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ABSTRACT: An outstanding challenge in modeling the radiative properties of stratiform rain

systems is an accurate representation of the mixed-phase hydrometeors present in the melting

layer. The use of ice spheres coated with meltwater or mixed-dielectric spheroids have been

used as rough approximations, but more realistic shapes are needed to improve the accuracy

of the models. Recently, realistically structured synthetic snowflakes have been computationally

generated, with radiative properties that were shown to be consistent with coincident airborne radar

andmicrowave radiometer observations. However, melting such finely-structured ice hydrometeors

is a challenging problem, and most of the previous efforts have employed heuristic approaches.

In the current work, physical laws governing the melting process are applied to the melting of

synthetic snowflakes using a meshless-Lagrangian computational approach henceforth referred

to as the Snow Meshless Lagrangian Technique (SnowMeLT). SnowMeLT is capable of scaling

across large computing clusters, and a collection of synthetic aggregate snowflakes from NASA’s

OpenSSP database with diameters ranging from 2–10.5 mm are melted as a demonstration of the

method. To properly capture the flow of meltwater, the simulations are carried out at relatively

high resolution (15 𝜇𝑚), and a new analytic approximation is developed to simulate heat transfer

from the environment without the need to simulate the atmosphere explicitly.
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1. Background and Motivation29

Over the span of several decades leading up to the present, a great number of observational and30

theoretical studies of melting precipitation have been carried out, motivated by the expectation that31

an improved knowledge of the properties and distributions of melting hydrometeors could have32

impacts on remote sensing, communications, and weather prediction. Early studies of melting33

precipitation, in particular, emphasized in situ or laboratory observations of individual snow34

particles (Knight 1979; Matsuo and Sasyo 1981; Rasmussen and Pruppacher 1982; Rasmussen35

et al. 1984; Fujiyoshi 1986; Oraltay and Hallett 1989, 2005; Mitra et al. 1990; Misumi et al. 2014;36

Hauk et al. 2016). These studies revealed characteristic phases of hydrometeor melting, starting37

with minute drops forming at the tips of fine ice structures, followed by movement of liquid by38

the action of surface tension toward linkages between these structures; then to complete melting39

of the fine structures and flow of meltwater to the junctions of coarser ice structures, and finally40

to the collapse of the main ice frame and meltwater forming a drop shape (Mitra et al. 1990).41

Complementary field observations have provided information regarding the vertical structure and42

bulk properties of melting hydrometeor layers (Leary and Houze 1979; Stewart et al. 1984; Willis43

and Heymsfield 1989; Fabry and Zawadzki 1995; Heymsfield et al. 2002, 2015, 2021; Tridon et al.44

2019; Mróz et al. 2021). These studies inferred the role of hydrometeor self-collection, leading to45

larger aggregates of ice crystals with relatively low fall speeds above the freezing level in stratiform46

precipitation events. In the early stages of melting just below the freezing level, these snowflakes47

produce a peak of high radar reflectivity, followed by a decrease of reflectivity within a few hundred48

meters of the freezing level as the melting hydrometeors ultimately collapse into raindrops and49

acquire greater fall speeds.50

In parallel, several models of hydrometeor melting have been developed, including those in51

which the initial ice hydrometeors were assumed to be spheroidal (Mason 1956; Yokoyama and52

Tanaka 1984; Klaassen 1988; D’Amico et al. 1998; Szyrmer and Zawadzki 1999; Bauer et al. 2000;53

Olson et al. 2001; Battaglia et al. 2003), and those where realistically-structured, non-spherical54

ice geometries were assumed initially (Botta et al. 2010; Ori et al. 2014; Johnson et al. 2016;55

Leinonen and von Lerber 2018). However, of the latter, only Leinonen and von Lerber (2018)56

applied physical laws in their melting simulations. Numerous additional studies either relied upon57

previously-developed melting models or used heuristic descriptions of melting hydrometeors as58
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the basis for calculating hydrometeor microwave scattering properties (Meneghini and Liao 1996,59

2000; Russchenberg and Ligthart 1996; Fabry and Szyrmer 1999;Walden et al. 2000; Marzano and60

Bauer 2001; Adhikari and Nakamura 2004; Liao and Meneghini 2005; Zawadzki et al. 2005; Liao61

et al. 2009; Tyynelä et al. 2014; von Lerber et al. 2014). Generally speaking, the models developed62

in the aforementioned investigations can be used to reproduce the basic radar characteristics of63

melting layers, but there are quantitative differences in the simulated attenuation and backscatter that64

can be linked to assumptions regarding each modeled hydrometeor’s environment, geometry and65

fall speed, internal meltwater distribution, aggregation/breakup, and derived dielectric properties.66

Regarding applications of our knowledge of melting hydrometeor physics, it is understood that67

the relatively strong attenuation by melting precipitation is likely to have a greater influence on68

wireless and satellite communication systems, as less congested, higher-frequency bands are being69

exploited in these systems (Zhang et al. 1994; Panagopoulos et al. 2004; Siles et al. 2015). In70

numerical simulations of weather systems, melting precipitation contributes to a latent cooling71

of the environment that can have dynamical impacts (Lord et al. 1984; Szeto et al. 1988; Tao72

et al. 1995; Barth and Parsons 1996; Szeto and Stewart 1997; Unterstrasser and Zängl 2006;73

Phillips et al. 2007) and different parameterizations of melting hydrometeor microphysics can lead74

to different distributions of precipitation types at ground level (Thériault et al. 2010; Frick et al.75

2013; Geresdi et al. 2014; Planche et al. 2014; Loftus et al. 2014; Cholette et al. 2020). However,76

explicit descriptions of partially melted hydrometeors in the microphysics schemes of prediction77

models are a relatively recent development, and improvements in both the representation of melting78

hydrometeors and the assimilation of melting-layer-affected reflectivities and radiances should be79

anticipated.80

Simulating melting precipitation is challenging because it involves complex time-varying bound-81

aries, multiple phases, contact forces, as well as fluid processes that progress at a time scale much82

smaller than the time scale of melting. To simulate the melting process rigorously requires a83

numerical method to approximate continuum physics equations that are generally expressed in the84

form of partial differential equations (PDEs). The complexity of the boundaries makes traditional85

finite-difference, finite-element, or finite-volume approaches difficult or intractable to apply. In86

contrast, the meshless-Lagrangian particle-based approach commonly referred to as Smoothed87

Particle Hydrodynamics (SPH) can handle deformable boundaries readily and provides a gen-88
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eral prescription for encoding continuum physics equations into the particle dynamics. SPH was89

first introduced (independently) by Gingold and Monaghan (1977) and Lucy (1977) to simulate90

astrophysical phenomena. Since then, among others applications, it has been used extensively91

to simulate complex fluid-flows and heat conduction. Examples of the use of SPH to simulate92

melting ice can be found in computer graphics, and in a preliminary investigation, we explored93

the adaptation of the approach of Iwasaki et al. (2010) to melt snowflakes (Kuo and Pelissier94

2015). Motivated by this and earlier studies, and to gain a more complete understanding of the95

physics of melting precipitation, an SPH physics-based numerical method has been developed for96

simulating the evolving properties of fully three-dimensional melting hydrometeors with realistic97

shapes (snowflakes).98

While SPH allows the microphysical processes of melting precipitation to be simulated directly99

from the corresponding continuum physics equations, the approach is compute intensive and100

requires parallel computing to be of practical use. To address this, an efficient numerical imple-101

mentation, the SnowMeshless Lagrangian Technique (SnowMeLT), is developed that is capable of102

scaling across large computing clusters. In this work, SnowMeLT is used to melt snowflakes with103

diameters of up to ∼ 1 cm at a resolution of 15 𝜇𝑚. This improves on the work of Leinonen and von104

Lerber (2018) where a resolution of 40 𝜇𝑚 was used to melt snowflakes with diameters of up to105

5.6 mm. The increase in resolution is particularly important for the types of synthetic snowflakes106

considered here, since they are composed of crystals that typically have a thickness of only about107

a hundred micrometers or less. SnowMeLT also incorporates recent advances that provide a more108

accurate treatment of free-surface flows. Another notable difference is the formulation of the heat109

transfer from the surrounding environment. To avoid the prohibitively large cost of simulating the110

surrounding environment, Leinonen and von Lerber (2018) simplified the conduction by disregard-111

ing the effects of the meltwater, and used the floating random walk approach of Haji-Sheikh and112

