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Key Points:

e An overall greening trend was found in the AEB expecially in Northwest China, Qinghai
Tibet Plateau, and Western Asia during 2001-2021.

e Precipitation had the dominant control effect in arid zones, vegetation change in hyper-
arid zones was most closely associated with TWSA.

e A significant expansion of irrigated cropland (agricultural development) in hyper-arid
zones was positively correlated with greening.
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Abstract

A large portion of Central-Western Asia is made up of contiguous closed basins, collectively
termed as the Asian Endorheic Basins (AEB). As these retention basins are only being
replenished by the intermittent precipitation, increasing droughts in the region and a growing
demand for water have been presumed to jointly contributed to the land degradation. To
understand the impact of climate change and human activities on dryland vegetation over the
AEB, we conducted trend and partial correlation analysis of vegetation and hydroclimatic change
from 2001 to 2021 using multi-satellite observations, including vegetation greenness, total water
storage anomalies (TWSA) and meteorological data. Here we show that much of the AEB
(65.53%) exhibited a greening trend over the past two decades. Partial correlation analyses
indicated that climatic factors had varying effects on vegetation productivity as a function of
vegetation types and aridity. In arid AEB, precipitation dominated the vegetation productivity
trend. Such a rainfall dominance gave way to TWSA dominance in the hyper-arid AEB. We
further showed that the decoupling of rainfall and hyper-arid vegetation greening was largely due
to a significant expansion (17.3%) in irrigated cropland across the hyper-arid AEB. Given the
extremely harsh environment in the hyper-arid AEB, our results therefore raised the concerns on
the ecological and societal sustainability in this region, where a mild increase in precipitation
might not be able to catch up the rising evaporative demand and water consumption resulted
from global warming and irrigation intensification.

Plain Language Summary

Asian Endorheic Basins (AEB), including Central Asia, Caspian Sea, Mongolia Plateau,
Northwest China, Qinghai Tibet Plateau, and Western Asia, are typical drylands that have fragile
ecosystems. Increased water demand from agricultural expansion have been presumed to jointly
contributed to the land degradation over the AEB. Here we analyzed the vegetation greening
pattern and the relationship with hydroclimatic driving factors and land use change. Results
showed that much of the AEB exhibited a greening trend over the past two decades. We also
found that the hyper-arid vegetation greening was largely due to the irrigation intensification,
leading to the overexploitation of groundwater signified by an alarming rate of persistent decline
in groundwater. This paper offers valuable insight into the ecological responses to climate and
human activities in the AEB and can hence guide large-scale sustainable development plans to
address the challenges of future climate change in an extremely vulnerable environment.

1 Introduction

Drylands cover approximately 41% of the Earth’s land surface and are commonly
characterized by scarce water resources (Smith et al., 2019). Dryland vegetation forms a vital
component that provides essential services to the terrestrial ecosystem, and supports biodiversity,
livelihoods, and food production (Riis et al., 2020; Ukkola et al., 2021). The Asian Endorheic
Basins (AEB) scattered across Central Asia, Caspian Sea, Mongolia Plateau, Northwest China,
Qinghai Tibet Plateau, and Western Asia, are emblematic arid and semi-arid dryland ecosystems.
These basins retain water, but are replenished intermittently, thus making the ecosystems
vulnerable to extreme climate events (Jiao et al., 2021; Li et al., 2015; Pan et al., 2019). In
addition, the population of the AEB has exploded over the last ten years, and these regions are
thought to house nearly 278 million people (3.6% of the global population) (CIESIN, 2018).
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Climate change coupled with the increasing demand for water and other resources by people
threatens the ecological and social sustainability of the AEB (Saftriel et al., 2008). Consequently,
disentangling the impact of climate change on vegetation in the AEB is of great importance for
regional sustainable development (Liu et al., 2018; Wei et al., 2021).

A large proportion of bare land and limited water resources make the AEB prone to land
degradation and desertification. Studies on global vegetation dynamics suggest that vegetation
change in the Anthropocene shows a high degree of spatial heterogeneity and varies greatly
across different ecosystems, which makes challenges in global change prediction (Mander et al.,
2017; Xing et al., 2022; Zeng et al., 2021). In Northwest China, the eastern section of the AEB,
vegetation showed a greening trend since 1982 (Jiang et al., 2018). The greening trend was
mainly found in mountainous areas and oases, while the shrublands, grasslands, and deserts
experienced degradation (Wang et al., 2021; Liang et al., 2020). In Central Asia, the middle
section of the AEB, studies revealed a significant greening trend from 1982 to 1994, but then
turned to be brown afterward (Luo et al., 2020; Yin et al., 2016). Similar to Northwest China, the
browning trend in Central Asia was mainly in deserts and grassland (Xing et al., 2022; Yuan et
al., 2021).

