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Abstract7

Meaningful analysis of uranium-series isotopic disequilibria in basaltic lavas relies on the8

use of complex forward numerical models like dynamic melting (McKenzie, 1985) and equi-9

librium porous flow (Spiegelman and Elliott, 1993). Historically, such models have either10

been solved analytically for simplified scenarios, such as constant melting rate or constant11

solid/melt trace element partitioning throughout the melting process, or have relied on in-12

cremental or numerical calculators with limited power to solve problems and/or restricted13

availability. The most public numerical solution to reactive porous flow, UserCalc (Spiegel-14

man, 2000) was maintained on a private institutional server for nearly two decades, but that15

approach has been unsustainable in light of modern security concerns. Here we present a more16

long-lasting solution to the problems of availability, model sophistication and flexibility, and17

long-term access in the form of a cloud-hosted, publicly available Jupyter notebook. Similar18

to UserCalc, the new notebook calculates U-series disequilibria during time-dependent, equi-19

librium partial melting in a one-dimensional porous flow regime where mass is conserved.20

In addition, we also provide a new disequilibrium transport model which has the same melt21

transport model as UserCalc, but approximates rate-limited diffusive exchange of nuclides be-22

tween solid and melt using linear kinetics. The degree of disequilibrium during transport is23

controlled by a Damköhler number, allowing the full spectrum of equilibration models from24

complete fractional melting (Da = 0) to equilibrium transport (Da = ∞).25

Key Points26

• Cloud-based Jupyter notebook presents an open source, reproducible tool for modeling U-series27

in basalts28

• Equilibrium and pure disequilibrium porous flow U-series models with 1D conservation of mass29

• Scaled porous flow model introduces incomplete equilibrium scenario with reaction rate limita-30

tions31

1 Introduction32

Continuous forward melting models are necessary to interpret the origins of empirically-33

measured U-series isotopic disequilibria in basaltic lavas, but the limited and unreliable avail-34

ability of reproducible tools for making such calculations remains a persistent problem for geo-35
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chemists. To date, a number of models have been developed for this task, including classical36

dynamic melting after McKenzie (1985) and the reactive porous flow model of Spiegelman and37

Elliott (1993). There have since been numerous approaches to using both the dynamic and porous38

flow models that range from simplified analytical solutions (e.g., Sims et al., 1999; Zou, 1998; Zou39

and Zindler, 2000) to incremental dynamic melting calculators (Stracke et al., 2003), two-porosity40

calculators (Jull et al., 2002; Lundstrom et al., 2000; Sims et al., 2002), and one-dimensional numer-41

ical solutions to reactive porous flow (Spiegelman, 2000) and dynamic melting (Bourdon et al.,42

2005; Elkins et al., 2019). Unfortunately, some of the approaches published since 1990 lacked pub-43

licly available tools that would permit others to directly apply the authors’ methods, and while44

the more simplified and incremental approaches remain appropriate for asking and approaching45

some questions, they are insufficient for other applications that require more complex approaches46

(e.g., two-lithology melting; Elkins et al., 2019). Other tools like UserCalc that were available to47

public users (Spiegelman, 2000) were limited in application and have since become unavailable.48

In light of the need for more broadly accessible and flexible solutions to U-series disequilibrium49

problems in partial melting, here we present a cloud-server hosted, publicly available numerical50

calculator for one-dimensional, decompression partial melting. The tool is provided in a Jupyter51

notebook with importable Python code and can be accessed from a web browser. Users will be52

able to access and use the tool using a free cloud server account, or on their own computer given53

any standard Python distribution. As shown below, the notebook is structured to permit the user54

to select one of two primary model versions, either classical reactive porous flow after Spiegelman55

and Elliott (1993) and Spiegelman (2000), or a new disequilibrium transport model, developed af-56

ter the appendix formulas of Spiegelman and Elliott (1993). The new model ranges from pure57

disequilibrium porous flow transport (i.e., the mass-conserved equivalent of true fractional melt-58

ing over time) to a "scaled" disequilibrium scenario, where the degree of chemical equilibrium59

that is reached is determined by the relationship between the rate of chemical reaction and the60

solid decompression rate (which is, in turn, related to the overall melting rate), in the form of a61