Sparrow (1966) to solve for the heat transfer between the ice surface and a far-field temperature113

value prescribed at some large radial distance from the center of the melting hydrometeor. Here,114

a method for specifying the heat transfer from the environment is developed using an SPH formu-115

lation of the heat conduction equation that includes conduction through the meltwater, and still116

avoids simulating the surrounding environment explicitly. The approach relies on the assumption117

of a uniform air temperature near to the hydrometeor, and a far-field thermal boundary condition118
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based on the steady-state conduction of heat through an environment with uniform conductivity119

and radial symmetry. Also different from Leinonen and von Lerber (2018), SnowMeLT uses a120

curvature-based surface-tension force derived directly from the continuum-surface-force (CSF)121

model and contact forces derived from Young’s Equation, rather than the more heuristic approach122

of using (macroscopic) pair-wise attractive forces inspired by molecular cohesion models.123

To demonstrate the applicability of SnowMelT, a set of eleven synthetic snowflakes are selected124

from the NASA OpenSSP database (Kuo et al. 2016) and melted. The selected hydrometeors are125

comprised of smaller individual “pristine" dendritic crystals that are aggregated to create snowflakes126

of larger sizes. Their diameters and masses range from 2.1 – 10.5 mm and 1.8 – 6.9 mg. The127

geometry of the selected synthetic snowflakes is quite complex and provides a good demonstration128

of the general applicability of SnowMeLT. Additionally, the single scattering properties of synthetic129

snowflakes from this database have been successfully used to improve the representation of snow130

in active/passive microwave remote sensing estimation methods for precipitation (Olson et al.131

2016). In view of this, it is conceivable that mixed-phase hydrometeors generated by melting132

theses synthetic snowflakes could lead to improved electromagnetic modeling of the melting layer133

in remote sensing methods, and as a result, the work presented in this study also demonstrates the134

potential of SnowMeLT for these methods.135

This paper is intended to be largely self-contained, with derivations of key equations provided in136

the appendices. In section 2, a brief description of SPH is given that introduces the key concepts137

and discusses challenges in its application to melting snowflakes, and in section 3, the formulation138

of the microphysics of SnowMeLT is developed in detail. In section 4, the deformation of a139

cube of water into a spherical drop and into a sessile drop on an ice slab is presented, as well140

as a comparison between SnowMeLT and a finite-difference, multi-shell approach for melting ice141

spheres, followed by the results for the aforementioned set of aggregate snowflakes. In section 5,142

the article concludes with an overview of the present implementation and the steps required to143

produce mixed-phased hydrometeors for the purpose of modeling the melting layers of stratiform144

precipitation events.145
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2. Smoothed Particle Hydrodynamics146

While SPH was originally used to simulate fluid flows (as the name suggests), it provides a147

prescription for simulating almost any set of (coupled) partial differential equations (PDEs) and148

has been applied to a much larger class of phenomena since its conception. In contrast to methods149

that use approximate derivatives (e.g., a finite-difference) of continuum fields, SPH uses exact150

derivatives of approximate fields. Importantly, SPH is a meshless particle-based approach, and as151

such, can accommodate the time-varying boundaries of melting snowflakes— a crucial component152

that makes SPH a viable candidate for the present application. However, melting snowflakes with153

SPH has many challenges, especially the simulation of thin layers of meltwater. In section a, a154

brief description of SPH is given that introduces the particle interpretation of SPH, key concepts,155

and the notation used throughout the paper, while in section b, issues related to the simulation of156

thin layers of meltwater are discussed along with the approach used in this work.157

a. A Brief Introduction to SPH158

SPH is most intuitively understood as a particle-based approach in which fluids, gases, and159

solids are represented as a system of interacting point-particles or SPH-particles. However, its160

mathematical formulation is based on the use of an interpolating kernel to approximate continuum161

fields that evolve according to the underlying dynamics being simulated. As a result, SPH is most162

naturally described as an interpolating method, from which the particle interpretation follows as a163

consequence of formulating a suitable numerical algorithm. The aim of this section is to introduce164

the concepts required to formulate the microphysical processes described in section 3. A more165

in-depth introduction to SPH can be found in, e.g., Monaghan (1992).166

The fundamental approximation in SPH is the use of an interpolation kernel to define interpolated167

or “smoothed" approximations of correspondingfields. As an example, the SPH-field for the density168

is given by169

⟨𝜌(r)⟩ =
∫
𝑉

𝜌(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ , (1)

whereW(|r− r′|, ℎ) denotes the smoothing kernel, and ⟨·⟩ has been used to indicate a smoothed170

field. The smoothing kernel is assumed to be positive, radially centered at r, and monotonically171
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decreasing with |r− r′| with a characteristic smoothing length, ℎ, which determines the resolution172

of the SPH simulation. As the smoothing length vanishes, to recapture the original field, the173

smoothing kernel should have the property174

lim
ℎ→0

W(∥r− r′∥, ℎ) = 𝛿3(r− r′) . (2)

Perhaps the most natural choice is the Gaussian kernel,175

W(∥r− r′∥, ℎ) = 1
𝜋3/2ℎ3 exp

(
−𝑟2

ℎ2

)
, (3)

which is well known to satisfy this condition and was the original choice made by Gingold and176

Monaghan (1977) and Lucy (1977). The form of the smoothing kernel is important for both177

computational and numerical reasons, and a significant amount of work has gone into the design178

of “good" kernels. In this work, we follow the recommendation of Dehnen and Aly (2012) and179

employ the Wendland C2 kernel; see, appendix A.180

To evaluate (numerically) the integral in Eq. (1), the smoothing kernel is truncated after an181

appropriate distance depending on how rapidly the kernel falls off. For the Wendland C2 kernel,182

it is sufficient to approximate the integral with support out to one smoothing length. The density183

field in Eq. (1) then becomes184

⟨𝜌(r)⟩ ≈
∫
Ω

𝜌(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ , (4)

where Ω denotes the ball 𝐵ℎ (∥r− r′∥) = {∥r− r′∥ : ∥r− r′∥ ≤ ℎ}. This integral can now be185

approximated by the finite sum,186

⟨𝜌⟩𝑖 =
∑︁
𝑗∈Ω

𝜌 𝑗W𝑖 𝑗 Δ𝑉 𝑗 , (5)

where the positions for r and r′ have been replaced with r𝑖 and r 𝑗 , respectively, and the notation187

⟨·⟩𝑖 is used to indicate a finite-sum approximation of an SPH-field. To simplify the notation, the188

density field, 𝜌(r𝑖), and smoothing kernel,W(∥r− r′∥, ℎ), are written as 𝜌𝑖 andW𝑖 𝑗 . Noticing189
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𝜌 𝑗 Δ𝑉 𝑗 equals the mass contained in the volume Δ𝑉 𝑗 , the density can be expressed as190

⟨𝜌⟩𝑖 =
∑︁
𝑗∈Ω

𝑚 𝑗W𝑖 𝑗 . (6)

This form implies the particle interpretation of SPH.Namely, the interpolating points are considered191

to be point-mass particles or SPH-particles with fields, such as the density field, computed by192

taking an average over nearby SPH-particles. Here we have used the density field as an example.193

In general, SPH-fields are approximated by,194

⟨ 𝑓 ⟩𝑖 =
∑︁
𝑗∈Ω

𝑓 𝑗W𝑖 𝑗 Δ𝑉 𝑗 , (7)

and their derivatives can be computed analytically in terms of the derivatives of the smoothing195

kernel (see appendix A).196

In SPH, the dynamics of the system are determined by prescribing SPH-particle interactions197

derived from the underlying equations of the physical processes being simulated. In section 3, the198

formulation of the dynamics of SnowMeLT is described in detail.199

Fig. 1. Depiction of the SPH averaging volume (Ω) and surface (𝑑Ω) in the interior and at the free surface.
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b. Thin Layers of Meltwater and Free-Surface Flows200

One of the challenges of using SPH to melt snowflakes is simulating the free-surface flow of201

thin layers of meltwater. Free-surface flows are characterized by the presence of an evolving202

interface between liquid and air where there are no surface-parallel stresses. Imposing boundary203

conditions and maintaining an accurate interpolation near a free surface is difficult in SPH. In many204

applications, for example dam break simulations, the free surface has little effect on the overall205

dynamics since the surface of the fluid is comparatively small, and as a result, as long as the surface206

dynamics are not of particular interest, it is not a significant concern. However, free-surface flows207

are critical when simulating the movement of thin layers of meltwater on the ice structures of208

melting precipitation. The main difficulty arises from the absence of SPH-particles on one side209

of the surface that leads to poor interpolations when standard approaches are used; see Figure (1).210

To mitigate these effects, SnowMeLT incorporates recent advances that provide a more accurate211

treatment of the free surface. In the following, we discuss these effects and describe the approach212

presently used in SnowMeLT. A more in-depth discussion on this topic is given by Colagrossi213

et al. (2009). We also note that there are alternative approaches other than the one presented here.214