However, spatially heterogeneous process of greening and browning and poorly
understanding of a suite of hydroclimatic factors make it be challenging to predict the influence
of the climate in future years (Na et al., 2021; Piao et al., 2020). Precipitation has been
recognized as the major factor that regulates vegetation growth in drylands (Liu et al., 2021;
Yang et al., 2021), but temperature also plays a role as it affects water availability by altering the
atmospheric water demand via the potential evapotranspiration (Nagler et al., 2007). Recent
studies have suggested that geohydrological factors such as Terrestrial Water Storage (TWS) can
also affect dryland vegetation productivity (Seka et al., 2022; Zhang et al., 2022), in some cases,
the relative importance of TWS may even surpass precipitation (e.g., Yang et al., Cao et al.
2022). To further complicate the ability to predict vegetation change, human activities including
farming, infrastructure construction, and industrial water consumption can have different impacts
on vegetation (Chen et al., 2020; Li et al., 2022a).

The intersection of these factors means that predicting and modeling ecosystem change
can be extremely challenging, particularly across an area as spatially heterogeneous as the EEB
(Mohamed et al., 2018). Therefore, it is expected to capture the spatially explicit characterization
of the trend in vegetation productivity with consideration of not only precipitation and
temperature but also water storage and human activity. To address this issue, we have employed
the highly-calibrated MODIS data spanning the last two decades to examine changes in
vegetation productivity with the development of this region. Instead of using the potentially
outdated GIMMS NDVI3g dataset in most modeling efforts for the region, we use the MODIS
data, hoping to not only characterize the spatial patterns of change in the EEB, but also to
identify generalizable spatial patterns and provide insight into the underlying mechanisms that
dictate varying sensitivities of the ecosystem to hydroclimatic change.

The overarching aim of this study is to quantify changes in vegetation productivity within
the EEB over the past two decades, and to identify any hydroclimatic factor that appears to drive
or predict this change. Specifically, our objectives are to 1) characterize the temporal trend of
integrated MODIS EVI (IntEVI), a satellite proxy of vegetation productivity, in growing season
from 2001 to 2021 over the EEB; 2) quantify the driving factors of the IntEVI trend at each pixel
including precipitation, temperature, and terrestrial water storage; and to 3) generalize the
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relative role of hydroclimatic condition and vegetation types on the relationships between
vegetation productivity and hydroclimatic factors across these endorheic dryland ecosystems.

2 Materials and Methods

2.1 Study Area

The Asian endorheic basins (AEB) are located in the Asian inland, which is commonly
divided into six major geographic units: Central Asia (CA), Caspian Sea (CS), Mongolia Plateau
(MGP), Northwest China (NC), Qinghai Tibet Plateau (QTP), and Western Asia (WA) (Fig. 1).
The entire AEB spans from the latitude of 34.43°E to 119.98°E and the longitude of 13.92°N to
56.24°N, with a total area of 1.34x107 km?, and is known to be one of the most ecologically
fragile regions in the world (Yu et al., 2016; Huang et al., 2016; Mu et al., 2021). In this region,
the average annual temperature ranges from -19°C to 27°C, and the total annual precipitation
varies between less than 50 mm to more than 800 mm.
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Figure 1. Spatial extent and elevation of the Asian Endorheic Basins (AEB).

We identified our study area based on the map of the Endorheic Basins boundary from
the National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn/en/) and the
HydroSHEDS (http://www.hydrosheds.org). A summary of these regions is shown in Table 1.

Table 1. Overview of six inland regions in the AEB.

Area ‘:lvt‘i’trs(gl: Aridity TEM PRE  Total Population
(x10%km?) (m) Index (°C) (mm) in 2020 (x10%)

Basin Name
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Centra Asia 339.4 697.8 0.21 8.6 3383 8781.0
Caspian Sea 159.1 4715 025 102 4213 5425.6
Mongolia 162.7 1430.0 0.14 40 1808 4243

Plateau
Northwest 169.3 1828.8 0.11 6.7 1407 2982.9
China
Qinghai Tibet 97.5 4551 .4 016 -39 2127 110.1
Plateau
Western Asia ~ 317.9 928.0 005 225 1183 10076.2
Asian
Endorheic 1245.9 1651.3 0.15 8.0 2354 27800.1
Basin

2.2 Land-cover types data

We used the GLC FCS30 global ecosystem types data which contained 29 types and had
a spatial resolution of 30 m (Liu et al., 2021b). The product was generated based on a novel and
automatic land-cover monitoring strategy designed to couple continuous land-cover change
detection models with dynamic updating algorithms. The continuous time-series surface
reflectance from Landsat imagery from 1984 to 2020 and local adaptive modeling were used to
produce the global 30-m land-cover dynamic monitoring products. A summary on the area and
fraction of each ecosystem type in the study area is shown in Table 2, and the spatial distribution
of ecosystem types in 2020 is shown in Figure 2a.

