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Abstract18

Previous studies have interpreted Last Interglacial (LIG; ∼129–116 ka) sea-level estimates19

in multiple different ways to calibrate projections of future Antarctic ice-sheet (AIS) mass20

loss and associated sea-level rise. This study systematically explores the extent to which21

LIG constraints could inform future Antarctic contributions to sea-level rise. We develop22

a Gaussian process emulator of an ice-sheet model to produce continuous probabilistic23

projections of Antarctic sea-level contributions over the LIG and a future high-emissions24

scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG25

constraints to find associated likelihoods of model parameterizations. LIG estimates in-26

form both the probability of past and future ice-sheet instabilities and projections of fu-27

ture sea-level rise through 2150. Although best-available LIG estimates do not mean-28

ingfully constrain Antarctic mass loss projections or physical processes through 2060,29

they become increasingly informative over the next 130 years. Uncertainties of up to 5030

cm remain in future projections even if LIG Antarctic mass loss is precisely known (±531

cm), indicating there is a limit to how informative the LIG could be for ice-sheet model32

future projections. The efficacy of LIG constraints on Antarctic mass loss also depends33

on assumptions about the Greenland ice sheet and LIG sea-level chronology. However,34

improved field measurements and understanding of LIG sea-levels still have potential to35

improve future sea-level projections, highlighting the importance of continued observa-36

tional efforts.37

1 Introduction38

Coastal communities are facing increasing threats from sea-level rise, creating a grow-39

ing need for comprehensive probabilistic projections (Kopp et al., 2014; Kopp, DeConto,40

et al., 2017; Horton et al., 2018) to inform coastal risks and adaptation practices (Buchanan41

et al., 2016, 2017; D. J. Rasmussen et al., 2018; Kopp et al., 2019). The single largest42

source of uncertainty in 21st century global-mean sea-level rise is the Antarctic ice sheet43

(AIS). Projected AIS mass loss depends on the ice-sheet physics considered, modeling44

and statistical methodologies, and observational constraints (e.g., Kopp, DeConto, et al.,45

2017).46

There is deep uncertainty in future AIS sea-level contributions, meaning that their47

full probability distribution is unknown and cannot be estimated or agreed upon by ex-48

perts (Lempert & Collins, 2007). The lack of expert agreement on AIS mass loss pro-49

jections is partially related to unresolved challenges in modeling ice-sheet processes (Fuller50

et al., 2017; Bakker, Wong, et al., 2017; Bakker, Louchard, & Keller, 2017; Bamber et51

al., 2019). There is growing consensus that the AIS is threatened by marine ice-sheet52

instability (MISI; Weertman, 1974; Schoof, 2007), which would lead to accelerated mass53

loss irreversible on millennial timescales (Golledge et al., 2015; Bulthuis et al., 2019) and54

skew probability distributions towards fat upper-tails in sea-level projections (Robel et55

al., 2019). There is some evidence that MISI is already underway in the Thwaites/Pine56

Island Glacier basins (Joughin et al., 2014; Favier et al., 2014), and western AIS ice dis-57

charge has accelerated in recent years (Gardner et al., 2018; Rignot et al., 2019). Even58

more uncertain is the role of marine ice-cliff instability (MICI), which has recently been59

proposed and incorporated as a primary loss mechanism in an ice-sheet model for sea-60

level rise projections (Bassis & Walker, 2012; Bassis & Jacobs, 2013; Pollard et al., 2015;61

DeConto & Pollard, 2016).62

MICI is not well understood and is difficult to parameterize. While it has not yet63

been observed in Antarctica, there is some modern evidence consistent with cliff insta-64

bility, such as the documented calving events of Greenland glaciers (DeConto & Pollard,65

2016; Parizek et al., 2019). Newly discovered iceberg-keel plough marks also provide ev-66

idence for MICI in Pine Island Bay in the early Holocene, ∼12,000 years years before67

present (ka; Wise et al., 2017). However, a recent reanalysis of DeConto and Pollard (2016)68
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showed that MICI is not well constrained, and is unnecessary for ice-sheet model pro-69

jections to be consistent with modern and paleoclimate estimates of AIS mass loss (Edwards70

et al., 2019). Clerc et al. (2019) examined how ice cliffs deform following removal of their71

buttressing ice shelves. They found that ∼90 m-tall ice cliffs would have to be lost near-72

instantaneously after shelf collapse to trigger MICI—on longer timescales viscous relax-73

ation dominates the response. Furthermore, Olsen and Nettles (2019) found seismic mea-74

surements of the aforementioned Greenland glaciers were not indicative of subaerial ice75

cliff failure expected with MICI. These findings cannot preclude MICI as a primary mass76

loss mechanism in Antarctica, but they demonstrate the paucity of observations to con-77

strain this process.78

Whether or not major AIS discharge will occur through MISI and/or MICI is crit-79

ical for future impacts on human systems (Oppenheimer & Alley, 2016; Wong et al., 2017;80

Stammer et al., 2019). But correlations between observed trends and future large-scale81

mass losses are weak and insignificant (Kopp, DeConto, et al., 2017), signaling that mod-82

ern observations are inadequate for constraining potentially nonlinear AIS contributions83

to sea-level rise. Instead, the information gap must be filled with analogs from the pa-84

leo sea-level record. The Last Interglacial (LIG) period has previously been invoked to85

inform ice-sheet instabilities and model projections (DeConto & Pollard, 2016; Steig &86

Neff, 2018), but it may currently be an ineffective constraint (Edwards et al., 2019). In87

this study we investigate how improved estimates or different interpretations of LIG AIS88

mass loss may be combined with ice-sheet model ensembles to constrain probabilistic pro-89

jections of future sea-level rise. We specifically choose ice-sheet model simulations which90

consider the MICI process to complement recent studies using similar methods (DeConto91

& Pollard, 2016; Edwards et al., 2019).92

The Last Interglacial (∼129,000 to 116,000 ka) was a period of higher orbital ec-93

centricity, slightly warmer than present average global mean temperatures, and substan-94

tially warmer polar atmospheric temperatures (>3◦C warmer than present) and high-95

latitude ocean temperatures (1◦C warmer than present) (Capron et al., 2017, and ref-96

erences therein). Accompanying were estimated global mean sea levels (GMSL) about97

6–9 m higher than present (Dutton, Carlson, et al., 2015), driven by a combination of98

mountain glacial melt, Greenland and Antarctic ice-sheet mass loss, and thermosteric99

effects. While the proportional mix of these contributions is uncertain, previous stud-100

ies determined that some portions of the AIS retreated during the LIG (e.g., Scherer et101

al., 1998; Dutton, Carlson, et al., 2015; Dutton, Webster, et al., 2015). The LIG has his-102

torically been considered an analog for AIS contributions to sea-level rise in warm cli-103

mates (Mercer, 1968; Hansen et al., 1981), but it may not be ideal for examining future104

climate change, as LIG and modern external forcing mechanisms are fundamentally dif-105

ferent (Capron et al., 2019).106

Different interpretations and applications of paleo sea-level estimates have led to107

divergent conclusions about what instability processes could drive future sea-level rise108

(cf. DeConto and Pollard (2016) and Edwards et al. (2019)). The goal of this study is109

to develop a framework for analyzing the extent to which the LIG could inform ice-sheet110

model projections of future AIS mass loss and sea-level rise. We quantify ice-sheet model111

projections conditioned on multiple LIG estimate distributions, and assess how narrower112

