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Introduction

This supporting information provides underlying details on the ice-sheet model ensem-

ble, emulator construction, validation, and sensitivity tests, as well as supplemental figures

of timeseries color-coded by CREVLIQ, comparisons between the Last Interglacial and

RCP8.5 ensembles across the model parameter space, conditional posterior distributions

in 2150, and ice-sheet model parameter likelihoods as a function of LIG constraint distri-

bution. We note that the ice-sheet model ensembles are constructed with a model version

updated since DeConto and Pollard (2016), but predating that of DeConto et al. (2020).

As such, the results herein are not representative of the most current results with the

latest physical model, but are illustrative of how ice-sheet models may be combined with

statistical/machine learning methods and paleoclimate evidence to (a) constrain projec-

tions of future Antarctic ice-sheet contributions to sea-level rise, and to (b) identify how

improved paleo sea level estimates could inform projections. A glossary of key study terms

is included at the end, for reference.
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Table S1. Ice-sheet model parameter values used to construct a 14× 14 grid composing 196

members for the Last Interglacial and RCP8.5 scenario ensembles.

CLIFVMAX (km
yr ) CREVLIQ ( m

(myr−1)2
)

0 0
1 15
2 30
3 45
4 60
5 75
6 90
7 105
8 120
9 135
10 150
11 165
12 180
13 195

Table S2. Optimized hyperparameters of the GP models (Eqn. 1–3) found by maximizing

the log-likelihoods, given the training ensembles.

Ensemble α2
1 (m2) `21 α2

2 (m2) `22 τ (yr)
LIG 17.048 45.698 — — —

RCP8.5 2731.8 2.7567 1.830 0.50121 95.52198

Text S1. Emulator Leave-one-out Analyses

To assess whether the Gaussian process (GP) model emulator accurately mimics the ice-sheet

simulator, we perform a leave-one-out (LOO) analysis following a modification of the methodol-

ogy of Bastos and O’Hagan (2009). We calculate the individual standardized prediction errors

as,

DI
j =

zj − E[f(θ1, θ2)j|z\j]√
V [f(θ1, θ2)j|z\j]

(S1)
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where z\j is the vector composed all of training ensemble members in z except zj at the jth

location in model parameter space (i.e. the value with a fixed [θ1,θ2] from Table S1, removed

for the LOO process), and E[ · ] and V [ · ] are the expectation (mean function) and variance,

respectively, of the optimized emulator conditioned on z\j. For RCP8.5, f and zRCP are a

function of time, and hence DI
j is also time-dependent. The LIG emulator, zLIG, and the LIG

standardized prediction errors have no time dependency. Errors are shown for the LIG in Figure

S3 and the RCP8.5 scenario (in 2000, 2050, 2100, and 2150) in Figure S4.

Standardized errors are expected to follow a standard Student-t distribution. Errors which

consistently exceed ±2 (the 95% credibility interval) indicate a conflict between the emulator

and simulator (Bastos and O’Hagan 2009). We find that the LIG and RCP8.5 emulators per-

forms well, with nearly all errors falling within the confidence interval. Emulator skill degrades

slightly over the time in the RCP8.5 scenario as the training data sea-levels disperse when insta-

bilities drive mass loss (section 3.2), creating less densely packed training information in time and

parameter space. 5/196, about 2.5%, of the errors exceed +2 in 2150. These poorly performing

emulator estimates are located near the exterior of parameter space, where θ1 and θ2 are high,

and there is less surrounding training information to constrain the emulator prediction (behavior

which is typical of trained Gaussian process models, Rasmussen and Williams 2006).

Across time and both training ensembles, standardized emulator errors are less than ±2 in over

99% of points tested. One concern might be whether these errors indicate emulator variances

are too large relative to the mean (i.e. whether the model is underconfident), driving low values

of DI
j . The RCP8.5 emulator very accurately predicts relatively small (near-zero) and broadly

similar changes in mass loss across the whole parameter space; this contributes to the model’s

excellent standardized agreement through 2050 (Fig. S4, top panels). As the distribution of
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ice-sheet mass begins to diverge around 2060 (Fig. 3) and emulator skill drops marginally (as

discussed above), the model evolves toward an error distribution more consistent with the ex-

pected standard Student-t distribution. Overall, the time-independent variance of the RCP8.5

emulator is always <0.0004 m2 across the model parameter space, such that the model standard

deviation is always <2 cm.