Table 2. Ecosystem types in Asian endorheic basins in 2000 and 2020.

2000 2020
Name x10*
ﬁlll‘]ezz)l (x10 Perz;e/il)tage Area (x1 0 km?) Perz:z/il)tage

Bare areas 746.76 44 .30 722.85 42 .88
Grassland 317.60 18.84 308.82 18.32
Sparse vegetation 239.97 14.24 249.07 14.77
Shrubland 101.62 6.03 110.93 6.58
Rainfed cropland 141.31 8.38 145.60 8.64
Irrigated cropland 47.77 2.83 48.58 2.88
Forest 40.05 2.38 41.03 2.43
Water body 23.48 1.39 24.61 1.46
Permanent 15.12 0.90 16.21 0.96

ice/snow
Impervious 4.80 0.28 9.09 0.54

surfaces
Wetlands 7.06 0.42 9.04 0.54

2.3 Aridity index data

To better understand the dependence of vegetation response to hydroclimatic factors, we
used an aridity index (Al) to describe the long-term background climate of each pixel obtained
from the Global Aridity Index and Potential Evapotranspiration (ETo) Meteorology Database v2
(https://cgiarcsi.community/). Al is defined as:
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Al = — (1)

ET,

where P is the annual precipitation (mm), and ETO is the annual average potential
evapotranspiration (mm). The P was obtained from the WorldClim2 Global Meteorology Data
(https://www.worldclim.org/), while the ETO was derived from the monthly averaged data in the
Global-ETo and further aggregated to generate annual average values (MA-ETo). The aridity
zones of the study area based on the Al are presented in Table 3, and Figure 2(d) shows the
aridity classes of the study area.

Table 3. Summary of the study area based on aridity index.

Al Value Aridity Class* (xlAO‘f ‘;{amz) Perff,’/f)‘)‘age
0-0.05 Hyper-arid 309.8 26.5
0.05-0.2 Arid 558.8 47.7
0.2-0.5 Semi-arid 264.5 22.6
0.5-0.65 Semi-humid 20.7 1.8
>0.65 Humid 17.2 1.5

* Classification is based on the UNEP (The United Nations Environment Programme,
https://www.unep.org/).
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Figure 2. Spatial pattern of ecosystem types (a) and aridity zones (b). MGP: Mongolia Plateau,
QTP: Qinghai Tibet Plateau, NC: Northwest China, CA: Central Asia, CS: Caspian Sea, WA:
Western Asia.

2.4 Meteorological data

We obtained ERAS5-land monthly average 2-m air temperature data, with a spatial
resolution of 0.1° X 0.1°, from ECMWF (European Centre for Medium-Range Weather
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Forecasts) (https://cds.meteorology.copernicus.eu). ERAS5-land is a reanalysis dataset which
provides a consistent view of the evolution of land variables over several decades at an enhanced
resolution compared to ERAS, providing a reliable record of past climate conditions (Hersbach et
al., 2020; Dee et al., 2011).

Global precipitation measurement (GPM) dataset, a monthly precipitation record, was
obtained from the NASA GES DISC at NASA Goddard Space Flight Center at a spatial
resolution of 0.1° X 0.1° (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06). The GPM is
an international satellite mission designed to provide next-generation observations of rain and
snow worldwide. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is the unified
algorithm that provides rainfall estimates by interpolating data from all satellite microwave or
microwave-corrected infrared precipitation and monthly precipitation gauge records (Huffman et
al., 2019a, b). Here we converted the monthly data with the unit of mm/hr into the total
precipitation amount during the measurement period. The GPM version 6 record is only
available from June 1, 2000, to September 1, 2021, and the missing data from 2021 are filled by
using the values of data in the same months from 2016-2020.