LIG uncertainties could improve understanding of both ice-sheet instabilities and future113

sea levels. We also investigate how different assumptions about LIG sea-level evolution114

influences ice-sheet modeling of future sea-level changes. These analyses provide useful115

targets and research directions for the paleo sea-level observational and ice-sheet mod-116

eling communities.117

Ice-sheet models are computationally expensive to run at high resolutions neces-118

sary for sufficient accuracy. The number of simulations computationally tractable over119

a model’s parameter space is therefore limited, making it difficult to construct an ensem-120

ble large enough to perform comprehensive statistical analyses (which are necessary for121
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robust probabilistic projections of sea-level rise and coastal risk, e.g. Kopp, DeConto,122

et al., 2017; D. J. Rasmussen et al., 2020). In this study we develop a statistical “em-123

ulator” designed to mimic the behavior of the ice-sheet model (the “simulator”) to fill124

intermediate solutions that have not been simulated over the ic-sheet model parameter125

space and time (Kennedy & O’Hagan, 2001; C. E. Rasmussen & Williams, 2006; Bas-126

tos & O’Hagan, 2009). Similar to Edwards et al. (2019), we emulate ice-sheet simula-127

tions of the LIG and the future under a high-emissions scenario. The emulator provides128

continuous estimates of AIS sea-level contributions over two model parameters directly129

related to ice-sheet instability processes. We perform Bayesian statistical analyses with130

emulator output to determine how future Antarctic sea-level contribution projections de-131

pend on LIG constraints.132

Section 2 provides a detailed overview of the ice-sheet model ensembles, emulation133

methodology, the Bayesian approach, and LIG constraints. Our results in section 3 show134

how current and improved LIG estimates could constrain future Antarctic contributions135

to sea-level rise. We also demonstrate a specific framework application using paleo sea-136

level observations, and discuss our study’s implications for future research directions in137

the paleo sea-level community. Conclusions are presented in section 4.138

2 Models and Methods139

2.1 Ice-sheet Model Simulations140

We create ice-sheet model ensembles for the LIG and a future high-emissions sce-141

nario (Representative Concentration Pathway 8.5, RCP8.5; Riahi et al. (2011)). We run142

simulations with the PSU Ice-sheet model, which has been used in several studies of ice-143

sheet contributions to past and future sea levels (Pollard & DeConto, 2009; DeConto &144

Pollard, 2016; Pollard et al., 2016, 2017; Kopp, DeConto, et al., 2017; Pollard et al., 2018;145

Edwards et al., 2019). The model (Pollard & DeConto, 2012) uses a hybrid combination146

of the vertically integrated shallow ice and shallow shelf approximations for ice flow (de-147

scribed in (Pollard & DeConto, 2012)). Ice flux at freely migrating grounding lines is pa-148

rameterized (Schoof, 2007; Pollard & DeConto, 2009, 2012), while accounting for the but-149

tressing effects of ice shelves. Hydrofracturing from surface melt and structural failure150

of tall ice cliffs is included (Pollard et al. (2015); DeConto and Pollard (2016), discussed151

more below). The model simulates internal ice temperatures, with basal sliding and sed-152

iment deformation occurring only where the base is at or near the melt point, and no153

explicit basal hydrology. A Weertman-type basal sliding law over bedrock is used with154

the norm of the sliding velocity proportional to the squared norm of the basal shear stress,155

and spatially dependent coefficients (Pollard & DeConto, 2012). We run the model on156

a 10 km-resolution grid over the continental Antarctic.157

Model simulations are an improvement on those of DeConto and Pollard (2016) and158

reanalyzed in Edwards et al. (2019). Model runs use a sub-oceanic melt scheme newly159

calibrated following a large ensemble analysis of model performance during the last deglacia-160

tion (Pollard et al., 2016). This improvement, developed for DeConto et al. (2020), re-161

duces the need for a sub-surface ocean temperature bias correction on the West Antarc-162

tic margin by 50% (from 3◦C to 1.5◦C) relative to (DeConto & Pollard, 2016). Atmo-163

spheric climatologies in future simulations are also improved, as discussed below (cf. DeConto164

et al. (2020)).165

LIG equilibrium model simulations are forced by representative oceanic and atmo-166

spheric conditions from 130 ka constructed from a synthesis of paleoclimate reconstruc-167

tions and climate modeling (Capron et al., 2014). We run the simulations for 5,000 years168

to bring them approximately into equilibrium with this fixed climate forcing; we take169

the final simulation values (year 5000) as representing the peak AIS mass loss response170

during the LIG. Emulated peak LIG mass losses are later paired with paleo sea-level es-171
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timates to assess whether the LIG could constrain future AIS contributions to sea-level172

rise (section 2.2–2.4).173

Future transient model simulations span 1990–2150 and are reported relative to the174

year 2000. Following DeConto and Pollard (2016), atmospheric RCP8.5 forcing is time-175

interpolated and log-weighted from regional climate model Antarctic snapshots at vary-176

ing levels of effective CO2 (1×, 2×, 4×, and 8× preindustrial). Improving on DeConto177

and Pollard (2016), time-evolving sea-surface temperatures are synchronized in the re-178

gional atmospheric model simulations with subsurface temperatures used in the subsur-179

face melt rate calculations, leading to favorable comparisons with an independent NCAR180

CESM simulation (DeConto et al., 2020, their Extended Data Figure 1).181

LIG and future simulation ensembles are constructed by a sampling a 2-dimensional182

parameter space with a regularly spaced 14×14 grid. The two parameters, CREVLIQ183

and CLIFVMAX (Supporting Information Table S1), are detailed in DeConto and Pol-184

lard (2016). Briefly, CREVLIQ is the proportional sensitivity of model hydrofracturing185

to surface liquid, i.e. from rain and meltwater ( m
(myr−1)2 ); it is substituted for “100” in186

equation (B.6) of Pollard et al. (2015). As CREVLIQ increases, ice-sheet crevasses deepen187

more readily with surface liquid accumulation, which increases the chance of hydrofrac-188

turing and removal of buttressing ice shelves. CLIFVMAX is the maximum rate (km
yr )189

of horizontal cliff wastage once an ice cliff becomes mechanically unstable and collapses190

(i.e. under MICI); it is substituted for “300” in equation (A.4) of Pollard et al. (2015)191

(called “VCLIF” in DeConto and Pollard (2016)). Note that when CLIFVMAX=0 km
yr ,192

ice cliffs cannot retreat even when they would theoretically fail; in this set of simulations193

MICI is effectively turned off.194

Ensembles vary CLIFVMAX and CREVLIQ over a broader range of parameter val-195

ues than those of DeConto and Pollard (2016) and Edwards et al. (2019): the CLIFV-196

MAX maximum is 2.6 times larger than in those studies, and the CREVLIQ range 1.3197

times larger (Supporting Information Table S1). We expand the parameter value range198

to explore a greater range of parametric uncertainty, with upper bounds guided by ob-199

servations (discussed in detail in DeConto et al. (2020)) rather than the arbitrarily as-200

signed bounds of DeConto and Pollard (2016).201

Figure 1 shows ensemble timeseries of AIS mass loss in global mean sea-level equiv-202

alent from the LIG and RCP8.5 scenario; ensemble member timeseries are color-coded203

by CLIFVMAX values (timeseries color-coded by CREVLIQ are shown in Supporting204

Information Figure S1). Figure 1a includes an illustrative range of estimated LIG AIS205

sea-level contributions (3.1–6.1 m), which was assumed by DeConto et al. (2020) based206

on reconstructions described in Dutton, Carlson, et al. (2015). This LIG estimate is lower207

and slightly narrower than that assumed in DeConto and Pollard (2016) and Edwards208

et al. (2019); this and additional LIG constraints are explored below (section 2.4).209

The evolution of LIG simulations (Fig. 1a) suggests that there are distinct ice-sheet210

mass-loss events (e.g. the accelerated mass loss in some simulations ∼1,000 years into211

the simulation) in response to constant forcing, depending strongly on model parame-212

ter values. This nonlinear behavior results in a multi-modal distribution of the ensem-213

ble’s peak AIS mass loss (section 3). AIS discharge is sensitive to the value of CLIFV-214

MAX on the timescale of centuries, as seen in the first 1,000 years of the LIG ensemble215

and the entirety of the RCP8.5 simulation (Fig. 1b). The non-monotonic color progres-216

sion of timeseries in Fig. 1a suggests that CREVLIQ plays a more substantial role in ice-217

sheet mass loss under LIG forcing and/or on millennial timescales (Supporting Informa-218

tion Figures S1–S2).219

Future simulations of AIS mass loss under RCP8.5 forcing are very similar across220

the ensemble in the early 21st century; 158 of 196 simulations have loss rates within 1221

standard deviation of IMBIE2 observed rates over 1992–2017 (15–46 mm
yr ); IMBIE-Team222
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(a) (b)

Figure 1. Timeseries of simulated AIS mass losses in sea-level equivalent (m) under (a) Last

Interglacial forcing and (b) RCP8.5 forcing over 2000–2150. Simulated timeseries are color-coded

by CLIFVMAX values over 0–13 km
yr

. Gray shading in (a) is an illustrative range of estimated

LIG AIS sea-level contributions, 3.1–6.1 m, derived in DeConto et al. (2020) and based on the

reconstructions of Dutton, Carlson, et al. (2015).