Damköhler number.62

This scaled disequilibrium model resembles the classic dynamic melting model of McKenzie63

(1985), with the caveat that ours is the first U-series melting model developed for near-fractional,64

disequilibrium transport where mass is also conserved within a one-dimensional melting regime.65

That is, rather than controlling the quantity of melt that remains in equilibrium with the solid66

using a fixed residual porosity, the melt porosity is controlled by Darcy’s Law and mass conserva-67

tion constraints after Spiegelman and Elliott (1993), and the "near-fractional" scenario is simulated68

using the reaction rate of the migrating liquid with the upwelling solid matrix.69

2 Calculating U-series in basalts during mass-conserved, one-70

dimensional porous flow71

2.1 Solving for equilibrium transport72

Here we consider several forward melting models that calculate the concentrations and activities73

of U-series isotopes (238U, 230Th, 226Ra, 235U, and 231Pa) during partial melting and melt transport74

due to adiabatic mantle decompression. Following Spiegelman and Elliott (1993), we start with75

conservation of mass equations for the concentration of a nuclide i, assuming chemical equilib-76

rium between melt and solid:77
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∂

∂t
[ρ f φ + ρs(1− φ)Di]c

f
i +∇ · [ρ f φv + ρs(1− φ)DiV]c f

i = λi−1[ρ f φ + ρs(1− φ)Di−1]c
f
i−1

−λi[ρ f φ + ρs(1− φ)Di]c
f
i

(1)

where t is time, c f
i is the concentration of nuclide i in the melt, Di is the bulk solid/liquid partition78

coefficient for nuclide i, ρ f is the density of the fluid and ρs is the density of the solid, φ is the79

maximum residual melt porosity, v is the velocity of the melt and V the velocity of the solid in80

three dimensions, λi is the decay constant of nuclide i, and (i− 1) indicates the radioactive parent81

of nuclide i. Equation (1) states that the change in total mass of nuclide i in both the melt and82

the solid is controlled by the divergence of the mass flux transported by both phases and by the83

radioactive decay of both parent and daughter nuclides (i.e., the right hand side of the equation84

above).85

The equilibrium model of Spiegelman and Elliott (1993) assumes complete chemical equilibrium86

is maintained between the migrating partial melt and the solid rock matrix along a decompressing87

one-dimensional column. To close the equations, they assume that melt transport is described by a88

simplified form of Darcy’s Law for permeable flow through the solid matrix. In one dimension, for89

a steady-state upwelling column of melting mantle rocks, they defined the one-dimensional melt90

and solid velocities (w and W, respectively), and expressed the melt and solid fluxes as functions91

of height (z) in terms of a constant melting rate Γ0:92

ρ f φw = Γ0z (2)

ρs(1− φ)W = ρsW0 − Γ0z (3)

where W0 is the solid mantle upwelling rate, and Γ0 is equivalent to ρsW0Fmax divided by the depth93

d for a maximum degree of melting Fmax.94

Assuming an initial condition of secular equilibrium, where the initial activities λic
f
i,0Di are equiv-95

alent for parent and daughter nuclides, they derived a system of differential equations for the96

concentration c f
i in any decay chain, which can be solved numerically using equation (10) from97

that paper:98

dc′i
dζ

= c′i
(Di − 1)Fmax

Di + (1− Di)Fmaxζ
+ λid

[
Di[Di−1 + (1− Di−1)Fmaxζ]