2.5 GRACE Total Water Storage Anomalies (TWSA) data

GRACE Total Water Storage Anomalies (TWSA) data were obtained from The Physical
Oceanography Distributed Active Archive Center (PODAAC) and processed by Jet Propulsion
Laboratory (JPL) (NASA/JPL, 2019). This dataset contains gridded monthly global water
storage/height anomalies derived from GRACE and GRACE-FO observations by using the
Mascon approach (Version2/RL06). TWSA data are always used for analyzing ocean, ice, and
hydrology phenomena, and are provided in equivalent water thickness units (cm) with a spatial
resolution of 0.5° X 0.5° (Landerer et al., 2020). The data are available for every month since
April 2002 to the present, although there are 33 months with missing data. The averaged values
of the same month in the most recent five data-available years were used to fill the gaps. We also
used this dataset to calculate the cumulative TWSA, or cTWSA, which represented the long-term
departure of TWSA from its “normal” cycle. This approach is widely used for quantitatively
estimating the variation of TWSA in response to environmental or anthropogenic interference (Li
et al., 2022b). cTWSA is calculated as follows:

cTWSA, = YK, TWSA; 2)
where k is the kth year of the time series, 1 is the serial number, i.e. 1-20 from 2002 to 2021.

2.6 MODIS Enhanced Vegetation Index data

The Enhanced Vegetation Index (EVI) is widely used as a proxy of canopy “greenness”,
which is defined as an integrative composite property of green leaf area, green foliage cover,
structure, and leaf chlorophyll content (Huete et al., 2002; Glenn et al., 2008). EVI was
developed based on the Ist-order Beer's law application of canopy radiative transfer, optimizing
the combination of reflectance in the red, near-infrared (NIR), and blue bands, thus effectively
reducing soil background influences and atmospheric noise variations (Huete, 1988; Huete et al.,
2002, 2006). EVI is calculated thusly:

PNIR Pred
EVI = 2.5 % 3)
pNIR+6pred_7'5pblue+1
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where pyir, Preq and ppye are reflectance in the near-infrared, red, and blue bands respectively
(Huete et al., 2002). In this study, we opted to use MODIS Collection-6 monthly 0.05° EVI
products (MOD13C2) from January 2001 to December 2021 obtained from the USGS repository
(ftp://e4ftl01.cr.usgs.gov) to investigate regional vegetation growth patterns. Residual cloud and
aerosol contamination in the original EVI time series were filtered out based on the quality
assurance (QA) flags provided in the MOD13C2 products, after which the remaining gaps were
filled by linear interpolation in the temporal dimension. Additionally, we generated an integrated
EVI (hereafter IntEVI) specifically for the annual growing season by summing up the values of
EVI from April to October of each year.

IntEVI, = $12, EVI,; “)

where n and i represent the year number and month, separately.
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Figure 3 Spatial pattern of average annual IntEVI in AEB from 2001 to 2021.

2.7 Temporal Trend Analysis

Inter-annual changes in IntEVI in the study area from 2001 to 2021 were assessed by the
linear trend analysis (Stow et al., 2004; Zhang et al., 2019). The rate of change, or the slope of
the linear trend, is calculated as follows:

nyt  iXINtEVI-YT i ¥T; IntEVI;
n Z?:l iz_(Z:?zl i)2

We then used an F test to test if IntEVI was changing over time (Song et al., 2010). The
calculation formulas are as following:

Slope = (5)

200
F=r(n2) (6)

1-1r2
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Y (1-D)(IntEVI;—IntEVI)

(7

T =
\/Z?zl(i—f)z Y (INtEVI;—IntEVI)?

where n is 21, and i is the serial number, i.e. 1-21 from 2001 to 2021. 7 is the mean value of the
serial number, IntEVI; is the value of IntEVI in the ith year, IntEVI is the average IntEVI from
2001 to 2021. When slope > 0% - yr”', IntEVI shows an increasing trend. When slope < 0% - yr’',
IntEVI shows a decreasing trend. The grading criteria for the trend of IntEVI changes is shown
in Table 4.

Table 4. IntEVI changing trend grading criteria (Liu et al., 2020)

IntEVI trend grading criteria Grade
P-value < 0.05 AND slope > 0% - yr~! Significant increase
P-value > 0.05 AND slope > 0% - yr—?! Slight increase
P-value > 0.05 AND slope < 0% - yr—1! Slight decrease
P-value < 0.05 AND slope < 0% - yr~1! Significant decrease

2.8 Partial Correlation Analysis

Partial correlation analysis was used to analyze the relationship between IntEVI change
and the changes in any given hydroclimatic variable (Zhao et al., 2015; Ge et al., 2018). By using
partial correlation analysis, it is able to remove the obfuscating effects of collinearity in
hydroclimatic variables. The partial correlation coefficient of variables x and y when z is fixed is
calculated (Du et al., 2020):

Txy—TxzT
r xy ~TxzTyz (8)

T Jamrzamn

where ry, . 1s the first-order partial correlation coefficient, i is IntEVI, y and z are hydroclimatic
factors such as temperature, precipitation, or TWSA. r,,, and both r., and r,. are Pearson
correlation coefficients.

