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S1. Numerical Geodynamo Models

Here we provide further details on the numerical geodynamo models outlined in Sec-

tion 2.1. The dimensionless equations governing the system are: the momentum equation

Ek

Pm

[
∂u

∂t
+ (u · ∇) u

]
= −∇p− 2êz × u + Pm Ra

C

α

r

ro
êr + Ek∇2u + (∇×B)×B, (1)

the induction equation

∂B

∂t
= ∇× (u×B) +∇2B, (2)

the equation of evolution for the codensity

∂C

∂t
+ (u · ∇)C =

Pm

Pr
∇2C − γ, (3)

the continuity equation

∇ · u = 0 (4)

and the solenoidal condition for the magnetic induction

∇ ·B = 0. (5)

Here u, B and p are the (dimensionless) fluid velocity, magnetic induction and a modified

pressure which includes centrifugal forces, respectively. The codensity C can stand for αT

or αξ, depending on whether thermal or chemical convection is considered. Here T (ξ)

is the perturbation in temperature (light elements concentration) and α is the thermal

(compositional) expansion coefficient. The radial spherical coordinate is r and êr and êz

denote the unit vectors in the radial direction and along the rotation axis, respectively.

The above equations are obtained using the shell thickness d as length scale and the

magnetic diffusion time tη = d2/η as time scale. The magnetic induction B is scaled by
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(ρµ0Ωη)1/2, where ρ is the reference fluid density and µ0 the magnetic permeability of

vacuum.

The dimensionless control parameters in the above equations are the Ekman number

Ek, the Prandtl number Pr, the magnetic Prandtl number Pm (all defined in Section 2.1)

and the Rayleigh number

Ra =
go∆Cd

Ων
. (6)

Here go is gravity at the outer boundary and ∆C is a codensity scale which depends on

the convective driving mode. In thermally driven dynamos ∆C = αβd, where β is the

conductive temperature gradient at the outer boundary. Thermal dynamos are purely

bottom heated, hence γ = 0 in Equation (3). In chemical dynamos, the (dimensional)

homogeneous sink term −γ̃ in the codensity transport equation serves to balance the

codensity flux from the inner boundary. The codensity scale is ∆C = γ̃d2/η so that γ = 1

in Equation (3).

Thermal dynamos were run using the numerical implementation of Willis, Sreenivasan,

and Gubbins (2007) (further details on the code can be found in Davies et al., 2011).

Simulations modelling chemical convection were performed using the code MagIC (Wicht,

2002; Schaeffer, 2013, available at https://magic-sph.github.io).
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Pozzo, M., Davies, C., Gubbins, D., & Alfè, D. (2012). Thermal and electrical con-

ductivity of iron at Earth’s core conditions. Nature, 485 , 355–358. doi: 10.1038/

nature11031

Schaeffer, N. (2013). Efficient spherical harmonic transforms aimed at pseudospectral

numerical simulations. Geochemistry, Geophysics, Geosystems , 14 (3), 751–758. doi:

10.1002/ggge.20071

Sprain, C. J., Biggin, A. J., Davies, C. J., Bono, R. K., & Meduri, D. G. (2019).

An assessment of long duration geodynamo simulations using new paleomagnetic

modeling criteria (QPM). Earth and Planetary Science Letters , 526 , 115758. doi:

10.1016/j.epsl.2019.115758

Wicht, J. (2002). Inner-core conductivity in numerical dynamo simulations. Physics of

the Earth and Planetary Interiors , 132 (4), 281–302. doi: 10.1016/S0031-9201(02)

00078-X

Wicht, J., & Meduri, D. G. (2016). A gaussian model for simulated geomagnetic field

reversals. Physics of the Earth and Planetary Interiors , 259 , 45–60. doi: 10.1016/

j.pepi.2016.07.007

Willis, A. P., Sreenivasan, B., & Gubbins, D. (2007). Thermal core-mantle interaction:

Exploring regimes for “locked” dynamo action. Physics of the Earth and Planetary

Interiors , 165 (1), 83–92. doi: 10.1016/j.pepi.2007.08.002

December 12, 2020, 5:31pm



MEDURI ET AL.: NUMERICAL SIMULATIONS REPRODUCE PALAEOMAGNETIC BEHAVIOUR X - 5

(a) (b)Pm

10

3
5

Ek

2×10−3

10−3

3×10−4

D12 D12

Δ
Q
P
M

Δ
Q
P
M

0

5

10

15

20

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure S1: Same as Figure 1a,b but with the symbol colour coding the magnetic Prandtl num-
ber Pm. The simulation runs show no apparent dependency on Pm.
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Figure S2: Dipolarity as a function of its spherical harmonic degree of truncation (` = 4 and
` = 12 correspond to D4 and D12 respectively). Connected squares show run B, our most
palaeomagnetic-like simulation (the shaded region displays one standard deviation above and
below the dipolarity values). Connected circles display global palaeomagnetic field model recon-
structions (GGF100k, LSMOD.2, CALS10k.1b) and connected triangles present statistical GGP
models (TK03, BCE19, BB18). Connected diamonds show the historical field models gufm1
and IGRF-13. For further details on these observational models, see Section 3.1. Note that the
dipolarities of the palaeomagnetic field models, which are well resolved up to ` = 4, saturate for
degrees ` ≥ 4 as expected.
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Figure S3: Same as Figure 2 but for two representative Rayleigh number tracks of the chemical
and the thermal dynamos. See the legend at the bottom right for the meaning of the symbols
and Figure 1 for additional information on the tracks shown and on runs A and F.
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Figure S4: Normalised equatorially symmetric (even, E) and non-dipolar equatorially antisym-
metric (odd, O) magnetic energy at the CMB as a function of the dipolarity D12 for the three
Rayleigh number tracks shown in Figure 3. E (O) is defined as the ratio of the time-averaged
mean CMB energy in the ` + m even (odd, excluding the axial dipole) spherical harmonics of
degrees 1 ≤ ` ≤ 10 to the time-averaged total mean CMB energy in these degrees (excluding the
axial dipole). We recall that the axial dipole does not contribute to VGP dispersion.
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Table S1: Control parameters and time-averaged properties of the numerical geodynamo simula-
tions explored in this study. Column 1 lists the model name: the prefix MAG (LED) refers to a
simulation performed using the MagIC (Leeds) code (runs A–F are the selected cases discussed
in the main article). 28 of these simulations were reported in previous studies (see the references
listed in column 2: WM16 for Wicht and Meduri (2016) and S19 for Sprain et al. (2019); the
model name assigned in these studies is given in parenthesis). The system control parameters,
defined in Sections 2.1 and S1, are: the Ekman number Ek, the Rayleigh number Ra and the
magnetic Prandtl number Pm (columns 3 to 5); the Prandtl number Pr is 1 and the shell aspect
ratio is χ = 0.35 in all simulations. Column 6 details the convective driving mode (chemical
or thermal). Column 7 lists the codensity boundary conditions (BCs): fixed codensity (C) or
fixed codensity flux (F), with the first (second) letter referring to the inner (outer) boundary.
ε = (qmax − qmin)/〈q〉 is the amplitude of the lateral heat flux variations imposed at the outer
boundary, which is given in column 8. Here qmin, qmax and 〈q〉 are the minimum, maximum and
mean outer boundary heat flux, respectively. The heat flux pattern is a recumbent spherical
harmonic of degree ` = 2 and order m = 0. ε = 0 refers to a homogeneous outer boundary.
Column 9 lists the magnetic BCs: electrically insulating (I) or conducting (C), with the first
(second) letter referring to the inner (outer) boundary. tsim is the total simulation time (in
units of the outer core magnetic diffusion time d2/η; column 10). Columns 11 and 12 list the
dipolarity D12 and D4 respectively. Column 13 details the relative transitional time τT. The
reversing regime (column 14) is defined using τT as in S19: stable dipolar (D) for τT < 0.0375,
reversing (R) for 0.0375 ≤ τT ≤ 0.15, multipolar (M) for τT > 0.15. The last column lists the
magnetic Reynolds number Rm = Ud/η, where U is the time-averaged RMS core flow velocity.
We note here that S19 reported a wrong Rm for LEDA021 (Model 8 in S19). File uploaded
separately (TableS1.xlsx).
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Table S2: Estimated QPM observables of Earth for the last 10 Myr (from Sprain et al., 2019).
Median values and 95% confidence intervals of a, b, and max(|∆I|) are obtained from a boot-
strapping technique. A range is instead estimated for V% and τT. The lower (upper) bound of
V% comes from the median value of the VDM distribution in the interval 0− 1 Ma (1− 10 Ma)
of the PINT database. The number of reversals observed since 10 Ma (≈ 50, obtained from the
geomagnetic polarity timescale of Ogg, 2012), an excursion rate of 10 Myr−1, and an average
event duration of 2.5 kyr (10 kyr) define the lower (upper) bound of τT. See Sprain et al. (2019)
for further details.

a [◦] b max(|∆I|) [◦] V% τT

11.33+1.93
−1.63 0.256+0.043

−0.050 7.04+1.35
−1.40 0.534− 0.863 0.0375− 0.15

Table S3: Least-squares regression coefficients of the quadratic fits (i) ∆QPM = c0 + c1D12 +
c2(D12)

2 and (ii) ∆QPM = c0 + c1D4 + c2(D4)
2 shown in Figure 1. The last column lists the

coefficient of determination R2.