(2018)). In ∼2060 ice discharge dramatically accelerates among ensemble members with223

higher CLIFVMAX values, and simulations markedly diverge. Across the simulations224

ice loss continues to accelerate through 2100 and well into the 22nd century; 86% of the225

simulated peak loss rates occur after 2130. By 2150, the ensemble’s median rate of sea-226

level equivalent mass loss is 54 mm
yr , and the median AIS sea-level contribution is 2.3 m.227

Mean RCP8.5 ensemble AIS sea-level contributions are 42 cm in 2100 and 2.3 m in 2150.228

These values are lower than DeConto and Pollard (2016) large-ensemble projections (with-229

out bias corrections and with default model parameters, see their Extended Data Ta-230

ble 1) in both 2100 (77 cm) and 2150 (2.9 m). Differences are largely due to model im-231

proved synchronicity in atmospheric forcing, which slows the onset of surface meltwa-232

ter production and ice shelf hydrofracturing by ∼25 years compared to DeConto and Pol-233

lard (2016).234

The emulator is trained only on simulations from this single ice-sheet model and235

with changes only in the parameters discussed above. Other ice-sheet processes or pa-236

rameters that could lead to ice-sheet and ice-shelf stability or collapse have not been in-237

vestigated here. Whereas our methodology is developed with a generalizable emulation238

and calibration framework, quantitative results in section 3 apply only to this specific239

ice-sheet model. The LIG could inform additional or alternative physical processes (see240

section 4) not considered here, and the emulation and calibration framework could be241

extended to include assessments of LIG constraints on the Greenland ice sheet, calibra-242

tion of other ice-sheet models or ensembles (e.g. ISMIP6, Nowicki et al. (2016); Goelzer243

et al. (2018)), calibration of different parameters or regions of parameter space, or cal-244

ibration with different paleo sea-level constraints (e.g. the Pliocene).245

2.2 Emulation246

We train the emulator separately on LIG and RCP8.5 ensembles (zLIG and zRCP,247

respectively) using Gaussian process (GP) regression (e.g. C. E. Rasmussen & Williams,248

2006; Ashe et al., 2019). We model the total AIS contributions to GMSL, f(θ1, θ2, t),249

as the sum of two terms, each with a zero-mean GP prior distribution:250

f(θ1, θ2, t) = f1(θ1, θ2) + f2(θ1, θ2, t). (1)
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The first term, f1(θ1, θ2), represents a time-independent function on the param-251

eter space (θ1, θ2), and the second term, f2(θ1, θ2, t), represents the temporal evolution.252

We specify the prior distributions of each term as:253

f1(θ1, θ2)∼GP(0, α2
1K1(θ1, θ2, θ

′
1, θ
′
2; `1)), (2)

f2(θ1, θ2, t)∼GP(0, α2
2K2(θ1, θ2, θ

′
1, θ
′
2; `2) ·Kt(t, t

′; τ)), (3)

where θ1 and θ2 are values of CLIFVMAX and CREVLIQ normalized by their respec-254

tive maximum values in the simulator ensemble parameter space (Supporting Informa-255

tion Table S1), αi are standard deviations, `i are characteristic length scales in the nor-256

malized parameter space, τ is a characteristic time scale and Ki are specified covariance257

functions. Because the LIG training data are evaluated at a single time point, there is258

no temporal term and f2 is excluded from LIG emulator construction. Ki are defined259

to be Matérn covariance functions with a specified smoothness (shape) parameter, ν, which260

governs how responsive the function and its realizations are to sharp changes in the train-261

ing data (C. E. Rasmussen & Williams, 2006). The choice of a Matérn covariance func-262

tion allows for non-parametric nonlinear behavior in time and space. For the RCP8.5263

scenario we set ν to 5
2 because transient sea-level contributions vary smoothly over the264

model parameter space and time; for the LIG scenario we set ν to 1
2 because peak LIG265

sea-level contributions vary more sharply over the model parameter space. The model266

form and covariance functions are chosen for a balance of simplicity, minimizing abso-267

lute errors and variance (i.e. model accuracy and precision), and maximizing the like-268

lihood of the training data. Other covariance function and model forms were explored,269

but are not presented for brevity (Supporting Information Text S2).270

Optimal hyperparameters (αi, `i, and τ) of the GP emulator are found by max-271

imizing the likelihood of the training simulations (Supporting Information Table S2, C. E. Ras-272

mussen and Williams (2006)). We specify the “nugget” (point-wise variance) of the op-273

timized emulator as 10−6 m2 because the simulator is deterministic, and the emulated274

mean should approximately match the training ensemble data across the parameter space275

and time. We then condition (train) the optimized emulator on the simulator ensembles276

(f |z) to arrive at a trained model. The trained model predicts continuous sea-level con-277

tributions for LIG and RCP8.5 at parameter values and times between discrete train-278

ing simulations. We refer to this trained model as the “prior” emulator for the LIG (fLIG)279

and RCP8.5 (fRCP), before calibrating with LIG constraint distributions (below). We280

perform leave-one-out analyses to validate the optimized prior emulator following Bastos281

and O’Hagan (2009) and find it accurately mimics the behavior of the ice-sheet simu-282

lator over the LIG and RCP8.5 scenario (Supporting Information Text S1, Fig. S3–S4).283

Figure 2 shows the prior emulator mean functions of fLIG and fRCP (contours) for284

the LIG and RCP8.5 in 2100 over the parameter space, and the corresponding training285

simulations (circles). There are natural similarities between the emulated sea levels dur-286

ing the LIG and those projected in 2100 under RCP8.5. Ice-cliff collapse and/or hydrofrac-287

turing are clearly relevant drivers of both paleo estimates and future projections by this288

ice-sheet model (see section 2.3): for relatively large values of CREVLIQ and CLIFV-289

MAX, emulated AIS mass loss is likewise relatively high. Sea-level contributions are also290

substantially lower when either CREVLIQ or CLIFVMAX are near zero, indicating em-291

ulated sea-levels with these parameter values are not appreciably influenced by either292

hydrofracturing from surface liquid or mechanically unstable ice-cliff retreat.293

There are also differences between LIG and RCP8.5 emulator mean functions (Fig.294

2, Supporting Information Figure S2). Future projected AIS mass loss is more sensitive295

to CLIFVMAX than CREVLIQ (cf. Fig. 1b), which becomes more pronounced through-296

out the early 22nd century (not shown). In contrast, LIG AIS sea-level contributions are297

sensitive to both CREVLIQ and CLIFMVAX in some regions of the parameter space,298
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(a)  LIG AIS Peak Mass Loss in SLE (m) (b)  RCP8.5 (2100) AIS Mass Loss in SLE (m)

Figure 2. Simulated (filled circles) and mean emulated (contours) AIS mass losses in sea-

level equivalent across ice-sheet model parameter space (a) during the Last Interglacial, and (b)

projected under an RCP8.5 scenario in 2100.

but are nearly constant in other regions (e.g. where CREVLIQ > 120 and 2 < CLIFV-299

MAX < 7, Fig. 2a). Given prolonged fixed forcing, different AIS sectors can be completely300

lost regardless of the specific parameter value in these regions of parameter space, re-301

sulting in very similar sea-level contributions. This clustering behavior is much less pro-302

nounced over the modern period of transient and increasing forcing except along fixed303

values of CLIFVMAX, as shown by its smoothly varying sea-level contributions (Fig. 1b304

and Fig. 2b). These differences across the parameter space have important implications305

for model calibration. In particular, they imply that even if the LIG contributions were306

known precisely, there may be a limit to their ability to constrain future projections. For307

example, the region of the parameter space with LIG contributions of ∼5.2 m (CREVLIQ308