The coefficient representing the relationship between IntEVI and certain hydroclimatic
factors with the other two being fixed was calculated as the second-order partial correlation
coefficient (7, 5 ) (Xie et al., 2019):

Txy,zw =

Txy,z" Txw,zTyw,z ( 9)
J(l_rxw,zz)"'(l_ryw,zz)

where 7y, 7w,-, and 7y, represent partial correlations among variables x, y, when controlling
variables z and w in the first order.

T test is then used to analyze the relationship between IntEVI and hydroclimatic factors,
and the significance test at p=0.05 level was conducted in the correlation analysis.
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3 Results

3.1 Trends in temperature, precipitation, and TWSA across the AEB over the past two
decades

More than 80% of the AEB became increasingly warmer at an average rate of 0.03°C/yr
(»<0.05) from 2001 to 2021 (Fig. 4a, Fig. 5a). Although annual precipitation over the entire AEB
presented less variation, certain regions had much greater spatial variability in precipitation trend
than in temperature (Fig. 4a, Fig. 5b). Northwest China and Western Asia have gradually become
wetter, especially in the Hindu Kush Mountains, Aral Sea Basin, and Balkhash Lake, with each
having increasingly wetter years at a rate of approximately 10mm/yr (p<0.05)(Fig. 5b). By
contrast, Central Asia and the Caspian Sea, especially in the (semi-) humid zones, have gradually
become drier at the rate of -Smm/yr (p<0.05) (Fig. 5b).

From 2002 to 2021, 68.64% of the AEB showed a significant decrease in TWSA. The
entire region was impacted, and the average TWSA of the AEB decreased at a rate of 0.35 cm/yr
(»<0.01) despite maintaining seasonal fluctuations (Fig. 4b). The cumulative TWSA (cTWSA)
was -42.2 cm until 2021 (Fig. 4b). Interestingly, several areas, such as the QTP and north of the
CA (Fig. 5c¢) showed the opposite trend with a significant increase in TWSA, although these
areas account for less than 17.4 % of the AEB.
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Figure 4. Trends of annual average temperature & total precipitation (a) and TWSA (b)
averaged across the entire AEB during the past two decades.

3.2 Trends of growing season integrated EVI (IntEVI) over the AEB from 2001 to 2021

Annual average growing season integrated EVI (IntEVI, a satellite proxy of vegetation
productivity) of the AEB from 2001-2021 is low (with a value of 0.91) though there is high
spatial heterogeneity (Fig. 3) consistent with climate classification (Fig. 2d). From 2001 to 2021,
the average IntEVI across the entire AEB presented a significant greening trend at a rate of
3.6x107/yr. Nearly two-third (65.53%) of the AEB showed a greening trend, of which 34.41%
was statistically significant (p<0.05) (Fig. 5d). The regions with significant greening trends were
marked with red circles in Figure 5(d), in which Northwest China accounting for 13.59% of the
AEB by area showed the strongest greening trend at the rate of 7x107/yr, or twice the AEB-wide
average trend (Fig. 6d). Conversely, Central Asia, Caspian Sea, and the Arabian Peninsula have
browned over the last 20 years, accounting for more than 90% of browning across the entire
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284  AEB (Fig. 6d). The northeast of the Caspian Sea Basin, the middle of the Arabian Peninsula, and
285  the Yili River Valley in the Northwest China, which had the most significant browning trends,
286 are marked with blue circles in Fig. 5d.
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288  Figure 5. Spatial distribution of the trends in annual average temperature (a), total precipitation
289  (b), TWSA (c¢), and IntEVI (d) in the Asian endorheic basins (2001-2021). The black crosses (+)
290  indicate areas with a statistically significant (p < 0.05) trend (same as below). The circles in (d)
291  are typical regions selected with significant greening (blue) and browning (red) trend,

292 respectively.
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Figure 6. The trends of IntEVI averaged across Central Asia (CA), Caspian Sea (CS), Mongolia

Plateau (MGP), Northwest China (NC), Qinghai Tibet Plateau (QTP) and Western Asia (WA)
from 2001 to 2021.