Di−1[Di + (1− Di)Fmaxζ]

c′i−1

wi−1
e f f

−
c′i

wi
e f f

]
(4)

where c′i is the scaled melt concentration (= c f
i /c f

i,0), ζ is the dimensionless fractional height in the99

scaled column, equal to 0 at the base and 1 at the top, and100

wi
e f f =

ρ f φw + ρs(1− φ)DiW
ρ f φ + ρs(1− φ)Di

(5)

is the effective velocity for element i.101
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In their appendix, Spiegelman and Elliott (1993) developed the more general (and, arguably, realis-102

tic) form where Γ and Di are functions of height z. The UserCalc model of Spiegelman (2000) then103

formulated a one-dimensional numerical integration for the concentrations of selected U-series104

isotopes in continuously produced partial melts with height z, after the equilibrium formulas105

above. The concentration expression derived by Spiegelman (2000) for the equilibrium scenario106

(formula 6 in that reference) is:107

dc f
i

dz
=

−c f
i (z)

F(z) + (1− F(z))Di(z)
d
dz

[F(z) + (1− F(z))Di(z)] +
λi−1ρDi−1c f

i−1(z)− λiρDic
f
i (z)

ρsW0[F(z) + (1− F(z))Di(z)]
(6)

where F is the degree of melting. Spiegelman (2000) further observed that solving for the nat-108

ural log of the concentrations, Ui, rather than the concentrations themselves, is more accurate,109

particularly for highly incompatible elements (formulas 7-9 in that reference):110

U f
i = ln

 c f
i

c f
i,0

 (7)

dU f
i

dz
=

1

c f
i (z)

dc f
i

dz
(8)

dU f
i

dz
=

−1
F(z) + (1− F(z))Di(z)

d
dz

[F(z) + (1− F(z))Di(z)] +
λi

wi
e f f

[Ri−1
i exp[U f

i−1(z)−U f
i (z)]− 1]

(9)

For the formulas above, Spiegelman (2000) defined a series of variables that allow for simpler111

integration formulas and aid in efficient solution of the model, namely112

ρDi = ρ f φ + ρs(1− φ)Di(z), (10)

F = F(z) + (1− F(z))Di(z), (11)

Ri−1
i = αi

D0
i

D0
i−1

ρDi−1

ρDi
, (12)

αi =
λi−1cs

(i−1),0

λics
i,0

, (13)

and substituting from the formulas above113

wi
e f f =

ρsW0F
ρDi

. (14)
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where D0
i is the initial bulk solid/melt partition coefficient for element i, Ri−1

i is the ingrowth114

factor, and α is the initial degree of secular disequilibrium in the unmelted solid.115

Ui(z) = ln(c f (z)/c0
f ), the log of the total concentration of nuclide i in the melt, can then be decom-116

posed into117

Ui(z) = Ustable
i (z) + Urad

i (z) (15)

where118

Ustable
i (z) = ln

[
D0

i

FDi(z)

]
(16)

is the log concentration of a stable nuclide with the same partition coefficients, and Urad
i (z) is the119

radiogenic ingrowth component. An alternate way of writing the radiogenic ingrowth component120

of equation (9) of Spiegelman (2000) is:121

dUrad
i

dz
= λ′i

ρDi

FDi

[
Ri−1

i exp[Ui−1(z)−Ui(z)]− 1
]

(17)

where122

λ′i =
hλi

W0
(18)

is the decay constant of nuclide i, scaled by the solid transport time (h/W0) across a layer of total123

height h.124

Using these equations, the UserCalc reactive porous flow calculator accepted user inputs for both125

F(z) and Di(z). The method uses a formula for the melt porosity (φ(z)) based on a Darcy’s Law126

expression with a scaled permeability factor (formula 20 from Spiegelman (2000)):127

Kr(z)Adφn(1− φ)2 + φ[1 + F(z)(
ρs

ρ f
− 1)]− ρs

ρ f
F(z) = 0 (19)

where Kr(z) is the scaled permeability with height z, Ad is a permeability calibration function, and128

n is the permeability exponent. The scaled permeability is calculated relative to the permeability129

at the top of the column, i.e. depth z = z f inal :130

Kr(z) =
k(z)

k(z f inal)
(20)

