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S1. Governing equations Here we provide further details on the numerical geodynamo

models employed in this study. The dimensionless equations governing the system are:

the momentum equation

Ek

Pm

[
∂u

∂t
+ (u · ∇) u

]
= −∇p− 2êz × u +

Pm Ra

Pr
C
r

ro
êr + Ek∇2u + (∇×B)×B, (1)

the induction equation

∂B

∂t
= ∇× (u×B) +∇2B, (2)

the equation of evolution for the codensity

∂C

∂t
+ (u · ∇)C =

Pm

Pr
∇2C + γ, (3)

the continuity equation

∇ · u = 0 (4)

and the solenoidal condition for the magnetic induction

∇ ·B = 0. (5)

Here u, B and p are the (dimensionless) fluid velocity, magnetic induction and a modified

pressure which includes centrifugal forces, respectively. The codensity C can stand for the

super-adiabatic temperature fluctuations or the relative contribution of light elements in

the outer core. The radial spherical coordinate is r and êr and êz denote the unit vectors

in the radial direction and along the rotation axis, respectively. The above equations

are obtained using the shell thickness d as length scale and the magnetic diffusion time

tη = d2/η as time scale. The magnetic induction B is scaled by (Ωρµ0η)1/2, where ρ is

the reference fluid density and µ0 the magnetic permeability of vacuum.
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The dimensionless control parameters in the above equations are the Ekman number

Ek, the Prandtl number Pr, the magnetic Prandtl number Pm (defined in Section 2.1)

and the Rayleigh number Ra. Thermal dynamos are purely bottom heated, hence γ = 0

in Equation (3), and the Rayleigh number is defined as

Ra =
αgoβd

2

Ωκ
, (6)

where α is the fluid thermal expansivity, go is gravity at the outer boundary and β is

the conductive temperature gradient at the outer boundary in the chemical dynamos. In

chemical dynamos the Rayleigh number reads

Ra =
go∆C d

Ωκ
(7)

where ∆C is a codensity scale that depends on the inner codensity boundary condition

employed (Wicht & Tilgner, 2010; Wicht & Meduri, 2016). The homogeneous sink term

γ in Equation (3) serves to balance the codensity flux from the inner boundary.

The thermal dynamos were run using the numerical implementation of Willis, Sreeni-

vasan, and Gubbins (2007) (further details on the code can be found in Davies et al.,

2011). Simulations modelling pure chemical convection were instead performed using the

code MagIC (Wicht, 2002; Schaeffer, 2013, available at https://magic-sph.github.io).
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Figure S1. Dipolarity as function of its spherical harmonic degree of truncation (` = 4 and

` = 12 correspond to D4 and D12 respectively). Connected squares present run B, our most

palaeomagnetic-like simulation (one standard deviation intervals above and below the dipolarity

values are highlighted by the grey shaded region). Global palaeomagnetic field model reconstruc-

tions are shown by the connected blue circles and the statistical GGP models by the connected

red triangles (see the legend inset). Connected diamonds show the historical field model gufm1.

Note that the dipolarities of the palaeomagnetic field reconstructions saturate for degrees ` ≥ 5,

since these models are well resolved up to ` = 4.
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Figure S2. Same as Figure 2 but for two selected Rayleigh number tracks of the chemical

and the thermal dynamos (the Rayleigh number increases for decreasing D12). See the legend at

the bottom right for the meaning of the symbols and Figure 1 for additional information on the

selected tracks and on runs A and F.
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Figure S3. Dipolarity D12 as function of the normalised non-dipolar CMB energy for the

odd (O) and even (E) spherical harmonic contributions. O (E) is a measure for the relative

contribution of the equatorially antisymmetric (symmetric) field and is defined as the ratio of

the time-averaged CMB Lowes power of the `+m odd (even) harmonics for degrees 2 ≤ ` ≤ 8 to

the time-averaged total power in these degrees. The three Rayleigh number tracks are the same

of those shown in Figure 3.

Table S2. Regression coefficients of the quadratic fits (1) Qm
PM = c0 + c1D12 + c2(D12)

2

and (2) Qm
PM = c0 + c1D4 + c2(D4)

2 shown in Figure 1. The last column lists the coefficient of

determination R2.

Fit Driving c0 c1 c2 R2

(1)
Chem. 32.4 −128.6 142.0 0.85
Therm. 32.0 −114.1 118.9 0.79

(2)
Chem. 65.2 −180.8 132.0 0.85
Therm. 45.6 −120.3 89.5 0.84
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Table S3. Dipolarity D12, modified dipolarity D4 and QPM metrics for the selected simulation

runs A–F and the observational field models discussed in the main text. Standard deviations of

D12 andD4 are reported as errors. All measures are dimensionless except the equatorial dispersion

a and the maximum absolute inclination anomaly max(|∆I|) which are given in degrees.

