al., 2022). Hence, results from the IntEVI may be 439 
corroborated by other satellite proxies and field plots from the long-term ecological networks to 440 
confirm the ecosystem productivity change (Guadagno et al., 2017). In addition, besides 441 
temperature, precipitation, and terrestrial water storage we selected, vegetation change could also 442 
be affected by a variety of other global change factors such as CO2 fertilization and nitrogen 443 
deposition (e.g., Zhu et al. 2016), which were not considered in this study.  444 

Despite these limitations, this study still offers valuable insight into how vegetation has 445 
changed over the last two decades in the AEB. These results, and our generalized observations 446 
on the relation between climate, land cover type, aridity, and human development can guide 447 
large-scale ecological restorations and sustainable plans to address the challenges of future 448 
climate change in an extremely vulnerable environment. Future work should focus on 449 
establishing long-term ground observations covering a large spatial gradient to confirm the 450 
vegetation changes detected through satellite products (Piao et al., 2020). In addition, further 451 
remote sensing to gather complementary data should be considered, such as aboveground 452 
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biomass (AGB) derived from the GEDI spaceborne LiDAR mission and the Solar induced 453 
chlorophyll fluorescence (SIF) derived from TanSat or OCO-2/3 spaceborne missions (Pan et al., 454 
2018).  455 

5 Conclusions 456 

In this study, we assessed the spatio-temporal vegetation variation trends encompassing 457 
the key Asian endorheic basins during 2001-2021 using MODIS EVI. Furthermore, we analyzed 458 
the relationship between vegetation change and a suite of hydroclimatic variables using second-459 
order partial correlation analysis. The results revealed an overall greening trend across the AEB, 460 
though we observed extreme spatial heterogeneity. The greening trend was most pronounced in 461 
Northwest China, Qinghai Tibet Plateau, and Western Asia. Interestingly, we found that while 462 
precipitation had the dominant control effect in arid and semi-arid zones, vegetation change in 463 
hyper-arid zones was most closely associated with water storage anomalies. Additionally, we 464 
found that a significant expansion of irrigated cropland in (hyper-) arid zones was positively 465 
correlated with greening, suggesting that some fraction of greening can be attributed to hyper-466 
arid agricultural development (such as oases cultivation). This study highlights the decisive 467 
impact of hydroclimate conditions modulated by human activities on vegetation growth in the 468 
arid and hyper-arid areas within the AEB, hence can guide the management of the fragile dryland 469 
ecosystems by establishing sustainability constraints to agriculture expansion in the future. 470 
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