Notably, the use of additional “ghost" SPH-particles to account for the missing SPH-particles; see,215

e.g., Schechter and Bridson (2012).216

To see the effect of missing SPH-particles, we consider a constant density field and write217

⟨𝜌⟩𝑖 ≈ 𝜌0
∑︁
𝑗∈Ω

W𝑖 𝑗 Δ𝑉 𝑗 , (8)

where 𝜌0 denotes the reference value of the density. In the interior where there is no deficiency of218

SPH-particles, Ω has support over the entire ball, 𝐵ℎ (∥r− r′∥), and in light of the normalization219

condition, the RHS reproduces the correct value for the density; see appendix A. However, at the220

free surfaceΩ≠ 𝐵ℎ (∥r−r′∥), and the sum on the RHS is approximately the fractionΩ occupied by221

SPH-particles. As a result, Eq. (8) significantly underestimates the density and produces artificial222

density gradients near the surface that result in spurious pressure forces. To mitigate this effect in223
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SnowMeLT, the Shepard kernel is used to compute the density, viz.224

≺ 𝜌(r) ≻𝑖 =
∑︁
𝑗∈Ω

𝑚 𝑗

W𝑖 𝑗

Γ𝑖
, (9)

where225

Γ𝑖 =
∑︁
𝑗∈Ω

W𝑖 𝑗 Δ𝑉 𝑗 , (10)

is the Shepard normalization constant, and ≺ · ≻ is used to indicate its use as a correction. It is226

straightforward to verify that Eq. (9) now produces the correct density both in the interior and at227

the free surface.228

The use of Eq. (9) for the density is important for getting the meltwater dynamics correct.229

However, it requires knowledge of the time evolution of the SPH-particle volumes. In SnowMeLT,230

the evolution of the SPH-paticle volumes are defined using the volumetric strain rate as,231

𝑑 (Δ𝑉)
𝑑𝑡

= Δ𝑉 ∇ ·v . (11)

To evaluate this expression, a smoothed divergence is defined as232

⟨∇ ·v(r)⟩ =
∫
Ω

∇′ ·v(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ . (12)

To evaluate Eq. (12) in SPH, the gradient is first moved on to the kernel using233

⟨∇ ·v(r)⟩ =
∫
Ω

v(r′) · ∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′+
∫
𝑑Ω

W(∥r− r′∥, ℎ)v(r′) ·n𝑑𝑆′ . (13)

The volume integral can be evaluated readily, but surface integrals are not easily computed in SPH.234

In the interior, this difficulty can be avoided since 𝑑Ω coincides with the surface of 𝐵ℎ (∥r− r′∥)235

where the kernel vanishes. However, at a free surface this is not the case, and dropping the surface236

term leads to larger errors, even for a constant field and vanishing smoothing length. A better choice237
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for the divergence can be formulated (and is commonly used) by first subtracting the identity238

v(r) ·
(∫

Ω

∇W(∥r− r′∥, ℎ)𝑑𝑉 ′+
∫
𝑑Ω

W(∥r− r′∥, ℎ) ·n𝑑𝑆′
)
= 0 , (14)

and dropping the surface term to produce239

⟨∇ ·v(r)⟩ =
∫
Ω

(v(r′) −v(r)) · ∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′ . (15)

This form of the divergence now produces the correct value for a constant field, and in the more240

general case converges at the free surface (Colagrossi et al. 2009), but it still has errors at finite241

resolution. To account for this, Grenier et al. (2009) proposed the normalized divergence,242

≺ ∇ ·v ≻𝑖 = −
∑︁
𝑗∈Ω

v𝑖 𝑗 ·
∇W𝑖 𝑗

Γ𝑖
Δ𝑉 𝑗 , (16)

which is the form adopted, presently. We also note that this form of the divergence is not specific243

to the velocity and can be used for any vector field. Similarly, the gradient of an SPH-field can be244

written as245

⟨∇ 𝑓 ⟩𝑖 = −
∑︁
𝑗∈Ω

𝑓𝑖 𝑗∇W𝑖 𝑗 Δ𝑉 𝑗 , (17)

and corrected using246

≺ ∇ 𝑓 ≻𝑖 = −
∑︁
𝑗∈Ω

𝑓𝑖 𝑗
∇W𝑖 𝑗

Γ𝑖
Δ𝑉 𝑗 , (18)

where 𝑓𝑖 𝑗 denotes the difference 𝑓𝑖 − 𝑓 𝑗 . To formulate the microphysics of SnowMeLT, an SPH247

approximation of the Laplacian is also required and is provided in appendix B.248

3. Microphysics249

Presently, the microphysics of SnowMeLT includes heat conduction, phase changes and latent250

heating, surface tension, contact forces, and viscous weakly-compressible flow. While this captures251

most of the important processes in the melting of ice hydrometeors, there are, of course, other252
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important processes, e.g., riming and sublimation, that are left for future work. In addition,253

some simplifying assumptions have been made. Perhaps the most significant assumption is that254

the distribution of unmelted ice is held fixed in space. This restriction leads to an unrealistic255

(and overly energetic) collapse of the snowflakes during the final stages of melting, making the256

results unreliable for meltwater fractions around 75% or larger. However, methods that allow for257

ice movement have already been formulated in SPH (e.g., Liu et al. (2014)), and ice movement258

will be included in the next version of SnowMeLT. In addition, to avoid the prohibitive cost259

of simulating the atmosphere with SPH, an analytic approximation for heat transfer from the260

environment is employed, here, based on steady-state transfer within the environment and the261

assumption of a uniform air temperature immediately surrounding the snowflake. In the following,262

the microphysics is discussed and developed in some detail.263

a. Fluid Dynamics264

The meltwater in SnowMeLT is represented as a weakly-compressible viscous fluid subject to265

surface tension and contact forces. The momentum equation takes the form266

𝜌
𝑑v
𝑑𝑡

= −∇𝑝 + fvisc + fsurf , (19)

where fvisc and fsurf denote the viscosity and surface-tension force densities. The SPH formulation267

of this equation is the topic of the following sections. In addition to the momentum equation, an268

interface boundary condition between meltwater and ice is required and is discussed in the final269

section.270

1) Weakly-Compressible Viscous Flow271

To simulate a weakly-compressible fluid in SPH, the density and pressure of an SPH-particle is272

related by an equation-of-state (EOS). There are a few popular variants in the literature. In the273

current work, we use the Newton-Laplace EOS,274

𝑝𝑖 =
(
≺ 𝜌 ≻𝑖 − 𝜌0

)
𝑐2 , (20)
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where 𝜌0 and 𝑐 denote the rest density and speed-of-sound in the fluid, respectively. In the above,275

the speed-of-sound determines how quickly the pressure responds to density variations in the276

fluid. It is impractical (and unfeasible) to simulate at the physical value of the speed-of-sound.277

Instead, 𝑐 is chosen large enough to keep the density variations sufficiently small, typically < 0.1%.278

Following Grenier et al. (2009), the pressure gradient in the momentum equation is derived from279

the Principle of Virtual Work for an isentropic fluid which states280 ∫
Ω

∇𝑝 · 𝛿w𝑑𝑉 = −
∫
Ω

𝑝∇ · 𝛿w𝑑𝑉 , (21)

where 𝛿w is the displacement due to the virtual work. To derive an SPH expression for Eq. (21)281

that includes a free surface correction, the divergence in Eq. (16) is used, from which it follows,282 ∑︁
𝑖∈Ω

≺ ∇𝑝 ≻𝑖 · 𝛿w𝑖Δ𝑉𝑖 = −
∑︁
𝑖∈Ω

𝑝𝑖

Γ𝑖

∑︁
𝑗∈Ω

(𝛿w 𝑗 − 𝛿w𝑖) · ∇W𝑖 𝑗 Δ𝑉 𝑗 . (22)

Re-arranging the sum on the RHS leads to283

≺ ∇𝑝 ≻𝑖 =
∑︁
𝑗∈Ω

(
𝑝𝑖

Γ𝑖
+
𝑝 𝑗

Γ 𝑗

)
∇W𝑖 𝑗 Δ𝑉 𝑗 , (23)

which is the form of the pressure gradient given in Grenier et al. (2009) and used in the current284

development. It preserves momentum and, importantly, the factors of Γ𝑖 and Γ 𝑗 make a correction285

at the free surface.286

Finally, the viscous force is derived from the viscosity equation of an incompressible fluid,287

fvisc = ∇ · (𝜇∇v) . (24)

In appendix C, the derivation of a few variants of SPH viscosity terms are discussed, including the288

one proposed by Grenier et al. (2009), which is used in the present study. It takes the form289