We observed that most greening happened in arid and hyper-arid regions (Fig. 7).
Furthermore, among land cover types, irrigated cropland exhibited the largest IntEVI trend,
followed by rainfed cropland and shrubland (Fig. 7). By contrast, all land cover types in semi-
arid and (semi)-humid regions exhibited a non-significant trend in IntEVI.
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Figure 7. The trend of IntEVI from 2001 to 2021 for the major land cover types averaged across
the aridity index bins in the study area. Pixels’ values of IntEVI trend (linear slope) over the
entire study area are averaged by bin (every 0.05 increment) of aridity index.

3.3 Relative importance of temperature, precipitation, and TWSA in driving IntEVI trend

Both positive and negative correlations between IntEVI and temperature were observed
(Fig. 8a), while the correlation between IntEVI and precipitation was more prevailingly positive
over the study area (Fig. 8b). Contrasting correlations were found between IntEVI and TWSA in
the Northwest China (Tianshan Mountains and Altai Mountains) and Qinghai-Tibet Plateau
(including Kunlun Mountains) (Fig. 8c). Additionally, negative correlations were also found in
the Iran Plateau and Middle of the Mongolia Plateau, while the other zones totally presented
positive correlations (Fig. 8c).

The relative importance of temperature, precipitation, and TWSA in driving IntEVI
change was mapped using the RGB plot (Fig. 8d). It indicates that the change in IntEVI across
half of the study area can be explained mainly by changes in precipitation from 2001-2021, while
only 2% of change is caused primarily by temperature (Fig. 8d). The remaining area was almost
equally controlled by temperature, precipitation and TWSA. IntEVI trend in about 17% of areas
i1s mainly associated with the TWSA change, largely found in Northwest China, Qinghai Tibet
Plateau and Arabian Peninsula (Fig. 8d).
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Figure 8. Partial correlation coefficient between IntEVI and temperature (a), precipitation (b),
and TWSA (c¢) from 2002 to 2021. (d) Distribution of the relative importance among three
hydroclimatic factors to vegetation productivity trend across Asian endorheic basins with red
representing the temperature dominant zone, blue indicating the precipitation dominant zone, and
green representing the TWS dominant zone.

The relative importance of temperature, precipitation, and GRACE TWSA varied across
the aridity gradient. Precipitation played a dominant role in driving the vegetation productivity
trend across almost the entire aridity gradient and such dominance increased with the increase in
aridity. However, the dominance of precipitation gave way to TWSA as soon as moving into the
hyper-arid region, which can be interpreted as a decoupling of rainfall and vegetation
productivity trend and a switch from the dependence to atmospheric water to groundwater.
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Figure 9. Partial correlation coefficients between IntEVI and temperature (orange bars),

precipitation (blue bars), and TWSA (green bars) aggregated by aridity index bins in the study

area. The partial correlation coefficients over the entire study area are averaged by bin (every

0.05 or 0.5 increments) of the aridity index.

The significant vegetation greening in hyper-arid AEB was quite unusual and the
decoupling of such trend to rainfall was also very intriguing. To decipher the underlying driving
forces, we analyzed the changes in land cover types in different aridity zones across the AEB.
Our results indicated that there was a significant, 17.3%- and 4.3%-fold increase in the area of
irrigated cropland in the arid and hyper-arid AEB. By contrast, there was a significant, 2.6%- and
18.0%-fold decrease in the area of irrigated cropland in the semi-arid and (semi-) humid AEB
(Fig. 10). Putting together several lines of evidences, the observed greening in hyper-arid AEB
can be mainly attributed to the expansion of the irrigated cropland and such an intensified use of
groundwater can further explain the dramatic decline in TWSA leading to decoupling of

vegetation productivity and rainfall in such dry and harsh environment.
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Figure 10. Percent area change in irrigated cropland from 2000 to 2020.
4 Discussion

4.1 Vegetation trend in the AEB from 2001 to 2021 as revealed by MODIS EVI

This study showed that MODIS IntEVI averaged across the entire AEB increased
significantly during the 2001-2021 period, indicating an overall greening phenomenon. This is in
agreement with the recent studies reporting widespread vegetation greening in temperate arid
regions worldwide (Cortés et al., 2021; Fensholt et al., 2012; Piao et al., 2020).