> 120, 2 < CLIFVMAX < 7) corresponds to AIS sea-level contributions of ∼35–65 cm309

in 2100 under RCP8.5 forcing (Fig. 2b). This limitation is explored in detail in section310

3.311

Having developed a prior emulator trained on the LIG and RCP8.5 scenario en-312

sembles, we generate 10,000 realizations of emulator output (mean and variance) with313

a two-dimensional Latin-hypercube design over the parameter space. The time-dependent314

median and probability intervals of the RCP8.5 emulator prior are shown in Figure 3.315

2.3 Bayesian Updating316

We use a Bayesian updating approach to determine the influence of LIG constraints317

on future projections of Antarctic contributions to sea-level rise; a glossary of relevant318

statistical terms is provided in Supporting Information Table S3. Let gLIG and gRCP be319

the latent AIS sea-level contributions the emulator is designed to predict, at the peak320

LIG and in the future under RCP8.5 forcing, respectively. We take a uniform prior prob-321

ability distribution over the input parameter space (θ1, θ2) (Supporting Information Ta-322

ble S1).323

We seek the probability distribution of future AIS contributions to sea-level rise324

estimated by the emulator and conditioned on a specified LIG constraint of peak LIG325

AIS mass loss, y:326

p(gRCP | y) = p(gRCP | θ1, θ2)p(θ1, θ2 | y), (4)
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Figure 3. Emulator prior probability distribution of AIS mass loss in sea-level equivalent

(m) projected under RCP8.5 forcing over 2000–2150. Shown are the median (solid black line),

25th–75th (dark red shading), and 5th–95th percentiles (light red shading) of the distribution.

where p(gRCP | θ1, θ2) is the prior distribution of sea-level contributions from the the327

RCP8.5 emulator (fRCP), and p(θ1, θ2 | y) is the posterior probability of the parame-328

ters conditioned on a specified LIG constraint (example constraints described in section329

2.4). This probability can be decomposed using Bayes’ theorem,330

p(θ1, θ2 | y) ∝ p(y | θ1, θ2)p(θ1, θ2), (5)

where p(θ1, θ2) is the uniform prior probability on the parameter space and p(y | θ1, θ2)331

is the likelihood function. Incorporating estimates from the LIG emulator of the true LIG332

peak AIS mass loss, gLIG,333

p(y | θ1, θ2) = p(y | gLIG)p(gLIG | θ1, θ2), (6)

where p(gLIG | θ1, θ2) is the prior distribution of AIS mass loss from the LIG emula-334

tor (fLIG), and p(y | gLIG) is the probability distribution of the specified constraint given335

the unknown LIG peak AIS sea-level contributions. Here p(y | gLIG) ∝ p(gLIG | y)336

because p(y) is the uninformative uniform prior probability distribution of the LIG con-337

straint. Substituting equations (5) and (6) into equation (4) we find338

p(gRCP | y)︸ ︷︷ ︸
posterior

∝ p(gRCP | θ1, θ2)︸ ︷︷ ︸
fRCP

p(gLIG | y)︸ ︷︷ ︸
constraint dist.

p(gLIG | θ1, θ2)︸ ︷︷ ︸
fLIG

p(θ1, θ2)︸ ︷︷ ︸
prior on θ1, θ2

, (7)

which describes the posterior probability distribution of future AIS sea-level contribu-339

tion projections conditioned on a specified Last Interglacial probability distribution. Eqn.340

(7) implies that the choice of the prior emulator, the prior parameters, and the speci-341

fied representative LIG constraint distribution each influence posterior projections of fu-342

ture AIS contributions to sea-level rise.343
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We demonstrate the utility of this approach in three ways. First, we explore how344

future projections are constrained when LIG AIS mass loss is assumed to be precisely345

known (e.g. to within 10 cm). Following Eqn. (7), we find px(gRCP | yx) as a function346

of a set of discretized 10 cm-wide bins across the range of the prior LIG emulator given347

by,348

yx = U(x− 5 cm, x+ 5 cm],

where x = {2.0 m, 2.1 m, ..., 6.9 m, 7.0 m}. The associated posteriors of RCP8.5 AIS con-349

tributions to sea-level rise, px, are a set of comprehensive time-dependent conditional350

probability distributions given as a function of LIG AIS mass loss. When the conditional351

probability distributions are integrated over a range of x values with some weighting (i.e.352

any specified y), the result is a constrained probability distribution of future AIS con-353

tributions to sea-level rise.354

Second, we examine particular posteriors of RCP8.5 AIS contributions to sea-level355

rise as a function of several specific LIG constraint distributions, drawn from or adapted356

from the literature. Third, we analyze how the ice-sheet model projections of future AIS357

mass loss would be influenced through hypothetical improvements in LIG constraint dis-358

tributions, either by 1) narrowing the range of uncertainty on LIG estimates, or by 2)359

learning that the LIG AIS sea-level contributions were relatively high (>6 m) or rela-360

tively low (<3.5 m). Each LIG constraint distribution is detailed in the following sec-361

tion.362

2.4 LIG Constraint Distributions363

We prescribe a set of LIG constraint distributions, p(gLIG | y), to determine the364

associated posterior probability distributions of future AIS contributions to sea-level rise,365

following Eqn. (7). Differences between these example constraints illustrate how alter-366

native specifications and interpretations of LIG AIS mass loss can influence projections367

of future sea-level rise. Figure 4a shows the probability density of each constraint dis-368

tribution, along with the LIG emulator prior distribution, p(gLIG | θ1, θ2) (which as-369

sumes a uniform probability over the model parameter space, as discussed above).370

DeConto et al. (2020) uniform distribution (D20-U): The uniform constraint of371

DeConto et al. (2020), U(3.1m, 6.1m), is narrower and lower than that of DeConto and372

Pollard (2016). The primary difference is that the timing of the LIG AIS mass loss peak373

is assumed to peak earlier, which affects the constraint derivation; we discuss the impli-374

cations of LIG sea-level chronology in detail in section 3.3. The D20-U constraint dis-375

tribution is derived assuming AIS mass loss peaked in the early-LIG, concurrent with376

global mean sea-level estimates of 6±1.5 m from Dutton, Webster, et al. (2015). Sub-377

tracting off a small Greenland ice-sheet contribution in the early-LIG (1 m, Goelzer et378

al., 2016; Dahl-Jensen et al., 2013; Helsen et al., 2013) and a thermosteric rise of 0.4 m379

(McKay et al., 2011), and neglecting early-LIG mountain glacier melt, the residual AIS380

contribution is estimated as 3.1–6.1 m. Complementing the pass/fail calibration of both381

DeConto and Pollard (2016) and DeConto et al. (2020), we impose an analogous uni-382

form distribution over 3.1–6.1 m, such that emulated LIG output falling within the con-383

straint is taken as equally likely; emulator output falling outside the constraint is ascribed384

a probability of zero.385

DeConto et al. (2020) normal distribution (D20-N): Whereas the uniform distri-386

bution assumes fixed limits on the LIG constraint but equal probabilities of LIG con-387

tributions between 3.1–6.1 m, it is practical to explore the implications of the central value388

of the estimated LIG distribution being more likely than the bounds. D20-N replaces389

D20-U with a Gaussian distribution—taking the central value as the mean and the bounds390
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representing 2 standard deviations from the mean—to develop a constraint distribution391

following N (4.6m, (0.75m)2).392

Edwards et al. (2019) uniform distribution (E19-U): The uniform distribution used393

to constrain the LIG Antarctic contributions in the reanalyses of Edwards et al. (2019)394

is identical to the calibration of DeConto and Pollard (2016) given by U(3.5m, 7.4m). We395

include this constraint to specifically compare our Bayesian calibrated ensembles with396

the results of Edwards et al. (2019), which used a similar emulation method but employed397

history matching rather than Bayesian calibration of the original DeConto and Pollard398

(2016) ice-sheet model ensemble.399

Kopp et al. (2009) time slice at 125 ka (K09-125ka): Kopp et al. (2009) compiled400

a probability distribution of AIS contributions to sea-level rise (extended by Kopp et al.401