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

8𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

) v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (25)
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where r𝑖 𝑗 denotes the difference r𝑖 − r 𝑗 . This is a modified version of the viscosity proposed by290

Monaghan (2005) that provides a correction at the free surface through the factor (Γ−1
𝑖

+Γ−1
𝑗
). It291

preserves both angular and linear momentum, however, as discussed in appendix C, it does not292

converge to Eq (24), and in this sense, it is an artificial viscosity.293

2) Surface Tension294

The formulation of surface tension in SnowMeLT is derived from the continuum surface force295

(CSF) model. In this model, the surface tension is given by,296

Fsurf = 𝜎𝜅n̂ , (26)

where 𝜎 is the surface-tension force per unit length, 𝜅 is the curvature, and n̂ is the unit vector297

normal to the surface. To make this suitable for SPH, Brackbill et al. (1992) formulated Eq. (26)298

as a force density299

fsurf (r) = 𝜎𝜅n̂𝛿 (n̂ · (r− r𝑠)) , (27)

where r𝑠 denotes the corresponding position on the surface. They introduced a color (characteristic)300

function,301

𝑐(r) =


1 in fluid 1 ,

0 in fluid 2 ,
1
2 at the interface ,

(28)

to define a smoothed surface normal,302

⟨n(r)⟩ = ⟨∇𝑐(r)⟩ (29)

and delta function303

⟨𝛿 (n̂ · (r− r𝑠))⟩ = ∥⟨∇𝑐(r)⟩∥ , (30)
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that are suitable for SPH and converge for any reasonable smoothing kernel. Using the SPH304

surface-normal, the curvature can be computed as305

⟨𝜅(r)⟩ = ⟨−∇ · n̂(r)⟩ , (31)

which leads to306

⟨fsurf (r)⟩ = 𝜎 ⟨𝜅(r)⟩ ⟨n(r)⟩ , (32)

for the SPH surface-tension force.307

To implement Eq. (32) requires some care because of the use of normalized surface-normals. In308

particular, the surface normals become “small" with greater displacements from the surface and309

incur large (relative) numerical errors that when normalized lead to poor estimates of the curvature.310

To deal with this issue, we follow the approach of Morris (2000). In this approach, the smoothed311

color-function is defined in the usual way as,312

⟨𝑐⟩𝑖 =
∑︁
𝑗∈Ω

𝑐 𝑗W𝑖 𝑗 Δ𝑉 𝑗 . (33)

The surface normals are evaluated using Eq. (17) as313

⟨n⟩𝑖 =
∑︁
𝑗∈Ω

(
⟨𝑐⟩ 𝑗 − ⟨𝑐⟩𝑖

)
∇W𝑖 𝑗 Δ𝑉 𝑗 , (34)

and the curvature is evaluated using Eq. (16) (without Shepard normalization) as,314

⟨∇ · n̂⟩𝑖 = −
∑︁
𝑗∈Ω

⟨n̂⟩𝑖 𝑗 · ∇W𝑖 𝑗 Δ𝑉 𝑗 , (35)

where ⟨n̂⟩𝑖 𝑗 is the difference, ⟨n̂⟩𝑖 − ⟨n̂⟩ 𝑗 , of the unit normals ⟨n̂⟩𝑖 = ⟨n⟩𝑖 /∥⟨n⟩𝑖∥. To avoid the315

errors associated with small normals, Morris (2000) proposed to include only the normals that316
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satisfy ∥⟨n⟩𝑖∥ > 0.01/ℎ in Eq. (35) and normalize the curvature by317

𝜉𝑖 =
∑︁
𝑗∈Ω𝑛

W𝑖 𝑗 Δ𝑉 𝑗 , (36)

whereΩ𝑛 denotes the subset of normals inΩ that meet this criteria. The final form of the curvature318

is319

⟨𝜅⟩𝑖 =

∑
𝑗∈Ω𝑛

⟨n̂⟩𝑖 𝑗 · ∇W𝑖 𝑗 Δ𝑉 𝑗

𝜉𝑖
, (37)

which can be combined with Eq. (34) to evaluate the SPH surface-tension force.320

3) Contact Forces321

While the surface tension just described can be used to simulate the dynamics of the air-meltwater322

interface, additional contact forces are required to reproduce the wetting behaviour of water on323

the ice surface. To achieve this we follow Trask et al. (2015) and impose Young’s Equation by324

enforcing the equilibrium constraint,325

n̂eq = n̂𝑡 sin𝜃𝑒𝑞 + n̂𝑝 cos𝜃𝑒𝑞 , (38)

for the normals near to the ice/air/liquid boundary. In the above, n̂𝑡 and n̂𝑝 denote the components326

of the fluid normals tangent and perpendicular to the ice surface, and 𝜃𝑒𝑞 denotes the equilibrium327

contact angle. Setting the fluid normals according to Eq. (38) ensures the SPH surface-tension328

will apply a force that continually works towards restoring the correct equilibrium behavior. To329

implement this approach, the ice-boundary normal, n̂𝑝, is computed using Eq. (34) with the sum330

being carried out over Ωice, where Ωice denotes the subset of SPH-particles in Ω that are ice. The331

component of the fluid normal tangent to the surface is then computed using332

〈
n̂𝑡

〉
𝑖
=

⟨n̂⟩𝑖 − (⟨n̂⟩𝑖 · ⟨n̂𝑝⟩𝑖) ⟨n̂𝑝⟩𝑖
∥⟨n̂⟩𝑖 − (⟨n̂⟩𝑖 · ⟨n̂𝑝⟩𝑖) ⟨n̂𝑝⟩𝑖∥

, (39)
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where ⟨n̂⟩𝑖 is the fluid normal evaluated using Eq. (34) over Ωwat, the subset of SPH-particles in Ω333

that are water. Following Trask et al. (2015), we define a transition function334

𝑓𝑖 =


𝜒𝑖 𝜒𝑖 ≥ 0 ,

0 𝜒𝑖 < 0 ,
(40)

in terms of a generalized distance,335

𝜒𝑖 = 2
Γwat
𝑖

Γ𝑖
−1 , (41)

which provides a measure of how close a fluid SPH-particle is to the ice boundary. In Eq. (41), Γwat
𝑖

336

is computed using Eq. (10) over Ωwat, and the ratio, Γwat
𝑖

Γ−1
𝑖
, is used as a measure of the fraction337

of volume in Ω occupied by fluid SPH-particles. The function 𝑓𝑖 takes values in the interval [0,1],338

and it is used to transition the normals across a displacement of roughly one smoothing length339

from the boundary. A new unit normal,340

⟨n̂′⟩𝑖 =
𝑓𝑖 ⟨n̂⟩𝑖 − (1− 𝑓𝑖) ⟨n̂eq⟩𝑖

∥ 𝑓𝑖 ⟨n̂⟩𝑖 − (1− 𝑓𝑖) ⟨n̂eq⟩𝑖∥
, (42)

is then defined, and Eq. (32) is replaced with341

⟨fsurf⟩𝑖 = 𝜎 ⟨𝜅′⟩𝑖 ⟨n̂′⟩𝑖 ∥⟨n⟩𝑖∥ , (43)

where ⟨𝜅′⟩𝑖 is the curvature computed using ⟨n̂′⟩𝑖, and we have retained the surface delta function342

∥⟨n⟩𝑖∥.343

4) Adhesion and the Boundary Between Water and Ice344

As a snowflake melts, a boundary between meltwater and ice is formed, and boundary conditions345

must be enforced to prevent overlap of the two phases and to provide an appropriate slip condition346

for the flow of meltwater on the ice. Unlike the environmental air, the ice is simulated with347

SPH-particles, and these particles can be used as “dummy" boundary particles to enforce boundary348

conditions. In SnowMeLT, we follow the approach of Adami et al. (2012) which imposes a force349
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balance,350

𝑑v 𝑓

𝑑𝑡
= −∇𝑝

𝜌 𝑓

+g = ab , (44)

at the boundary, where here 𝑓 denotes the fluid (meltwater), g the gravitational acceleration, and351

a𝑏 the acceleration of the ice boundary. Integrating Eq. (44) along the line connecting a fluid and352

ice SPH-particle, we find353

𝑝𝑏 = 𝑝 𝑓 + 𝜌 𝑓 (g−a𝑏) · r𝑏 𝑓 , (45)

which is used to extrapolate a value for the dummy pressure from nearby fluid SPH-particles. An354

SPH average is then formed in the usual way using the smoothing kernel to give355