Despite this consistency, we present our research to emphasize the heterogeneous spatial
distribution of vegetation greening, and perhaps more importantly, the varying driving forces of
the apparent greening trend in different regions. The AEB is a diverse and highly variable region,
and it has seen similarly variable change over the last two decades. Similar to the previous
studies, Mongolia Plateau, Northwest China, Qinghai Tibet Plateau, and Western Asia exhibited
the most significant greening phenomena (Ghorbanian et al., 2022; Zhao et al., 2022; Zhang et
al., 2023), and were responsible for more than 90% of the greening trend of the entire AEB,
respectively. In contrast, both Central Asia, Caspian Sea, and the Arabian Peninsula showed
oscillating trends of browning and greening which ultimately accounted for less than 10% of the
AEB greening (Lewinska et al., 2020; Xu et al., 2016).
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Reviewing the impacts of land cover type on vegetation change, we found that irrigated
cropland ’greened-up’ the most over the last 20 years, particularly in hyper-arid zones, and likely
represented oases cultivation efforts in basins and their surrounding regions (such as Tarim River
Basin in the southern Tianshan Mountains). We also found the same directional trend in a few
scattered areas in some mountainous regions (such as Hindu Kush Mountains), consistent with
results from Ma et al. (2019) and Zhao et al. (2022), albeit these changes were less pronounced
than those observed in oases. Similarly, greening trends were observed in the oases of Northwest
China perhaps due to the creation of artificial oases as a means of agricultural development (Ma
et al., 2019; Ning et al., 2021).

While previous studies have suggested that vegetation has degraded in Central Asia and
the Caspian Sea, our study did not confirm this as we only observed a fluctuating IntEVI, at least
within the past two decades (Hao et al., 2022; Li et al., 2015; Xu et al., 2016). We speculate that
the discrepancy between our results and the previous ones can be attributed to several reasons.
One possible explanation is the difference in sampling data. Previous studies mainly used the
GIMMS3g NDVI from NOAA/AVHRR sensors to detect vegetation trends during 1982-2015
(Du et al., 2019; Du et al., 2020; Li et al., 2015; Yuan et al., 2021; Yuan et al., 2022), while in
this study, we used the better calibrated MODIS vegetation indices products to analyze the trend
from 2001-2021. Vegetation in Central Asia and the Caspian Sea had indeed experienced
accelerating greening to browning reversals since 1994 (Pan et al., 2018), however, in the late
1990s, this degradation gradually slowed down and stalled especially in northern mid-latitude
(Yin et al., 2016). As we excluded data during that period of degradation, our results did not
include the browning observed in the mid 1990’s. Similarly, our results may be skewed spatially.
For example, in this study, Kazakhskiy Melkosopochnik (KM), where grassland covered more
than 70% of the areas and was also found to be the severest degradation region in Central Asia
(Li et al., 2015; Xu et al., 2016), was excluded from the AEB, which likely masked a large
proportion of browning (Dubovyk et al., 2016; Liu et al., 2021a).

4.2 Potential factors driving widespread greening trend in the AEB

It is reasonable to expect that water, represented in both input (precipitation) and loss
(evapotranspiration), is a major factor influencing the large-scale patterns of vegetation growth
in the AEB. Precipitation is the major and direct water supply of soil moisture in the AEB (Wang
et al., 2020), and unsurprisingly the relationship between IntEVI and precipitation showed an
overall highly positive correlation (Fig. 8b, Fig. 9). However, we also found an interesting
TWSA-driven pattern, especially the contrasting and dominant impact in Northwest China and
Qinghai Tibet Plateau. According to the land surface water balance equation, TWSA variation is
mainly influenced by hydroclimatic and anthropogenic water consumption. Therefore, TWSA
may be considered an integrative indicator of the water cycle (Pan et al., 2017), drought/soil
moisture (Pokhrel et al., 2021), and human activity intensity (An et al., 2021).

The change in irrigated cropland indicated that human irrigated agriculture has intensified
by 17.3% and 4.3% in hyper-arid and arid zones (Fig. 10), respectively, during the past two
decades. Irrigated cropland has expanded by more than 58% since the 1990s (Fu et al., 2022),
furthermore, a previous study suggested that approximately 70% of the increase in actual
evapotranspiration was attributed to increased river diversions for irrigation from groundwater
and glacial melt runoff, and this human disturbance is captured by changes in TWSA (Liu,
2022). With consideration of our results, this may indicate that human water consumption in the
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driest zones during the past several decades likely induces a more severe water scarcity in the
future, ultimately forming a vicious negative feedback loop. Our results imply that this
speculation could explain the observed sensitivity of vegetation in the Caucasus region and the
Aral Sea Basin to TWSA, given both their history of agricultural development and ‘“hot-dry”
climate change (Dehghanipour et al., 2020; Ghale et al., 2018; Yang et al., 2021).