(2013)) by combining a comprehensive database of proxy observations of LIG sea lev-402

els, an age model, and GP regression. Posterior probability distributions of AIS LIG sea403

levels were estimated over time by conditioning on local sea-level and age measurements.404

To generate a simple constraint distribution consistent with the LIG ensemble, we take405

a time slice at 125 ka (5,000 years after the initial time period of forcing, 130 ka, section406

2.1). This is an overly simplified interpretation of the link between the ice-sheet emu-407

lator and the posterior LIG AIS mass loss distributions, because it assumes that emu-408

lated peak LIG contributions are representative of the synthesized observational record409

precisely at 125 ka.410

Kopp et al. (2009) maximum Antarctic contributions during the LIG (K09-Max-411

3kyrSmooth): To examine an alternative link between the ice-sheet model simulations412

and Kopp et al. (2009) constraints, we generate 2,500 samples from the posterior prob-413

ability distribution of mean global sea level conditioned upon sea-level observations and414

sampled ages from Kopp et al. (2009). This represents an estimate of the distribution415

of the global mean sea-level maximum from the model in Kopp et al. (2009). Each sam-416

ple is a realization of the evolution of AIS sea-level contributions during the LIG (be-417

tween 129–114 ka). Because these samples can be noisy in time, we smooth each sam-418

ple with a 3 kyr-window boxcar filter (other smoothing windows were explored, but here419

we focus on 3 kyr for brevity). The constraint distribution is then constructed from the420

peak (global maximum) Antarctic sea-level contribution of each smoothed sample (as-421

suming each is equally likely), so that it shares an interpretation with the ice-sheet em-422

ulator (section 2.1).423

We also explore two sets of hypothetical LIG constraints.424

High and low distributions (LIG AIS<3.5 m and LIG AIS>6 m): We prescribe425

a set of hypothetical relatively high and relatively low constraints, given by U(6.0m,+∞)426

and U(−∞, 3.5m), respectively. The resulting posteriors show how projections of future427

AIS mass loss could improve if there were a reliable upper or lower bound on LIG AIS428

mass loss estimates at the margins of the LIG prior distribution.429

Sensitivity to reduced uncertainties in LIG estimates (Narrower D20-U): To as-430

certain how future projections of AIS mass loss could be affected by reduced uncertain-431

ties in LIG constraint distributions or improved LIG estimates, we gradually reduce the432

range of the D20-U constraint by 10%, 25%, 50%, 75%, and 90% and assess the result-433

ing posterior distributions; the central value (4.7 m) of each constraint is identical to that434

of D20-U. Physically-based observational constraints, following a similar narrowing method,435

are the focus of the discussion in section 3.3.436

For each LIG constraint distribution, we find the associated likelihoods of the model437

parameters and the posterior probability distributions of projected future AIS contri-438

butions to sea-level rise following equations (5) and (7).439
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These constraints are not intended to be exhaustive, but rather illustrative of a range440

of current or potentially-improved LIG constraints and their usefulness for informing fu-441

ture projections. An advantage of the Bayesian framework is that any specified constraint442

y may be assessed. Note that a uniform constraint distribution broader than the LIG443

emulator prior will not inform the posteriors of model parameters or future projections.444

3 Results445

3.1 Conditional Probability Distributions446

Figure 4b shows the conditional posterior probability densities of RCP8.5 scenario447

AIS mass loss in 2100 (contoured on a log-scale), assuming the LIG peak AIS sea-level448

contributions were known to within 10 cm. Along each column of the horizontal axis (x449

values) the densities sum to one, representing the probability distributions of future AIS450

mass loss, px, in 2100 as a function of the associated 10-cm-wide uniform LIG constraint451

distributions, yx (section 2.4). Conditional posterior probability densities in 2150 (Sup-452

porting Information Figure S6) have a similar structure. Figure 4b summarizes the ef-453

ficacy of the Last Interglacial for informing this ice-sheet model’s projections of future454

sea-level rise.455

The posterior marginal probability distributions of CLIFVMAX and CREVLIQ456

show the related dependencies of model parameter likelihoods as a function of LIG con-457

straints (Figure 5). The marginal probabilities, p(θ1 | θ2, y) and p(θ2 | θ1, y) are com-458

puted by finding the density of each model parameter as a function of the LIG constraint459

yx, integrating over the other model parameter, and normalizing such that along each460

column of x densities sum to one. Comparison between Fig. 4b and Fig. 5 demonstrates461

how each LIG estimate informs projections of future AIS mass loss by constraining ice-462

sheet model parameters.463

LIG contributions are relatively more informative on the extreme margins of the464

prior distribution than in the interior (Fig. 4, cf. black curve of Fig. 4a). At relatively465

high and low ends of the prior, there are fewer combinations of ice-sheet model param-466

eter values that produce these sea levels than in the interior (Fig. 5), leading to narrower467

posteriors in future projections. At the high end of LIG AIS mass loss (>6 m), CLIFV-468

MAX values always exceed 7.5 km
yr and CREVLIQ values are likewise relatively high (Fig.469

5), suggesting MICI—driven by substantial meltwater-driven hydrofracturing and removal470

of buttressing ice shelves—is important for reaching high LIG losses in this model. Nar-471

row posteriors at the low end of LIG AIS mass loss (<3.5 m) are associated emulator472

outputs which have little or no mass loss from MICI in this model, i.e. CLIFVMAX<1473

km
yr (Fig. 5). We further explore specific future projection posterior distributions asso-474

ciated with these relatively high and low LIG constraints in section 3.2.475

Conditional RCP8.5 posterior distributions in 2100 associated with intermediate476

values of LIG AIS mass loss are more broad than at the margins. Even if LIG AIS mass477

loss were known precisely to within 10 cm, if that value was between 4 and 5.5 m then478

there would remain a ∼50 cm range in 2100 projections. For instance, when the LIG con-479

tribution is 4.2 m, the associated posterior 95% credible interval in 2100 is 15–65 cm.480

This broad range in future projections after applying a precise LIG constraint results481

from the contrasting sensitivities of the LIG and RCP8.5 to parameter configurations482

(Supporting Information Figure S2). The LIG AIS mass loss prior distribution is multi-483

modal (Fig. 4a) indicating that different sectors of the Antarctic ice sheet have been com-484

pletely lost; total mass losses in these individual modes are then insensitive to small changes485

in parameter values, as seen in the regions of the parameter space which have nearly con-486

stant sea-level contributions (Fig. 2a). Comparing with Fig. 5a shows there is a wide487

range of CLIFVMAX values which result in LIG sea-level contributions between 4 and488

6 m. But RCP8.5 future AIS mass losses are most sensitive to the CLIFVMAX value489
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Figure 4. (a) Last Interglacial emulated prior (black curve) and specified constraint (blue,

yellow, orange, and red lines curves) probability distributions of Antarctic mass loss in sea-level

equivalent (m). (b) Conditional posterior probability densities of Antarctic mass loss in 2100

projected under RCP8.5 forcing (in sea-level equivalent), normalized and plotted as a function

of Last Interglacial AIS mass loss in sea-level equivalent (discretized with 10-cm-wide bins, see

text).

when CREVLIQ>15 m
(m yr−1)2 (Fig. 2), and thus have exhibit broad posterior distribu-490

tions when when LIG sea-level contributions are between 4 and 6 m. LIG contributions491

scale gradually with CREVLIQ values until CREVLIQ>105 m
(m yr−1)2 , and then LIG con-492

tributions are associated with broader ranges of CREVLIQ over 105–195 m
(m yr−1)2 (Fig.493
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Figure 5. Posterior marginal probability distributions of (a) CLIFVMAX and (b) CREVLIQ,

normalized and plotted as a function of Last Interglacial AIS mass loss in sea-level equivalent

(discretized with 10-cm-wide bins, see text).