The LIG emulator variance is plotted in Figure S7; values span over 0–0.016 m2 across the

ice-sheet model parameter space. The associated GP model standard deviation is 11 cm on

average, ∼3% of the range of the LIG emulator output. The model may therefore be slightly

underconfident, which could affect our study results/conclusions in two ways. First, a model

with too high variance would result in less confidence in model parameters given a specific LIG

constraint (i.e. less polarized likelihoods, Fig. S5), so that the LIG is less informative for the MICI

process. Second, higher variance results in a broader prior distribution than may be warranted.

However, one of the strengths of the Bayesian approach (section 2.3) is the ability both include

and quantify the uncertainty of the emulator (as in Fig. S7), so some variance in the final model

is justified. Ultimately, the final model described in the main text captures the key behavior of

the training data, and had the smallest variances of any model explored (cf. Text S2).

Overall, performance is consistent with that of another recently published ice-sheet model

emulator (Edwards et al. 2019, their Extended Data Figure 6), which was trained on a different

version of the same ice-sheet model (e.g., Pollard and DeConto 2012). We conclude the emulator

is able to accurately predict simulator responses across the LIG and RCP8.5 scenarios with

appropriate uncertainties.

Text S2. GP Model Selection and Sensitivity to Covariance Function
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There are infinitely many possible model forms, specifications, optimization targets, etc. to

consider for an emulator (Rasmussen and Williams 2006). The “final model” (described in the

main text) represents the best model based on several metrics: model simplicity, likelihood

maximization, and minimizing of prediction errors (described above in Text S2) and model

uncertainty (i.e. posterior variance).

We assessed different covariance forms: squared-exponential functions (sometimes called the

radial basis function), nonstationary linear (sometimes called dot-product) functions, and Matérn

functions with shape parameters (ν) of 1
2
, 3

2
, and 5

2
. We also evaluated various combinations of

these functions, and experimented with specifying them along the individual axes of the training

data (θ1, θ2, and time). For instance, we considered the complex form,

K(θ1, θ2)∼Linear(θ1) ∗Matérnν= 5
2
(θ1) + Linear(θ2) ∗Matérnν= 5

2
(θ2) +Matérnν= 5

2
(θ1, θ2).

Trained models produced log-likelihoods similar to (or sometimes even higher than) the final

model. But when optimized, each of these models required a variance (fit uncertainty) larger

than the final model (Fig. S7) in order to match the training data (cf. Text S2). Under

such circumstances, the optimized model is underconfident, and a nugget of 10−6 m is a strong

requirement that is inconsistent with the optimized model variance. We present one such model

as an example below and discuss the implications.

To demonstrate the emulator sensitivity to the choice of covariance function, we specify an

alternative set of covariance functions, f ∗1 and f ∗2 , which replace f1 and f2 in Eqn. (??):

f ∗1 (θ1, θ2)∼GP(0, α2
1K1,θ1(θ1, θ

′
1; `1,θ1) ·K1,θ2(θ2, θ

′
2; `1,θ2)), (S2)

f ∗2 (θ1, θ2, t)∼GP(0, α2
2K2,θ1(θ1, θ

′
1; `2,θ1) ·K2,θ2(θ2, θ

′
2; `2,θ2) ·Kt(t, t

′; τ)), (S3)

where there are four distinct covariance functions, Ki,θ, each with a unique and trainable length

scale specified along either CLIFVMAX (θ1) or CREVLIQ (θ2), `i,θ. Because the model form is
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different, the hyperparameters which share an interpretation with Eqn. (1)—αi and τ—need not

have the same optimized values as those of the final model (Table S2). Following the procedure

described in sections 2.2–2.3, this alternative model is optimized and conditioned on the training

simulations, and its posterior distributions are found conditional on LIG constraints.

The Last Interglacial prior distribution of this alternative model form is presented in Figure

S8 alongside the final model prior (reproduced from Fig. 4a) and the LIG training ensemble

histogram. The alternative model prior distribution is broader than that of the final model prior

distribution, driven by a larger variance. The LIG alternative model’s average standard deviation

is 25 cm, more than twice that of the final model, which smooths out some of the multi-modal

features of the LIG prior distribution. The training ensemble exhibits a multi-modal distribution

(more consistent with the prior of the final model), suggesting the alternative model contributes

less information about AIS mass loss from individual sectors than indicated by the original ice-

sheet model simulations.

Likewise, the alternative model of the RCP8.5 emulator has greater uncertainty, with a time-

constant standard deviation of ∼5 cm and a width of the 95% credibility interval between 2000

and 2060 of 20 cm (a period where the full range of simulated mass loss is 0–7.7 cm). Given these

increased uncertainties, emulated behavior such as the instability-driven skew in Fig. 7b (given

a relatively low LIG constraint) disappears, suggesting the alternative model is less physical.