Fit Figure c0 c1 c2 R2

(i)
1a 32.4 −128.6 142.0 0.85
1b 32.0 −114.1 118.9 0.79

(ii)
1c 65.2 −180.8 132.0 0.85
1d 45.6 −120.3 89.5 0.84
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Table S4: Dipolarity D12, modified dipolarity D4 and QPM metrics for the simulation runs A–F and the observational
field models discussed in the main article. Column 2 lists the time interval spanned. In the numerical simulations, time
is rescaled assuming a magnetic diffusion time d2/η = 234 kyr based on the electrical conductivity of Pozzo et al. (2012).
Columns 3 and 4 report D12 and D4 respectively, with errors denoting standard deviations. Columns 5 to 8 list median
values of the equatorial VGP dispersion a and latitudinal VGP dispersion b, the maximum absolute inclination anomaly
max(|∆I|), and the variability of the VDM distribution V% respectively (errors denote 95% confidence intervals). Column
9 details the relative transitional time τT. Columns 10 to 15 report misfits for each of these observables and the total misfit
∆QPM. All measures are dimensionless except a and max(|∆I|) which are given in degrees.

Model
Misfit

Time interval D12 D4 a [◦] b max(|∆I|) [◦] V% τT a b ∆I V% τT ∆QPM

Run A 8.3 Myr 0.53± 0.09 0.77± 0.10 11.56+0.80
−0.77 0.23+0.03

−0.03 5.8+3.2
−3.1 0.49+0.03

−0.03 0.008 0.09 0.37 0.27 1.08 1.51 3.32

Run B 8.6 Myr 0.49± 0.11 0.74± 0.13 13.24+1.06
−1.02 0.24+0.04

−0.04 7.3+4.0
−3.6 0.62+0.03

−0.03 0.018 0.65 0.22 0.05 0.37 1.34 2.63

Run C 5.2 Myr 0.45± 0.13 0.69± 0.16 15.57+1.46
−1.27 0.24+0.05

−0.05 7.1+4.6
−4.1 0.79+0.04

−0.04 0.046 1.32 0.19 0.01 0.44 0.80 2.77

Run D 20.3 Myr 0.39± 0.14 0.65± 0.19 16.92+1.89
−1.74 0.24+0.07

−0.08 7.3+5.3
−5.0 0.91+0.05

−0.05 0.065 1.53 0.14 0.04 1.00 0.52 3.23

Run E 13.6 Myr 0.37± 0.07 0.62± 0.10 17.56+1.13
−1.05 0.26+0.04

−0.05 10.8+4.5
−4.3 0.64+0.03

−0.03 0.010 2.09 0.09 0.65 0.30 1.48 4.61

Run F 3.7 Myr 0.53± 0.06 0.80± 0.07 11.16+0.63
−0.61 0.16+0.02

−0.03 6.9+1.2
−1.2 0.45+0.02

−0.02 0 0.07 1.25 0.06 1.33 1.67 4.37

TK03 - 0.56± 0.14 0.79± 0.14 10.95+0.97
−0.86 0.24+0.03

−0.03 2.44+3.23
−2.91 0.51+0.03

−0.03 0.007 0.15 0.18 0.99 1.01 1.54 3.87

BCE19 - 0.56± 0.14 0.79± 0.14 10.14+0.98
−0.87 0.25+0.03

−0.03 2.22+3.21
−2.73 0.50+0.03

−0.03 0.004 0.46 0.10 1.05 1.03 1.59 4.23

BB18 - 0.54± 0.18 0.76± 0.18 12.53+1.35
−1.23 0.27+0.05

−0.05 2.27+3.92
−3.65 0.64+0.03

−0.03 0.035 0.38 0.12 0.90 0.29 1.05 2.74

GGF100k 0− 100 ka - 0.84± 0.08 - - - - 0 - - - - - -

LSMOD.2 30.1− 49.9 ka - 0.74± 0.18 - - - - 0.030 - - - - - -

CALS10k.1b 0− 10 ka - 0.92± 0.04 - - - - 0 - - - - - -

gufm1 1582− 1987 AD 0.79± 0.06 0.88± 0.03 - - - - 0 - - - - - -

IGRF-13 1900− 2020 AD 0.69± 0.03 0.82± 0.02 - - - - 0 - - - - - -
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Table S5: Additional summary simulation outputs used to construct Figures 1–3 in the main
article. Columns 2 to 5 report median values of the equatorial VGP dispersion a (in degrees) and
latitudinal VGP dispersion b, the maximum absolute inclination anomaly max(|∆I|) (in degrees),
and the variability of the VDM distribution V% respectively. Columns 6 to 10 list misfits of a,
b, max(|∆I|), V%, and τT respectively. The total misfit ∆QPM and total score QPM are given
in columns 11 and 12, respectively. The last two columns detail the time-averaged dipole field
strength at the CMB, Bd, and its standard deviation σd in units of (ρµ0Ωη)1/2. File uploaded
separately (TableS5.xlsx).
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