5b); future AIS mass loses are relatively insensitive to CREVLIQ in this region of model494

parameter space (Fig. 2).495

These varying responses to model parameter configurations most clearly affect RCP8.5496

projections when the median in 2100 drops from 63 to 32 cm as LIG contributions in-497

crease from 4.6 to 4.8 m (Fig. 4b. This non-intuitive result suggests that in some regions498

of the parameter space, the model-simulated equilibrium LIG AIS mass loss is influenced499

by a different physical process than transient RCP8.5 losses. By 2100, RCP8.5 air tem-500

perature anomalies are ∼2 degrees warmer than the applied LIG forcing and are still in-501

creasing, leading to accelerating AIS mass loss through MICI that is strongly influenced502

by CLIFVMAX. In contrast, the applied LIG forcing is cooler and fixed, and the LIG503

ice-sheet equilibrates by losing mass more gradually over a 5,000 period. The slower equi-504

librium response permits CREVLIQ to play a larger role in LIG AIS mass loss, direct-505

ing which sectors of ice eventually become unstable through shelf hydrofracturing over506

the prolonged period of anomalously warm temperatures (Figure 1).507

Conditional posterior distributions (px, Fig. 4) are a powerful and novel tool for508

illustrating the links between ice-sheet model projections and paleo observational records.509

If, for instance, a field measurement showed that LIG AIS contributions were > 5 m, then510

the densities in Fig. 4 may be integrated across 5 m ≤ x ≤ +∞ to show that the range511

of projected RCP8.5 AIS mass loss in 2100 is ∼0.2–1.0 m, with a median of 65 cm. We512

discuss how conditional distributions may be used in the context of particular paleo sea-513

level observations in section 3.3.514

3.2 Future Projections Given Specific LIG Constraint Distributions515

Posterior probability distributions of AIS sea-level contributions in 2100 and 2150516

conditional on each LIG constraint distribution, following Eqn. (7), are shown in Fig-517

ure 6, along with the prior LIG distribution and histograms of the training simulations.518

Distributions are produced with kernel density estimation assuming a Silverman band-519

width (Silverman, 1986) reduced by 80% to prevent over-smoothing. Distribution quan-520

tiles are presented in Table 1. For reference, the likelihood functions (i.e. p(y | θ1, θ2))521

of CREVLIQ/CLIFVMAX model parameter sets associated with each LIG constraint522

distribution are shown in Supporting Information Figure S5.523
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Figure 6. Projected probability distributions of Antarctic ice-sheet mass loss in sea-level

equivalent (m) in (a) 2100 and (b) 2150, under RCP8.5 forcing. Distributions are from 10,000

emulator samples and smoothed with kernel density estimation. Shown are the prior RCP8.5

distribution with no constraints (black curves), and distributions under specified Last Interglacial

constraints (blue, yellow, orange, and red curves, cf. Figure 4). The ice-sheet model training

ensemble is plotted as a histogram scaled for comparison.

From 1990 to 2100, specific LIG constraints (section 2.4) do not very effectively nar-524

row uncertainties in future projections. Quantiles of the prior, D20-U, E19-U, and K09-525

125ka distributions in 2100 are all within 5 cm (Table 1). D20-N weights the distribu-526

tion towards the lower end of the projections, dropping the 95th percentile (relative to527

the prior) by 7 cm. The K09-Max-3kyrSmooth distribution re-weights the projection dis-528

tribution towards the upper tail (cf. Fig. 4a), raising the median and 75th percentiles529

by 8–10 cm.530

CREVLIQ/CLIFVMAX likelihood functions (Supporting Information Figure S5)531

show that there is no set of parameter values which are consistently unlikely across all532
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Table 1. Quantiles of projected Antarctic ice-sheet mass loss in sea-level equivalent (m) in

2100 and 2150; each emulated distribution other than the prior is constrained using a specified

Last Interglacial probability distribution (section 2.4).

2100
Quantiles Prior D20-U D20-N E19-U K09-125ka K09-Max-3kyrSmooth

5 0.07 0.07 0.07 0.07 0.07 0.09
25 0.20 0.20 0.23 0.23 0.21 0.31
50 0.42 0.40 0.40 0.44 0.43 0.52
75 0.64 0.61 0.58 0.65 0.64 0.72
95 0.85 0.83 0.78 0.85 0.85 0.88

2150
Quantiles Prior D20-U D20-N E19-U K09-125ka K09-Max-3kyrSmooth

5 0.44 0.44 0.51 0.52 0.46 0.63
25 1.21 1.17 1.23 1.30 1.24 1.63
50 2.31 2.21 2.18 2.39 2.32 2.81
75 3.54 3.38 3.22 3.58 3.53 3.88
95 4.65 4.56 4.38 4.66 4.64 4.79

LIG constraints. Thus, interpretations of which regions of model parameters space are533

viable (and hence, deductions about the related physical processes) will depend entirely534

on the specific LIG constraint applied. For instance, the E19-U constraint indicates that535

the least likely parameter sets are where CLIFVMAX values are small (Fig. S5d): about536

2.6% of the posterior density is is associated with CLIFVMAX ≤ 0.5 km
yr , compared with537

3.8% if the probabilities were uniformly likely in this region. This result implies that MICI538

is not ruled out by this constraint, in contrast to the interpretation of Edwards et al. (2019),539

because under E19-U CLIFVMAX ≤ 0.5 km
yr is only a little more likely than not. As we540

drop to even lower values of CLIFVMAX (e.g. 0.1 km
yr ), the emulated outputs conditioned541

on E19-U becomes less and less likely (not shown). However, there remain parameter542

sets with non-zero likelihoods near CLIFVMAX=0, especially at higher CREVLIQ val-543

ues (Fig. S5d), such that a no-MICI solution also cannot be excluded. The main differ-544

ences between this study and Edwards et al. (2019) are the ensemble structure, as well545

as enhanced atmospheric climatologies and a reduced ocean bias correction in the train-546

ing simulations (section 2.1). Overall, none of the existing LIG constraints can exclude547

MICI as a primary loss mechanism (Fig. S5), which requires an estimated LIG AIS mass548

loss of less than ∼3.5 m.549

The LIG emulator prior nearly coincides with (or in some cases is narrower than)550

the existing LIG constraint distributions. Whereas this indicates that the ice-sheet model551

is able to faithfully reproduce peak LIG AIS mass losses, it also confirms an existing chal-552

lenge found by Edwards et al. (2019): current LIG estimates are not strong constraints553

on this ice-sheet model’s parameter likelihoods and future projections.554

In light of this finding, we investigate how LIG constraints could inform future pro-555

jections of AIS mass loss and sea-level rise if they were improved, using the sensitivity556

test constraints outlined in section 2.4; the resulting posteriors are presented in Figure557

7. In particular, LIG constraints with gradually-reduced ranges have a limit to how ef-558

fective they can be for informing future projections of Antarctic contributions to sea-level559

rise (Supporting Information Figure S10).560

Narrowing the D20-U constraint by 50% results in a posterior distribution high-561

lighting an important property of LIG constraints: they become more effective over time562
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(a) (b)

Probability Distributions of AIS Mass Loss in SLE (m), conditional on hypothetical improved LIG constraints

D20-U

Figure 7. Posterior probability distribution medians (solid lines) and 5th–95th percentiles

(shading) of AIS mass loss in sea-level equivalent (m) projected under RCP8.5 forcing over

2050–2150. (a) Posterior constrained assuming the D20-U constraint was 50% narrower (green

curve/shading) alongside the prior distribution reproduced from Fig. 3 (black curve/shading).

(b) Posteriors constrained assuming LIG AIS sea-level contributions were <3.5 m (blue

curve/shading) or >6 m (red curve/shading).