≺ 𝑝𝑏 ≻𝑖 =

∑
𝑗∈Ωwat

𝑝 𝑗W𝑖 𝑗 Δ𝑉 𝑗 + (g−a𝑏) ·
∑

𝑗∈Ωwat

𝜌 𝑗r𝑖 𝑗W𝑖 𝑗 Δ𝑉 𝑗

Γwat
𝑖

. (46)

Presently, in SnowMeLT there is neither gravity nor movement of the ice, and the above equation356

reduces to357

≺ 𝑝𝑏 ≻𝑖 =
∑︁
𝑗∈Ωwat

𝑝 𝑗

W𝑖 𝑗

Γwat
𝑖

Δ𝑉 𝑗 . (47)

In addition, the density and volume of dummy SPH-particles are determined using Eq. (20) as358

𝜌𝑏 =
≺ 𝑝𝑏 ≻− 𝜌0𝑐

2

𝑐2 and 𝑑𝑉𝑏 =
𝑚𝑖

𝜌𝑏
, (48)

where 𝑚𝑖 is the mass of the fluid SPH-particle interacting with the dummy particle, and the359

subscript “b" is used to indicate a dummy quantity assigned to an ice SPH-particle for the purpose360

of enforcing a boundary condition. With Eq. (48), the pressure gradient near the boundary can be361

evaluated over Ω using dummy values for the ice SPH-particles.362
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A boundary condition for the viscosity is also required. Following Adami et al. (2012), an363

average velocity is computed using nearby fluid SPH-particles as364

≺ ṽ ≻𝑖 =
∑︁
𝑗∈Ωwat

v 𝑗

W𝑖 𝑗

Γwat
𝑖

Δ𝑉 𝑗 , (49)

and the dummy velocity is set to365

≺ v𝑏 ≻𝑖 = 2vice −≺ ṽ ≻𝑖 , (50)

where vice is the velocity of the ice boundary. Again, since the ice is held fixed this reduces to366

≺ v𝑏 ≻𝑖 = −≺ ṽ ≻𝑖 . (51)

In contrast to the pressure which keeps the ice and meltwater separated, the viscosity determines367

how much the meltwater “sticks" to the ice. To enforce a free-slip boundary condition, we set the368

dummy viscosity to zero, and to set a no-slip boundary condition, a relatively large viscosity is369

used. At this scale, the no-slip boundary layer is small compared to ℎ, and as a result, a free-slip370

boundary condition is employed. However, we also need to account for adhesion between the371

meltwater and ice surface. To do this, the projection of the dummy velocity along the boundary372

normal perpendicular to the ice surface is used to replace Eq. (51) with373

≺ v𝑏 ≻𝑖 = − (≺ v ≻𝑖 · ⟨n̂𝑝⟩) ⟨n̂𝑝⟩ . (52)

Using the projected velocities has the effect of “sticking" the meltwater along the direction normal374

to the ice surface while allowing it to flow freely across it. The value of the dynamic viscosity of375

dummy ice SPH-particles then plays the role of an adhesion strength parameter. In this work, we376

set it equal to the fluid viscosity, which gives reasonable results.377

b. Thermodynamics378

The thermodynamics of SnowMeLT includes heat conduction, phase changes and associated379

latent heating. Evaporation of meltwater is not simulated in the present formulation of SnowMeLT.380
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If the environment of the hydrometeor is subsaturated, evaporation could consume sensible heat and381

significantly reduce the rate of melting, but in remote sensing applications, for example, the melt382

fraction and geometry of the particle are the most critical factors for calculating single-scattering383

properties, and 1D thermodynamic models have been used to separately calculate the melt fractions384

of snowflakes of different masses; see, e.g., Olson et al. (2001) and Liao et al. (2009). Evaporation385

and other microphysical processes will be considered in future updates of SnowMeLT.386

The heat conduction is implemented following the approach of Cleary and Monaghan (1999)387

which is derived from the incompressible heat equation388

𝑑𝑈

𝑑𝑡
=

1
𝜌
∇ · (𝜅∇𝑇) , (53)

where viscous dissipation effects are assumed to be negligible. In the above, 𝑈 and 𝜅 denote389

the energy density [J/g] and conductivity [W/(m-◦C)], respectively. To convert Eq. (53) to an390

SPH-equation, Cleary and Monaghan (1999) used a Taylor Series approximation of the Laplacian391

(see appendix B) and enforced heat-flux continuity across material interfaces to derive392 〈
𝑑𝑇

𝑑𝑡

〉
𝑖

=
4

𝑐𝜈,𝑖𝜌𝑖

∑︁
𝑗∈Ω

𝜅𝑖𝜅 𝑗

𝜅𝑖 + 𝜅 𝑗
(
𝑇𝑖 −𝑇𝑗

)
𝐹𝑖 𝑗 Δ𝑉 𝑗 , (54)

where the relationship between temperature and energy density is taken as 𝑈 = 𝑐𝜈𝑇 with 𝑐𝜈,𝑖393

denoting the specific heat. Important for this work, they showed through a series of numerical394

experiments that Eq. (54) can accurately simulate discontinuities in the conductivity of up to three395

orders of magnitude which is sufficient for simulations with air, ice, and water.396

The evaluation of Eq. (54) is straightforward except at the boundary between the hydrometeor397

and surrounding environment. To simulate the transfer of heat from the surrounding environment, a398

method is required to transfer heat across the hydrometeor-atmosphere interface that includes a far-399

field temperature boundary condition and does not require simulating air SPH-particles explicitly.400

To do this, we make the assumption that the surrounding air temperature near to the surface, 𝑇air,401

is uniform. According to Eq. (54), the contribution from air is402 〈
𝑑𝑇air

𝑑𝑡

〉
𝑖

=
4

𝑐𝜈,𝑖𝜌𝑖

𝜅𝑖𝜅air

𝜅𝑖 + 𝜅air
(𝑇𝑖 −𝑇air)

∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗 . (55)
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Fig. 2. Depiction of the heat transfer from the surrounding environment using a uniform air temperature, 𝑇air,

within a minimally circumscribing sphere and a radially-symmetric steady-state solution as a boundary condition

with a far-field temperature, 𝑇∞.

419

420

421

The sum on the RHS cannot be evaluated explicitly without simulating air SPH-particles, but it can403

be evaluated indirectly which follows from the fact that ⟨𝐹 (r)⟩ can be determined analytically over404

Ω; see, Appendix (5). We note that this sum is a purely geometric termwhich can be thought of as a405

shape factor that takes into account the amount of nearby surrounding air. In areas where the surface406

is more exposed, this term becomes larger causing extremities to melt faster. The heat conduction at407

the boundary is then computed by evaluating Eq. (54) and adding the result of Eq. (55). Importantly,408

Eq. (55) vanishes in the interior and can safely be added regardless of whether the SPH-particle409

being updated lies on the surface or not. This avoids the need to identify surface SPH-particles410

which is difficult and error prone. To impose a far-field temperature boundary condition, the411

melting snowflake is first enclosed by a minimally circumscribing sphere; see Figure (2). The412

temperature field outside the sphere is derived as a radially-symmetric, analytical solution of the413

steady-state heat equation, with a temperature 𝑇air on the circumscribing sphere and a temperature414

𝑇∞ at some large radial distance serving as boundary conditions; see Mason (1956). Continuity is415

imposed between the "exterior" heat equation solution and the "interior" solution from SPH (with416

a uniform near-surface air temperature, 𝑇air), by setting the radial transfer of thermal power from417

both solutions equal at the radius of the circumscribing sphere; see Appendix (5).418
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Lastly, to take into account latent heat, we use an internal (thermal) energy parameter that is422

initialized to zero. For ice SPH-particles, the internal energy is updated using the energy-density423

form of Eq. (54). Once the internal energy of an SPH-particle surpasses 𝐿f× SPH-particle mass,424

where 𝐿f is the latent heat of fusion, the ice SPH-particle becomes a fluid SPH-particle, and its425

temperature is updated according to Eq. (54).426

4. Numerical Examples427

To test SnowMeLT, a series of numerical experiments are conducted using synthetic snowflakes428

available from the NASA OpenSSP database. The database includes pristine dendritic crystals429

of different shapes generated using the algorithm of Gravner and Griffeath (2009), as well as430

aggregates created using a randomized collection process (Kuo et al. 2016). In the present study,431

snowflakes with maximum dimensions up to ∼ 1 cm are melted; Larger snowflakes will require432

the use of hardware accelerators which are not currently implemented in SnowMeLT. Since the433

snowflakes in the database are already defined on a regular grid, it is straightforward to ingest them434

into SnowMeLT. Here, the initial grid spacing (𝑑𝑥) and SPH-particle mass are set to 15 𝜇𝑚 and435