Human change, however, is not all negative. Revegetation and restoration programs also
likely contributed to the greening trend as we observed across the region. For example, the
Chinese government has implemented many ecological restoration projects in Northwest China
(Cao et al., 2020; Vina et al., 2016; Wang et al., 2014; Yuan et al., 2014). These projects have
positive effects on the local environment (Dong et al., 2019; Wang et al., 2022; Yu et al., 2022)
and their contributions to the observed greening trend are revealed in this study (Fig. Sc-d).
However, it is worth noting that revegetation and ecological restoration projects also artificially
change the water supply-demand relationship (Cao et al., 2022), and in arid regions such as the
AEB, especially where precipitation is the single water supply, these restoration projects may
need to refocus, and re-prioritize sustainable constraints imposed by the regional water
availability, now and in the future (Du et al., 2021).

4.3 Limitations and future perspectives

From the data perspective, the 2-m air temperature data derived from the ERA-5
reanalysis dataset is a derivative product generated by combining model data with observations
from all sites across the world (Hersbach et al., 2020). Data quality is thus determined by the
number and the representativeness of weather stations. The potential to generalize this data is
highly variable, and depends on a host of factors, including topography. Meanwhile, due to the
coarse spatial resolution (0.5°), GRACE-TWSA pixels at the junction of basins, especially basins
with small areas, may actually cover different natural geographical units. For example, pixels in
the southern Tarim River Basin cover parts of the Kunlun Mountains, which doesn’t belong to
this basin (Fig. 5c¢).

We integrated the MOD13C2 EVI from the growing season as the indicator of vegetation
productivity. Other vegetation parameters such as LAl and GPP were also adopted to analyze
global vegetation characteristics and the response to climate change (Piao et al., 2014; Zhu et al.,
2016). Although these vegetation indices and parameters showed a consistent trend,
discrepancies were also observed (Zeng et al., 2022). Hence, results from the IntEVI may be
corroborated by other satellite proxies and field plots from the long-term ecological networks to
confirm the ecosystem productivity change (Guadagno et al., 2017). In addition, besides
temperature, precipitation, and terrestrial water storage we selected, vegetation change could also
be affected by a variety of other global change factors such as CO, fertilization and nitrogen
deposition (e.g., Zhu et al. 2016), which were not considered in this study.

Despite these limitations, this study still offers valuable insight into how vegetation has
changed over the last two decades in the AEB. These results, and our generalized observations
on the relation between climate, land cover type, aridity, and human development can guide
large-scale ecological restorations and sustainable plans to address the challenges of future
climate change in an extremely vulnerable environment. Future work should focus on
establishing long-term ground observations covering a large spatial gradient to confirm the
vegetation changes detected through satellite products (Piao et al., 2020). In addition, further
remote sensing to gather complementary data should be considered, such as aboveground
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biomass (AGB) derived from the GEDI spaceborne LiDAR mission and the Solar induced
chlorophyll fluorescence (SIF) derived from TanSat or OCO-2/3 spaceborne missions (Pan et al.,
2018).

5 Conclusions

In this study, we assessed the spatio-temporal vegetation variation trends encompassing
the key Asian endorheic basins during 2001-2021 using MODIS EVI. Furthermore, we analyzed
the relationship between vegetation change and a suite of hydroclimatic variables using second-
order partial correlation analysis. The results revealed an overall greening trend across the AEB,
though we observed extreme spatial heterogeneity. The greening trend was most pronounced in
Northwest China, Qinghai Tibet Plateau, and Western Asia. Interestingly, we found that while
precipitation had the dominant control effect in arid and semi-arid zones, vegetation change in
hyper-arid zones was most closely associated with water storage anomalies. Additionally, we
found that a significant expansion of irrigated cropland in (hyper-) arid zones was positively
correlated with greening, suggesting that some fraction of greening can be attributed to hyper-
arid agricultural development (such as oases cultivation). This study highlights the decisive
impact of hydroclimate conditions modulated by human activities on vegetation growth in the
arid and hyper-arid areas within the AEB, hence can guide the management of the fragile dryland
ecosystems by establishing sustainability constraints to agriculture expansion in the future.
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(https://podaac.jpl.nasa.gov/dataset/ TELLUS GRAC-
GRFO_MASCON_CRI_GRID_RL06_V2). And the EVI data of MOD13C2 product is available
at LP DAAC (https://lpdaac.usgs.gov/products/mod13¢2v006/). All the analyses and plots were
conducted using the MATLAB’s framework for statistical computing, available via
https://ww2.mathworks.cn/products/matlab.html (Version R2021a). All the maps were drew
using the ArcGIS Desktop’s framework, available via https://www.esri.com/en-
us/arcgis/products/index (Version 10.4).
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