(Fig. 7a). Until ∼2050 the prior and constrained distribution are nearly identical, then563

their distributions begin to diverge. AIS mass loss projected by this model becomes in-564

creasingly driven by cliff collapse (or the lack thereof) around 2060, and the LIG esti-565

mate begins effectively constraining both the most unstable parts of the distribution (which566

have the highest CLIFVMAX values, cf. Figure 1b) and the least. Figure 7a shows that567

because these solutions diverge over time, the LIG constraint becomes more informative568

on the absolute values of sea-level contributions over time. In 2100, the 95% credible in-569

terval of the posterior from the 50% narrower D20-U constraint is 14–68 cm, compared570

to the 7–85 cm interval of the prior (Table 1). In 2150 the constrained 95% credible in-571

terval is 0.71–4.07 m, compared with 0.44–4.65 m from the prior. Thus, even if observation-572

based LIG constraints are of little utility for reducing sea-level projection uncertainties573

in the near term, they become more meaningful as projections diverge.574

We also investigate how projected AIS mass loss could change if there were a known575

upper or lower bound on the LIG estimate. Figure 7b shows how hypothetical estimates576

of relatively low (<3.5 m) or relatively high (>6 m) LIG AIS mass loss could strongly577

influence future projections. If the LIG contributions were known to be <3.5 m, the me-578

dian and associated 95% credible interval of RCP8.5 projections in 2100 would be 7 cm579

and 4–15 cm, respectively. Likewise, if the LIG contributions were known to be >6 m,580

the associated median and 95% credible intervals of 2100 projections would be 81 cm and581

68–95 cm, respectively.582

A striking feature of the posterior distribution associated with LIG AIS mass loss583

<3.5 m constraint (blue curve/shading in Fig. 7b) is the positive skew emerging over time.584

nstable ice-sheets which retreat on a reverse-sloping bed have a greater loss rate among585

ensemble members which have lost more mass than the rate among members which have586

lost less mass (Robel et al., 2019); this positively skews the mass loss distribution (sim-587

ilarly shown by Nias et al. (2019)).588

Notably, interpreting the total AIS mass loss distribution is complicated by differ-589

ent sectors losing mass at different times and rates. As sectors of the ice-sheet lose all590

of their mass the positive skew disappears (Robel et al., 2019), as seen in the multiple591

modes of the LIG prior distribution (Fig. 4). The bimodal positively-skewed posterior592

distribution associated with the 90% narrowed D20-U constraint (Fig. S10) and the weakly593
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skewed prior distribution of RCP8.5 mass loss in 2100 (skew of +0.18, Fig. 6) also de-594

pict this complex behavior.595

In contrast, the posterior distribution associated with LIG AIS <3.5 m well-illustrates596

how different sensitivities to instability can drive skew across an ensemble (Fig. 7b). In597

2080 the emulated samples associated with higher model parameter values become un-598

stable, and the skew increases from near zero to +1.8 by 2110; after this initial period599

of instability the skew remain strongly positive (> +1.3). This behavior also explains600

how different sensitivities to instability leads to posteriors diverging over time.601

3.3 Relevance for Paleo Sea-Level Observations602

We have used conditional posterior probability distributions (Fig. 4b–5) to show603

how the LIG informs this model’s projections of AIS mass loss. Our results also show604

how ice-sheet model parameters are linked to estimates of LIG AIS sea-level contribu-605

tions. Concurrently, any improvements in understanding physical processes in the ice-606

sheet will also indicate which LIG contributions are most likely. A main benefit of our607

approach is that it may inform future research and observational efforts to understand608

LIG sea levels. Here we apply our emulation and Bayesian updating framework to par-609

ticular paleo sea-level observations, to investigate how assumptions about LIG ice-sheet610

chronology or improved LIG observations could influence future projections.611

Determining sea levels during the LIG and closing its peak sea-level budget are chal-612

lenging problems. Field observations have large uncertainties, related to measurement613

error or confounding processes such as glacial isostatic adjustment (GIA) or mantle dy-614

namic topography (DT) (Hibbert et al., 2016; Austermann et al., 2017; Dendy et al., 2017;615

Rohling et al., 2017; Capron et al., 2019). Still under debate is whether the LIG exhib-616

ited variability with multiple global sea-level peaks (Kopp, Dutton, & Carlson, 2017; Bar-617

low et al., 2018), indicating short-term fluctuations (e.g., Rohling et al., 2008), or dis-618

tinct out-of-phase mass losses between the Greenland and Antarctic ice sheets (Dutton,619

Carlson, et al., 2015). Lacking sufficient near-field evidence, the AIS is typically invoked620

as an uncertain residual contributor. Yet estimated Greenland ice-sheet mass losses dur-621

ing the LIG also have a wide range of interpretations and central estimates (Dutton, Carl-622

son, et al., 2015, their Figure 3), so it is difficult to disentangle the relative roles of Green-623

land and Antarctica.624

Our method is able to show how these uncertainties in proxy-based reconstructions625

of LIG sea levels reflect on uncertainties in future AIS contributions to sea-level rise. Here626

we calculate the 95% credible intervals of AIS sea-level contributions under RCP8.5 forc-627

ing in 2100, varying the LIG AIS uncertainty according to three different scenarios for628

GMSL. Scenarios are derived from a milestone study by Dutton, Webster, et al. (2015),629

who used sea-level proxies in the Seychelles to constrain polar ice sheet mass losses dur-630

ing the LIG. Scenarios are developed to illustrate how individual components of uncer-631

tainty in LIG estimates contribute to projection uncertainties; thus they are not directly632

related to any of the holistic projections in section 2.4 (though they are most closely re-633

lated to the proxy-driven estimates of the K09-Max-3kyrSmooth constraint). We note634

that this is a close-to-ideal case study, because Seychelles GIA and DT predictions have635

relatively small uncertainties. All uncertainties are 1σ and assumed to follow a normal636

distribution. The scenarios are:637

1. Relative sea level coinciding with the highest in situ coral measured by Dutton,638

Webster, et al. (2015) with high-accuracy surveying techniques. The coral assem-639

blage is interpreted as “likely intertidal” and its elevation is 8±0.2 m above mod-640

ern sea level.641

2. While scenario 1 is illustrative of very small uncertainties in LIG sea-level estimates,642

it is also incomplete because it does not account for departures from eustasy due643
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to GIA and sea-level fingerprints. These were calculated by Dutton, Webster, et644

al. (2015) using model results from Dutton and Lambeck (2012) and Hay et al.645

(2014). Using these estimates, Dutton, Webster, et al. (2015) calculated LIG GMSL646

rise was 7.6±1.7 m.647

3. Austermann et al. (2017) showed that mantle DT and ocean subsidence effects must648

be accounted for (each with large uncertainties), before GMSL can be calculated649

from field data. Here we use their model results for the Seychelles to illustrate how650

accounting for DT and ocean subsidence influences paleo GMSL estimates and their651

uncertainties. Subtracting ocean subsidence (-1.4 m) and DT as modelled in Austermann652

et al. (2017) (-0.8±1.8m) from scenario 2, we calculate LIG GMSL rise was 9.2±2.5653

m.654

For each scenario, we calculate LIG AIS sea-level contributions by subtracting the655

contributions of the Greenland Ice Sheet (GrIS), mountain glaciers and thermal expan-656

sion following the budgetary approach of Dutton, Carlson, et al. (2015). First, we as-657

sume that the GrIS and thermosteric contributions to LIG sea level are known (2 m and658

1 m, respectively), with no error. We compare with the assumption that, instead, GrIS659

contributed 2 m±1.5 m to LIG GMSL, as shown in Dutton, Carlson, et al. (2015, Fig-660

ure 3). We set the contributions from mountain glaciers and thermosteric expansion to661