𝜌iceΔ𝑉 = 3.1𝑥10−9 g. The value of the simulation parameters used in all of the examples are listed in436

Table (1), and with exception of the speed-of-sound, gravity, and viscosity, are set to their physical437

values. The speed-of-sound was tuned to keep deviations from the rest density at or below ∼ 0.1%,438

and the fluid viscosity was chosen large enough to maintain numerical stability. The simulation is439

advanced using the kick-drift-kick time integration scheme described in Appendix (5).440

In section a, simple examples of the deformation of a cube of water are presented as a check of441

the surface tension and contact forces. In section b, ice spheres are melted using both SnowMeLT442

and a multi-shell numerical method to check the consistency of the evolving internal temperature443

and total melt time of the melting spheres. In section c, numerical experiments to determine the444

effect of the thermal vs. fluid timestep on a small pristine snowflake are examined, and in section d,445

the application of SnowMeLT to a set of aggregate snowflakes is presented and discussed.446

a. Deformation of a Cube of Water447

To test the surface tension in SnowMeLT, a cube of water is allowed to deform into a spherical451

water drop. The cube is composed of a collection of ∼132-thousand SPH-particles with a volume452
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Parameter Value Units

𝑑𝑥 (rest distance) 15 𝜇m

ℎ (smoothing length) 45 𝜇m

𝜃 (contact angle) 10 ◦

𝑐sound 2500 cm/s

𝜅water 0.556 W/(m-◦C)

𝜅ice 2.22 W/(m-◦C)

𝜅air 0.0244 W/(m-◦C)

𝑐v,water 4.22 J/(g-◦C)

𝑐v,ice 2.05 J/(g-◦C)

𝜎 0.072 N/m

𝜇ice 0.4 g /(cm-s)

𝜇wat 0.4 g /(cm-s)

g 0 cm/s2

𝑇∞ 1.5 ◦C

𝐿 𝑓 334 J/g

𝜌ice 0.917 g/cm3

𝜌wat 1.0 g/cm3

Table 1. List of the simulation parameters used in this work.

Fig. 3. An initial cube of water, (a), deforms into a spherical drop, (b), and a cube of water deforms into

a sessile drop on an ice slab, (c) and (d). In (c), the initial state (top) is shown along with the final states for

𝜃𝑒𝑞 = 30◦ (middle) and 𝜃𝑒𝑞 = 10◦ (bottom). In (d), a top-view of the final state for 𝜃𝑒𝑞 = 10◦ is also shown.

448

449

450

equal to ∼ 0.75 mm3. Similarly, to test the contact forces, a cube of water composed of ∼36-453

thousand SPH-particles is placed on top of a sheet of ice and allowed to deform for the cases454
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diameter [mm] total time SPH [s] total time multi-shell [s]

0.25 47.8 44.9

0.50 186.5 179.9

1.00 733.6 720.0

Table 2. Total time to completely melt frozen spheres using SPH and the multi-shell model.

𝜃𝑒𝑞 = 30◦ and 𝜃𝑒𝑞 = 10◦, which is roughly the range of observed contact angles. The results of both455

tests are shown in Figure (3). Note that the water cube evolves into a nearly perfect water sphere,456

due to the effects of surface tension, and the sessile drops on the ice slabs exhibit contact angles457

close to the prescribed values of 𝜃𝑒𝑞, as seen in the figure.458

b. Melting Frozen Spheres459

To provide a check of the thermal processes, pure ice spheres are melted with SnowMeLT and460

a discrete, concentric shell model, and compared. The shell model employs finite-differencing of461

properties between adjacent shells to determine the heat flux between shells, and then raises the462

temperature of a given shell once the internal energy exceeds the total required to melt the entire463

mass of ice in that shell. This alternative approach is a generalization of the “enthalpy method”464

to spherically-symmetric ice particles; see Alexiades and Solomon (1993), who described a one-465

dimensional application. Sensible heat fluxes from the environment are specified using steady466

air temperature solutions of the heat equation, similar to the way heat fluxes are specified using467

Eq. (54). Although the shellmodel is only approximate and does not represent the flowofmeltwater,468

it provides a reasonable check of the very detailed SnowMeLT simulations for ice spheres.469

Ice spheres with diameters of 0.25 mm, 0.5 mm, and 1.00 mm are melted using SnowMeLT470

and the shell model. The times of complete ice sphere melting from both models differ between471

about 2% and 6% with a smaller percentages associated with larger radii; see Table (2). The472

time-progression of internal temperatures also show good agreement, and in Figure (4), the results473

for the 1.00 mm diameter sphere are presented. The undulations of the temperature contours in474

the multi-shell simulation are due to the constant temperature within the outermost icy shell as the475

ice melts, followed by the rapid increase of temperature in that shell as the temperature comes to a476

new quasi-equilibrium after the ice melts completely.477
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Fig. 4. Thermal profiles of the internal temperatures for the 1 mm diameter frozen sphere using SnowMeLT

(left) and the multi-shell model (right).

478

479

c. Varying the Thermal Timestep of a Dendritic Pristine Snowflake480

Using the simulation parameters in Table (1) to determine the constraints given in Appendix (5)481

leads to a fluid timestep about three orders of magnitude smaller than the timestep required for482

thermal processes. This is not surprising — the meltwater response to surface-tension forces at483

this scale and temperature occur much more rapidly than the internal energy/melting response to484

heat transfer. From a computational perspective, incrementing the simulation at the fluid timestep485

would require on the order of 1010 steps for the largest snowflakes listed in Table (3). This is not486

feasible even on large supercomputers. It is therefore necessary to increase the thermal timestep487

as much as possible to reduce the computational burden (the thermal timestep dictates the physical488

simulation time), while incrementing the fluid changes at the much smaller timestep. This dual489

timestepping is possible because of the rapid response of the meltwater to structural changes in the490

ice.491

To determine an appropriate increase, a pristine snowflake with a diameter of 1.3 mm was492

melted with a thermal timestep 125, 250, 500, 1000, and 2000 times larger than the fluid timestep.493

The images of the crystal at different melt stages are shown in Figure (5). For the case of the494

largest scale factor there is limited pooling in the snowflake crevices and a relatively thick layer495

of meltwater coating the arms. As the scale factor decreases, the meltwater has more time to496
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name diameter [mm] total mass [mg] # SPH-particles time-steps total time [s]

01_0013_013 10.4 6.872 2,220,518 15,072,000 929

01_0012_022 10.5 6.429 2,077,299 13,984,000 866

01_0033_017 8.51 4.342 1,482,991 11,008,000 686

01_0011_010 7.83 3.692 1,192,808 10,432,000 650

01_0030_005 6.10 2.251 727,289 8,576,000 530

01_0033_008 6.11 2.111 682,020 7,904,000 490

01_0032_007 5.35 1.490 481,504 6,624,000 411

01_0030_003 4.61 0.856 276,650 4,768,000 313

01_0014_003 3.21 0.495 159,957 3,840,000 238

01_0074_010 2.80 0.367 118,534 3,232,000 200

01_0072_013 2.08 0.184 59,600 2,144,000 133

Table 3. A list of the properties for the 11 snowflakes melted with SnowMeLT. The columns from left-to-right

correspond to the NASA openSSP database name, diameter of the (initial) minimally circumscribing sphere,

total mass, number of SPH-particles simulated, and total time-steps and time to melt.

509

510

511

move along the surface of the crystal in a given thermal timestep, and as expected from surface497

tension considerations, we see increased pooling towards the center of the flake and more exposed498

extremities. From scaling factors of 500 to 125, we see very little change, indicating the former499

is a reasonable choice for increasing the thermal timestep — at least for this particular snowflake.500

As a result of this test, all of the aggregate snowflakes presented in this study are melted using a501

thermal timestep equal to the fluid timestep scaled by a factor of 500. In spite of the increased502

thermal timestep, numerical simulations of the largest snowflake require millions of timesteps503

and run continuously for about two months using ∼ 800 compute cores on the NASA Discover504

supercomputer.505

d. Melting Aggregate Snowflakes508

As a demonstration of the general applicability of SnowMeLT, a set of eleven aggregate512

snowflakes are melted, ranging in size from 2-10.5 mm in maximum dimension. In Table (3), we513

list the corresponding name, size, mass, number of SPH-particles used, total number of timesteps514

required, as well as the total time simulated. The aggregates are composed of different numbers of515

pristine dendritic crystals, with 22 crystals being the largest number. The snowflake with the largest516

mass is represented by 2,220,518 SPH-particles and requires over 15 million timesteps to com-517
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Fig. 5. Snapshots of a pristine snowflake with the thermal timestep scaled by 2000, 1000, 500, 250, and 125

(top-to-bottom) at melt stages of 20%, 40%, 60%, and 80% (left-to-right).