Model
Misfit

D12 D4 a b max(|∆I|) V% τT a b ∆I V% τT Total

Run A 0.53± 0.09 0.77± 0.10 11.56+0.80
−0.77 0.23+0.03

−0.03 5.8+3.2
−3.1 0.49+0.03

−0.03 0.01 0.09 0.37 0.27 1.08 1.51 3.32

Run B 0.49± 0.11 0.74± 0.13 13.24+1.06
−1.02 0.24+0.04

−0.04 7.3+4.0
−3.6 0.62+0.03

−0.03 0.02 0.65 0.22 0.05 0.37 1.34 2.63

Run C 0.45± 0.13 0.69± 0.16 15.57+1.46
−1.27 0.24+0.05

−0.05 7.1+4.6
−4.1 0.79+0.04

−0.04 0.05 1.32 0.19 0.01 0.44 0.80 2.77

Run D 0.39± 0.14 0.65± 0.19 16.92+1.89
−1.74 0.24+0.08

−0.08 7.3+5.3
−5.0 0.91+0.05

−0.05 0.07 1.53 0.14 0.04 1.00 0.52 3.23

Run E 0.37± 0.07 0.62± 0.10 17.56+1.13
−1.05 0.26+0.04

−0.05 10.8+4.5
−4.3 0.64+0.03

−0.03 0.01 2.09 0.09 0.65 0.30 1.48 4.61

Run F 0.53± 0.06 0.80± 0.07 11.16+0.63
−0.61 0.16+0.02

−0.03 6.9+1.2
−1.2 0.45+0.02

−0.02 0.00 0.07 1.25 0.06 1.33 1.67 4.37

TK03 0.56± 0.14 0.79± 0.14 10.95 0.24 2.44 0.51 0.007 0.15 0.18 0.99 1.01 1.54 3.87
BCE19 0.56± 0.14 0.79± 0.14 10.14 0.25 2.22 0.50 0.004 0.46 0.10 1.05 1.03 1.59 4.23
BB18 0.54± 0.18 0.76± 0.18 12.70 0.27 2.16 0.71 0.035 0.38 0.12 0.90 0.29 1.05 2.74

GGF100k - 0.84± 0.08 - - - - 0.00 - - - - - -
LSMOD2 - 0.74± 0.18 - - - - 0.03 - - - - - -
CALS10k.1b - 0.92± 0.04 - - - - 0.00 - - - - - -
gufm1 0.79± 0.06 0.88± 0.03 - - - - 0.00 - - - - - -
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Table S4. QPM observables estimated for Earth (from Sprain et al., 2019). All observables are

dimensionless except the equatorial dispersion a and the maximum absolute inclination anomaly

max(|∆I|) which are reported in degrees. The errors denote the estimated 95% confidence

intervals or the assumed bounds.

a b max(|∆I|) V% τT

11.33+1.93
−1.63 0.26+0.04

−0.05 7.04+1.35
−1.40 0.70+0.17

−0.17 0.094+0.056
−0.056
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Table S1. Control parameters and time-averaged properties of the numerical geodynamo

simulations explored in this study. Column 1 lists the model name; the prefix MAG (LED) refers

to a simulation performed using the MagIC (Leeds) code (runs A–F are the cases discussed in the

main text). 28 of these simulations were reported in previous studies (see the references listed

in column 2: WM16 for Wicht and Meduri (2016) and S19 for Sprain et al. (2019); the model

name assigned in these studies is given in parenthesis). The system control parameters, defined

in Sections 2.1 and S1, are: the Ekman number Ek, the Rayleigh number Ra and the magnetic

Prandtl number Pm. The Prandtl number Pr is 1 and the shell aspect ratio is χ = 0.35 in all

simulations. Column 6 details the convective driving mode (chemical or thermal). Column 7

lists the codensity boundary conditions (BCs): fixed codensity (C) or fixed codensity flux (F),

with the first (second) letter referring to the inner (outer) boundary. ε = (qmax − qmin)/q is the

amplitude of the lateral heat flux variations imposed at the outer boundary. Here qmin, qmax and

q are the minimum, maximum and average outer boundary heat flux, respectively. The heat

flux pattern is a recumbent spherical harmonic of degree ` = 2 and order m = 0. ε = 0 refers

to a homogeneous outer boundary. Column 9 lists the magnetic BCs: electrically insulating (I)

or conducting (C), with the first (second) letter referring to the inner (outer) boundary. tsim is

the total simulation time (in units of the outer core magnetic diffusion time d2/η). τT and D12

are the relative transitional time and the dipolarity defined in the main article. The last column

details the magnetic Reynolds number Rm = Ud/η, where U is the time-averaged RMS core flow

velocity. We note here that S19 report a wrong Rm for LEDA021 (Model 8).

Table S5. Additional summary simulation outputs used to construct Figures 1–3 in the main

article. For definitions of the reported measures see the main text.
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