1 m (Dutton, Carlson, et al., 2015), with arbitrary uncertainties of ±0.2 m.662

This exercise (Figure 8A–C) shows that, regardless of AIS mass loss during the LIG,663

any LIG constraint can only substantially reduce uncertainties in this ice-sheet model’s664

projected AIS sea-level contributions if the following two conditions are met: 1) sea-level665

data and departures from eustasy are known with ±1σ uncertainties of a few decime-666

ters and 2) GrIS and thermal expansion uncertainties are small (<1 m). Constraints on667

other models could be stronger or weaker, depending on the particular relationship be-668

tween their parameters and ice-sheet evolution. This could be considered discouraging669

for the communities working on these topics, i.e. the large intrinsic uncertainties that670

characterize GrIS and proxy-based ESL estimates may seem insurmountable. We instead671

note that this knowledge gap provides a unique opportunity to do innovative, timely and672

important research that feeds directly into the open research questions in the paleo sea-673

level and ice-sheet communities (Capron et al., 2019).674

Results further suggest that the storyline of LIG sea-level evolution has a strong675

influence on whether the LIG is able to constrain future sea-level changes. Greenland676

and Antarctic sea-level contributions are inextricably linked during the LIG: knowledge677

or evidence about one will inform the other, as shown by assuming LIG total GMSL es-678

timates of 7.5±0.5 m in Figure 8D. Resulting relatively high or low AIS estimates are679

similar to the hypothetical constraint posteriors in Fig. 7b. The links between the ice680

sheets imply that 1) efforts to improve estimates of GrIS can directly inform future AIS681

sea-level projections, and that 2) the timing of LIG GrIS loss compared with LIG AIS682

loss is pivotal (Kopp, Dutton, & Carlson, 2017). Storylines where GrIS and AIS mass683

losses peak simultaneously have a very different interpretation from those where ice-sheet684

losses peak several thousand years apart (Rohling et al., 2019) and imply different AIS685

projected contributions to future sea-level rise.686

The mismatch between transient future ice-sheet mass loss and peak LIG mass loss687

limits the effectiveness of the LIG as a constraint. Historically, studies of the LIG have688

focused primarily on gathering geological evidence of peak LIG GMSL, in part because689

these are less challenging measurements to make in the field. But comparing the mod-690

eled LIG and future timeseries in Fig. 1 shows the transient onset of LIG losses most691

closely mirrors future losses, with similar dependencies on model physics and parame-692

ters. Both improved transient (rather than equilibrium) ice-sheet model runs and qual-693

ity estimates of the LIG onset period are highly desirable for constraining AIS changes694

and future sea-level rise. Sampling biases and the requirement for precise chronologies695
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Figure 8. (A–C) Range of 95% credible intervals of future AIS sea-level contributions in 2100

under RCP8.5 forcing (m) conditional on three scenarios of LIG AIS contributions with a cen-

tral estimate (blue curves) and Gaussian 1σ uncertainties (see text); combined total GrIS and

thermosteric mean contributions are taken to be 3 m. Black dashed curves show the total field

uncertainties excluding those from GrIS and thermosteric contributions; orange dashed curves in-

clude GrIS and thermosteric uncertainties. (D) Probability density functions of AIS contributions

in 2100 under RCP8.5 forcing, conditional on LIG global mean sea levels of 7.5±0.5 m, and mean

GrIS sea-level contributions varying over 0–4 m.
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have to this point thwarted these efforts. But as a coherent picture of LIG sea levels emerges,696

combining LIG constraints with probabilistic distributions from ice-sheet models—as this697

study has done—will improve the precision of future sea-level projections.698

4 Summary and Conclusions699

This study applied Bayesian methods to emulate and calibrate an ice-sheet model700

to evaluate the ability of LIG AIS mass loss to constrain sea-level rise projections un-701

der RCP8.5 forcing. Ice-sheet model training ensembles were developed considering the702

marine ice-cliff instability (MICI) process, with ensembles spanning over a broader range703

of model parameter values than previously explored (DeConto & Pollard, 2016). A set704

of proposed specific LIG constraint distributions (several of which have been previously705

used to calibrate ice-sheet model projections) were also employed to explore their effec-706

tiveness for constraining future AIS mass loss. The emulator was combined with LIG707

paleo sea level field measurements to illustrate how improved LIG observational estimates708

could potentially narrow uncertainties in future Antarctic ice sheet projections.709

Results explicitly show how estimates of LIG AIS mass loss could inform which pa-710

rameter values are most likely in this ice-sheet model, which in turn informs future pro-711

jections (2000–2150). However, LIG AIS sea-level contributions themselves are not well712

constrained (e.g., Düsterhus et al., 2016), and not all LIG estimates inform future pro-713

jections equally. For instance, if LIG contributions were known to be <4 m, then MICI714

is very unlikely to be a primary loss mechanism in the future Antarctic mass loss pro-715

jected by this ice-sheet model. Likewise, if LIG contributions were known to be >6 m,716

the ice-sheet model emulator projects that substantial future mass losses associated with717

MICI are likely. In either case, uncertainties in future projections from this model would718

narrow considerably, but some uncertainty would remain because peak LIG Antarctic719

mass losses have somewhat different sensitivities to ice-sheet model parameters than fu-720

ture changes do. LIG observations which inform the upper and lower limits of the mod-721

eled prior distribution would be valuable for improving future projections (in the con-722

text of this specific model and ensemble). Because ice-sheet model parameter likelihoods723

and LIG sea-level estimates are closely linked, evidence of constraints on one informs the724

other. For instance, if there are indications that MICI is not a viable loss mechanism,725

results here indicate that peak LIG Antarctic sea-level contributions were likely <4 m.726

Consistent with the findings of Edwards et al. (2019), posterior distributions cal-727

ibrated with a Bayesian approach show that currently best-available LIG constraints (which728

have previously used to calibrate ice-sheet model projections, e.g., DeConto & Pollard,729

2016; Edwards et al., 2019) are inadequate to restrict a wide range of model parameter730

values. Consequently, this study can neither confirm nor exclude MICI as a primary driver731

of AIS mass loss. However, because the ice-sheet model projections of future AIS mass732

loss diverge over time—especially after 2060 when MICI begins strongly accelerating mass733

loss—LIG constraints which are uninformative in the near term become more informa-734

tive on longer time scales (through 2150).735

Conditioning future AIS mass losses on peak LIG sea level exposes direct links be-736

tween paleo sea-level reconstructions and future sea-level rise. Improvements in field mea-737

surements, reductions in uncertainties from glacial isostatic adjustment or dynamic to-738

pography, and better chronologies of Antarctic and Greenland ice-sheet retreat during739

the LIG could all reduce uncertainties in future projections. These results provide strong740

motivation and support for continued collaborations between the paleo sea level and ice-741

sheet communities.742

Past studies of LIG sea level have focused primarily on peak global mean sea lev-743

els, as they are more readily and reliably measurable, and because it is difficult to es-744

tablish accurate and precise sea-level chronologies (Dutton, Carlson, et al., 2015). But745
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peak LIG Antarctic ice-sheet mass losses are not necessarily representative of the tran-746

sient changes the Antarctic ice-sheet may experience in the coming decades and centuries.747

This mismatch between the future and the past limits the applicability of LIG constraints748

on future Antarctic mass loss. Even if LIG Antarctic contributions were known precisely749

(±5 cm), there would still be decimeter-scale uncertainties in projections of future Antarc-750

tic contributions to sea-level rise. An alternative approach could be to pursue additional751

field observations detailing or inferring Antarctic changes during the LIG onset, to pro-752

vide improved constraints on projections of future AIS contributions to sea-level rise. Im-753

proved LIG chronologies and observations of LIG Greenland ice-sheet changes could also754

reduce future projection uncertainties.755

This study considered a single ice-sheet model and explored the MICI process. Other756

processes (such as the oceanic melt factor, basal sliding coefficients, the timescale of iso-757

static rebound, etc.), other considerations (such as the Last Interglacial forcing applied758

or emissions scenario), or a broader model ensemble prior (e.g. over more parameters759

values and more unique parameters using advanced computational approaches, such as760

a Latin Hypercube or Sobol sequence, or a “grand-ensemble” design like that suggested761

by Edwards et al. (2019)) are beyond the scope of this work, but could be explored with762

the methodological approach developed here.763

There is a maximum possible constraint that the LIG can provide to inform ice-764

sheet model sensitivities to climate warming and future sea-level rise (e.g., Capron et al.,765

2019, and references therein). Uncertainties in ice-sheet physics and observational ev-766

idence currently limit the capability of the LIG to meaningfully constrain sea-level rise767

projections over the coming century. Despite these limitations, this study has specifically768

illustrated how models, emulation, and Bayesian calibration may be combined to inter-769

pret and guide paleo sea-level observational constraints. A major ongoing research ob-770

jective is to continue strategically gathering field observations, in order to improve un-771

derstanding and estimates of LIG sea levels. Such improvements, along with continued772

integration with modeling and statistical methods, will increase confidence in the physics773

and projections of Antarctic contributions to sea-level rise over the coming centuries.774
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