506

507

pletely melt. Images of the aggregates at different stages of melting are presented in Figures (6-8)518

at mass melt fractions of 30%, 50%,70%,90% and 100% (top-to-bottom).519

28



From the figures, it is evident that at 30% melted the snowflakes are lightly coated with a layer520

of meltwater and exhibit some slight pooling of liquid in the crevices between ice structures. At521

50% melted, more collecting and pooling of meltwater in the cervices is seen. Focusing in on the522

individual crystals that make up the aggregates, two distinguishing behavioral types are observed:523

Crystals with fine-scale filaments and ice "spikes" protruding from the arms and crystals without524

these structures . In the former type, meltwater tends to be distributed more on the arms, where it525

gets held up by surface tension in the crevices between the fine-scale structures. In crystals without526

fine-scale structures, the water is able to flow more easily towards the crystal centers, leading to527

the formation of a central water drop; see for example, Figure (8), column two). These behaviors528

were previously observed in laboratory grown and melted dendritic arms and plates by Oraltay and529

Hallett (2005). At 50% melted, water collecting in the junctions between the individual crystals530

can also be seen. At 70% melted, elongated water drops cover the crystal arms, large water drops531

bulge over the centers of the crystals, and crevices and gaps between the crystals are largely filled.532

At 90% melted, the component crystals are mostly engulfed by meltwater, though the aggregates533

still generally retain a coarse ice frame. At this stage, the effects of keeping the ice SPH-particles534

fixed in space become evident. For example, in the first column of Figure (7), we see the presence535

of small, detached ice chunks that would have otherwise been drawn inwards. The artificial bridges536

of water between the main ice structures and these small ice chunks create large surface tension537

forces that “snap" the liquid abruptly once a particular ice chunk fully melts. This energetic release538

leads to an eruption of minute water droplets, as seen in the figure. As a result, the final collapse539

of the aggregates (meltwater fractions ≳ 75%) tends to be unrealistic for the larger aggregates. For540

the aggregates of crystals with more plate-like arms, this phenomenon does not occur, and we see541

a more realistic collapse of the aggregate into a water droplet; see Figure (8), column three.542
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Fig. 6. Snapshots of the snowflakes 1-4 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

543

544

30



Fig. 7. Snapshots of the snowflakes 5-8 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

545

546
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Fig. 8. Snapshots of the snowflakes 9-11 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

547

548
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5. Concluding Remarks549

An SPH approach for computationally melting ice-phase hydrometeors is presented along with550

applications to a variety of synthetic snowflakes retrieved from the NASA OpenSSP database. The551

microphysics of the approach is derived directly from continuum physics conservation equations552

with the exception of the adhesive force between water and ice, and recent advances in free-surface553

flows are employed that are important for simulating the movement of thin layers of meltwater. To554

manage the computational cost, controlled approximations and some simplifications are used: One555

approximation is that the thermal (physical) timestep is effectively increased relative to the fluid556

dynamics timestep, because the rate of meltwater flow and other processes are relatively fast and557

respond to ice geometry changes very quickly. The much shorter fluid timestep, consistent with558

the Courant-Friedrichs-Lewy and other stability citeria given in appendix E, can therefore be used559

to increment meltwater flow while maintaining the integrity of the simulation. Here, the thermal560

timestep inflation is chosen based on trials of the melting of a single pristine snowflake, and a more561

thorough study of timestepping effects should be conducted for a variety of snowflake shapes and562

sizes. This more thorough study will become more practical with the use of hardware accelerators.563

Another modification is that the heat exchange with the environment is approximated assuming564

a steady-state transfer of sensible heat to a sphere enclosing the snowflake. The air temperature565

within the sphere and near the snowflake’s surface is assumed to be homogeneously-distributed.566

Although the air temperature is assumed to be the same near the surface of the snowflake, the567

heat transfer is distributed heterogeneously across the surface of the snowflake according to the568

local air exposure, surface temperature, and water phase, and therefore the boundary specification569

is still expected to reasonably capture the ambient heat transfer. Finally, the ice is not allowed to570

move, and in most but not all cases this leads to a significant distortion of the final collapse of the571

snowflake into a water drop. What results is an ice morphology in the latter stages of melting that572

is unrealistic, but there exist SPH approaches that can be used to remove this constraint (e.g., Liu573

et al. (2014)), and these approaches will be investigated in the next generation of SnowMeLT.574

For remote sensing applications, a substantial number of melting hydrometeors and their scat-575

tering properties will be required to define the average properties of hydrometeors of a given576

mass, meltwater fraction, habit, etc. Perhaps the most significant obstacle to producing a large577

collection of melted hydrometeors with the SPH approach is the computational cost. The current578
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implementation requires about two months on 800 compute cores to melt the largest aggregate579

snowflake described here; see Table (3). Snowflakes at least two to three times larger can be580

found in stratiform rain systems, and to melt them will require a boost in computing power. It is581

already well established that SPH performs well on Graphical Processing Units (GPUs), and it is582

anticipated that they will be able to provide this boost. With the large number of available GPU583

resources, both in the cloud and at supercomputing centers, it should be possible to generate a584

diverse collection of partially-melted synthetic snowflakes in the near future for remote sensing585

applications.586

34



Acknowledgments. We want to thank Tom Clune and Benjamin Johnson for useful discussions.587

We also want to thankK. Iwasaki for providing his code for preliminary test. This work is supported588

by NASA ROSES NNH18ZDA001N-PMMST.589

APPENDIX A590

The Wendland C2 Kernel591

In this work, the Wendland 𝐶2 kernel,592

Wwend(∥r∥, ℎ) =
21

2𝜋ℎ3


(1− 𝑟/ℎ)4 (1+4𝑟/ℎ) 0 ≤ 𝑟 < ℎ ,

0 otherwise ,
(A1)

with normalization,593 ∫
Wwend(∥r∥, ℎ) 𝑑𝑉 = 1 , (A2)

is used. The gradient of this kernel is given by594

∇Wwend(∥r∥, ℎ) = −210
𝜋ℎ5


(1− 𝑟/ℎ)3 r 0 ≤ 𝑟 < ℎ

0 otherwise
. (A3)

Writing the kernel in terms of the relative position between SPH-particles r = r′− r′′, the gradient595

with respect to individual coordinates is given by596

∇′W(∥r′− r′′∥, ℎ) = ∇W(∥r∥, ℎ) and ∇′′W(∥r′− r′′∥, ℎ) = −∇′W(∥r′− r′′∥, ℎ) . (A4)

The integral of the gradient over Ω = 𝐵ℎ ( |r− r′|),597 ∫
Ω

∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′ =

∫
𝑑Ω

W(∥r− r′∥, ℎ)n̂′ = 0 , (A5)
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vanishes since 𝑑Ω coincides with the surface of the ball where the kernel support vanishes. It is598

also common to write the kernel gradient in the form (e.g., Cleary and Monaghan (1999))599

∇W(∥r∥, ℎ) = 𝐹 (𝑟) r , (A6)

with600

𝐹 (𝑟) = −210
𝜋ℎ5


(1− 𝑟/ℎ)3 0 ≤ 𝑟 < ℎ ,

0 otherwise .
(A7)

For the Wendland 𝐶2 kernel,601 ∫
Ω

𝐹 (𝑟) 𝑑𝑉 = −14
ℎ2 , (A8)

which is used to compute the environmental heat transfer, c.f. Eq. (D5).602

APPENDIX B603

Smoothed Approximation of the Laplacian604

To derive an SPH approximation of the Laplacian, a Taylor Series expansion is applied to a605

generic field as606

𝑓 (r′) − 𝑓 (r) = ∇ 𝑓 (r) · (r′− r) +
∑︁
𝑖, 𝑗

1
2
𝜕2 𝑓 (r)
𝜕𝑟𝑖𝜕𝑟 𝑗

(r′− r)𝑖 (r′− r) 𝑗 +O
(
|r′− r|3

)
. (B1)

Multiplying this by the term,607

(r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 , (B2)

36



dropping the higher order terms, and integrating over r′ produces608 ∫
Ω

( 𝑓 (r′) − 𝑓 (r)) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ = (B3)

∇ 𝑓 (r)·
∫
Ω

(r′− r) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ (B4)

+
∑︁
𝑖, 𝑗

1
2
𝜕2 𝑓 (r)
𝜕𝑟𝑖𝜕𝑟 𝑗

∫
Ω

(r′− r)𝑖 (r′− r) 𝑗
(r− r′) · ∇W(∥r− r′∥)

∥r− r′∥2 𝑑𝑉 ′ . (B5)

By noticing the first term on the RHS is odd, we immediately see it vanishes. Similarly, the609

off-diagonal elements of the second order term vanish leaving only the terms610

∑︁
𝑖

1
2
𝜕2 𝑓 (r)
𝜕𝑟2

𝑖

∫
Ω

(r′− r)2
𝑖

(r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ . (B6)

To evaluate the integrals, we take r′′ = r− r′ and look at the 𝑧′′ term611 ∫
Ω

𝑧′′2
r′′ · ∇W(∥r′′∥

∥r′′∥2 𝑑𝑉 ′′ =

∫
𝑑Ω

𝑧′′2
W(∥r′′∥)
∥r′′∥2 r′′ · n̂𝑑𝑆′′−

∫
∇ ·

(
𝑧′′2

∥r′′∥2 r′′
)
W(∥r′′∥)𝑑𝑉 ′′ .