The alternative model posterior distributions of RCP8.5 AIS mass loss as a function of LIG

constraints are shown in Figure S9. Comparing with Fig. 4b, posterior distributions have

substantially broader projections if the LIG was known precisely (to within 10 cm). This degrades

the informative power of LIG constraints on the margins of the prior distribution (i.e. high or

low values, Fig. 7b), because the baseline uncertainty more than doubles. Hence, the final model
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more accurately captures the multi-modal behavior of the LIG training ensemble and is more

precise in its predictions.
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(a) (b)

Figure S1. As in Fig. 1, except timeseries are color-coded by their CREVLIQ values over

0–195 m
(myr−1)2
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Figure S2. Contours are identical to the mean emulated sea-level contributions from the

Antarctic ice sheet in Fig. 2, but with LIG and RCP8.5 contours overlapping for comparison.
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Figure S3. Histogram of standardized prediction errors (Eqn. S1) from leave-one out analyses

performed with the Last Interglacial emulator. Errors < ±2 (gray shaded region) indicate the

emulator is able to properly represent the ice-sheet model (cf. Bastos and O’Hagan, 2009).
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Figure S4. As in Fig. S3, but for the RCP8.5 emulator in 2000, 2050, 2100, and 2150.
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Figure S5. The posterior probabilities of CREVLIQ/CLIFVMAX latin-hypercube sampled

pairs across the range of the model ensemble parameter space (cf. Table S1), conditional on

specified constraints on Last Interglacial Antarctic Ice-sheet sea level contributions (cf. Figure

4a). The colorbar saturates at it upper extent.
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Figure S6. As in Fig. 4b, except for 2150.
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Figure S7. Last Interglacial emulator variance (m2) over the ice-sheet model parameter space.
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Figure S8. Last Interglacial emulated prior reproduced from Fig. 4a (black curve), com-

pared with the emulated prior from an alternative model (red curve) defined with the covariance

functions given in Eqn. (S2–S3). The training ensemble is shown as a histogram scaled for

comparison.
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Figure S9. As in Fig. 4b, except normalized conditional posterior probability densities are

plotted as a function of Last Interglacial AIS mass loss emulated with an alternative model

defined with the covariance functions given in Eqn. (S2–S3).
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Figure S10. As in Fig. 6, except posteriors are constrained assuming the D20-U constraint was

10%, 25%, 50%, 75% or 90% narrower (blue, cyan, green, yellow and red curves, respectively).
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Table S3. Glossary—Definitions of relevant terms.

Term Meaning

Bayesian statistics (in contrast to frequentist or classical statistical inference)
is a theory based on the Bayesian interpretation of probability
where probability expresses a degree of belief in an event. Bayesian
methods compute a posterior probability of a model or parameter
through the use of a prior probability distribution of the model or
parameter times a likelihood function using Bayes’ theorem

Bayesian updating the process of using new information to improve on previous
estimates. One uses the posterior distribution of one model
as the prior distribution of a new model. For example, the
posterior distribution on the parameters, (θ1, θ2), is used as the
prior distribution in the future projection model

Conditional probability the distribution of a random quantity, given (assuming, or as a
function of) a particular value of another (latent) random quantity

Covariance function defines prior beliefs about the relationship between one or more
variables or parameters in a Gaussian process, as a measure of
how much they change together

Gaussian process (GP) a generalization of the multi-variate Gaussian distribution to
continuous parameter space, which is fully defined by its mean
function and covariance function; GP regression provides an
analytically-tractable solution when adopting the assumption
of normality for all distributions

Hyperparameter parameter of a GP model prior distribution

Latent unobserved or hidden (e.g., the true values of AIS mass loss)

Likelihood the probability of observing the data as described by the fitted
model; also known as the sampling or data distribution; a
conditional distribution that is a function of unknown parameters
for observed data

Marginal distribution unconditional probability distribution of a random quantity,
found by integrating over all values of the conditional
distribution
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Table S3 (continued).

Term Meaning

Non-parametric not involving any assumptions as to the functional form

Posterior probability the probability distribution of an unknown quantity,
conditional on (or assuming/given) observed data; In this study
these are, 1) the future AIS sea-level contribution projections
over time conditioned on a specified Last Interglacial estimate
distribution, and 2) the distribution of the model parameters
(CREVLIQ and CLIFVMAX) given specific LIG constraints

Prior probability (of an uncertain quantity—e.g., parameter or model) uses a priori
beliefs about the quantity before some evidence or data is
taken into account; the prior is combined with the probability
distribution of new data to yield a posterior distribution.
The prior can be subjective or uninformative (such as a uniform
distribution) to minimize the impact on Bayesian statistics
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