(B7)

SinceW(∥r′′∥) = 0 on 𝑑Ω the surface integral vanishes (though, not at a free surface), and the612

remaining term evaluates to613 ∫
∇ ·

(
𝑧′′2

∥r′′∥2 r′′
)
W(∥r′′∥)𝑑𝑉 ′′ = 1 . (B8)

The same follows for the 𝑥 and 𝑦 terms, and we find614

〈
∇2 𝑓 (r)

〉
= 2

∫
Ω

( 𝑓 (r) − 𝑓 (r′)) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ , (B9)

as a smoothed approximation for the Laplacian and615

〈
∇2 𝑓

〉
𝑖
= 2

∑︁
𝑗∈Ω

(
𝑓𝑖 − 𝑓 𝑗

) r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 , (B10)

for the discrete form.616
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APPENDIX C617

On the Formulation of Viscosity in SnowMeLT618

The viscosity for an incompressible fluid is given by the vector Laplacian equation619

fvisc = ∇ · (𝜇∇v) , (C1)

which in Cartesian coordinates reduces to a regular Laplacian for each component. We consider620

the 𝑥-component and expand the product to get621

fvisc,𝑥 = ∇ · (𝜇∇v𝑥) =
1
2

(
∇2(𝜇v𝑥) −v𝑥∇2𝜇+ 𝜇∇2v𝑥

)
. (C2)

Using Eq. (B10) and collecting terms produces622

〈
fvisc,𝑥

〉
𝑖
=

∑︁
𝑗∈Ω

(
𝜇𝑖 + 𝜇 𝑗

)
v𝑥,𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 , (C3)

from which it follows623

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

(
𝜇𝑖 + 𝜇 𝑗

)
v𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C4)

To ensure flux continuity across discontinuities in the viscosity, Cleary and Monaghan (1999)624

showed the above formula should be replaced with625

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

4𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

v𝑖 𝑗
r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C5)

To take into account the free surface Grenier et al. (2009) modified Eq. (C5) as626

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

2𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

)
v𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C6)

In the interior where Γ𝑖 and Γ𝑖 are ∼ 1, it is easy to verify Eq. (C6) reproduces Eq. (C5), and627

therefore the modification only provides a correction at a free surface. This form of the viscosity628
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preserve linear momentum but not angular momentum. If we decompose Eq. (C5) as629

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

4𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

(
v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 + r𝑖 𝑗 × (v𝑖 𝑗 ×∇W𝑖 𝑗 )
)
Δ𝑉 𝑗 , (C7)

the first term in parenthesis conserves both linear and angular momentum while the second only630

conserves the former. If we keep only the first term, we reproduce the artificial viscosity proposed631

by Monaghan (2005)632

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

16𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (C8)

where a factor of 16 (rather than 4) was argued for the leading coefficient. As before, Grenier et al.633

(2009) propose the modification,634

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

8𝜇𝑖𝜇 𝑗

𝜇𝑖 + 𝜇 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

) v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (C9)

to provide a correction at the free surface. In this work, we chose to preserve angular momentum635

and employ Eq. (C9) for the viscosity.636

APPENDIX D637

Heat Conduction and the Transfer of Heat from the Environment638

The heat conduction equation,639

𝑑𝑈

𝑑𝑡
=

1
𝜌
∇ · (𝜅∇𝑇) , (D1)

involves the scalar Laplacian, and the derivation is identical to the viscosity. We therefore have640 〈
𝑑𝑈

𝑑𝑡

〉
𝑖

=
1
𝜌𝑖

∑︁
𝑗∈Ω

4𝜅𝑖𝜅 𝑗
𝜅𝑖 + 𝜅 𝑗

(𝑇𝑖 −𝑇𝑗 )𝐹𝑖 𝑗 Δ𝑉 𝑗 , (D2)

where the identity in Eq. (A6) has been used to replace the gradient term to match the form given641

in Cleary and Monaghan (1999).642
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As discussed in Section b, to transfer heat to the snowflake from the surrounding environment643

requires the evaluation of644 ∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉air , (D3)

without explicitly simulating air SPH-particles. To do this, we use the identity645 ∫
Ωair

𝐹 (∥r− r′∥) 𝑑𝑉 ′ =

∫
Ω

𝐹 (∥r− r′∥) 𝑑𝑉 ′−
∫
Ω/Ωair

𝐹 (∥r− r′∥) 𝑑𝑉 ′. (D4)

The first term on the RHS can be compute analytically, and we find646 ∫
Ω

𝐹 (∥r− r′∥) 𝑑𝑉 = −
〈
∥r− r′∥−2〉 . (D5)

The result for the Wendland C2 kernel is given in Eq. (A8). The second term can be approximated647

as an SPH sum, since it is over the non air SPH-particles giving the desired result,648

∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉air ≈ −©­«
〈
∥r− r′∥−2〉 + ∑︁

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗
ª®¬ . (D6)

To impose continuity between the interior SPH solution and exterior boundary condition, we solve649

4𝜋𝜅𝑟min(𝑇∞−𝑇air) =
∑︁

all particles
𝑚

〈
𝑑𝑈

𝑑𝑡

〉
(D7)

for 𝑇air which results in,650

𝑇air =

𝜋𝜅air𝑟min𝑇∞ +∑
𝑖

𝜅𝑖𝜅air
𝜅𝑖+𝜅air

(〈
∥r− r′∥−2〉 + ∑

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗

)
𝑇𝑖Δ𝑉𝑖

𝜋𝑟min𝜅air +
∑
𝑖

𝜅𝑖𝜅air
𝜅𝑖+𝜅air

(〈
∥r− r′∥−2

〉
+ ∑

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗

)
Δ𝑉𝑖

, (D8)

where the sum over 𝑖 is taken over all simulated SPH-particles.651

APPENDIX E652
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Time Integration653

To advance the simulation the kick-drift-kick approach proposed by Monaghan (2005) is used.654

Specifically, the velocities are “kicked" first as655

v𝑡+ 1
2
= v𝑡 +a𝑡

(
Δ𝑡

2

)
, (E1)

and the positions are drifted as656

r𝑡+1 = r𝑡 +v𝑡+ 1
2
Δ𝑡 , (E2)

where a𝑡 is the SPH-particle acceleration computed in the previous step. The density, volume657

strain rate, and forces are computed using the new positions and velocities, and the final kick is658

computed as659

v𝑡+1 = v𝑡+ 1
2
+a𝑡+1

Δ𝑡

2
, (E3)

as well as the thermal and volume updates660

Δ𝑉𝑡+1 = Δ𝑉𝑡 +Δ𝑉𝑡≺ ∇ ·v ≻Δ𝑡 , (E4)

𝑇𝑡+1 = 𝑇𝑡 +
〈
𝑑𝑇

𝑑𝑡

〉
Δ𝑡 , (E5)

𝑈𝑡+1 =𝑈𝑡 +
〈
𝑑𝑈

𝑑𝑡

〉
Δ𝑡 . (E6)

41



To set the timestep, following Morris (2000), we use the constraints,661

Δ𝑡 ≤ 0.25
ℎ

𝑐
, (E7)

Δ𝑡 ≤ 0.25
(
𝜌ℎ3

2𝜋𝜎

)1/2

, (E8)

Δ𝑡 ≤ 0.25
(

ℎ

𝑎max

)1/2
, (E9)

Δ𝑡 ≤ 0.125
𝜌ℎ3

𝜇
, (E10)

Δ𝑡 ≤ 0.15𝜌𝑐𝜈ℎ2/𝜅 , (E11)

where 𝑎max is the magnitude of the largest particle acceleration, and the last criteria is the ther-662

mal conduction constraint from Cleary and Monaghan (1999) where 𝜅 is taken as the largest663

conductivity.664
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