Our model implementation reproduces and builds on the prior efforts summarized above, using131

a readily accessible computer language (Python) and web application (Jupyter notebooks).132
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2.2 Solving for complete disequilibrium transport133

We further present a calculation tool that solves a similar set of equations for pure chemical dis-134

equilibrium transport during one-dimensional decompression melting. This model assumes that135

the solid produces an instantantaneous fractional melt in local equilibrium with the solid; how-136

ever, the melt is not allowed to back-react with the solid during transport, as it would in the137

equilibrium model above. In the limiting condition defined by stable trace elements (i.e., without138

radioactive decay), the model reduces to the calculation for an accumulated fractional melt. The139

model solves for the concentration of each nuclide i in the solid (s) and liquid ( f ) using equations140

(26) and (27) of Spiegelman and Elliott (1993):141

dcs
i

dz
=

cs
i (z)(1−

1
Di(z)

)

1− F(z)
dF
dz

+
1− φ

W0(1− F(z))
[λi−1cs

i−1(z)− λics
i (z)] (21)

dc f
i

dz
=

cs
i (z)

Di(z)
− c f

i (z)

F(z)
dF
dz

+
ρ f φ

ρsW0F(z)
[λi−1c f

i−1(z)− λic
f
i (z)] (22)

which maintain conservation of mass for both fluid and solid individually, and do not assume142

chemical equilibration between the two phases.143

As above, the solid and fluid concentration equations are rewritten in terms of the logs of the144

concentrations:145

Us
i (z) = ln

(
cs

i (z)
cs

i,0

)
, U f

i (z) = ln

 c f
i (z)

c f
i,0

 (23)

and thus146

dUi

dz
=

1
ci(z)

dci

dz
(24)

We assume that initial cs
i,0 = Di,0c f

i,0. Also as above, the log concentration equations can be broken147

into stable and radiogenic components, and the stable log concentration equations are:148

dUs,stable
i
dz

=
1− 1

Di(z)

1− F(z)
dF
dz

(25)

dU f ,stable
i
dz

=

D0
i

Di(z)
exp(Us

i −U f
i )

F(z)
(26)

Reincorporating this with the radiogenic component gives:149

dUs
i

dz
=

1− 1
Di(z)

1− F(z)
dF
dz

+
1− φ

1− F(z)
λi

[
αi−1

αi
exp[Us

i−1 −Us
i ]− 1

]
(27)
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dU f
i

dz
=

D0
i

Di(z)
exp(Us

i −U f
i )

F(z)
+

ρ f φ

ρsF
λi

[
D0

i αi−1

D0
i−1αi

exp[U f
i−1 −U f

i ]− 1

]
(28)

2.3 Solving for transport with chemical reactivity rates150

The two models described above are end members for complete equilibrium and complete dis-151

equilibrium transport. For stable trace elements, these models produce melt compositions that152

are equivalent to batch melting and accumulated fractional melting (e.g., Spiegelman and Elliott,153

1993). However, the actual transport of a reactive fluid (like a melt) through a solid matrix can fall154

anywhere between these end members depending on the rate of transport and re-equilibration155

between melt and solid, which can be sensitive to the mesoscopic geometry of melt and solid (e.g.,156

Spiegelman and Kenyon, 1992). In an intermediate scenario, we envision that some reaction oc-157

curs, but chemical equilibration is incomplete due to slow reaction rates relative to the differential158

transport rates for the fluid and solid. If reaction times are sufficiently rapid to achieve chemical159

exchange over the lengthscale of interest before the liquid segregates, chemical equilibrium can160

be achieved; but for reactions that occur more slowly than effective transport rates, something161

less than full equilibrium occurs (e.g., Grose and Afonso, 2019; Iwamori, 1993, 1994; Kogiso et al.,162

2004; Liang and Liu, 2016; Peate and Hawkesworth, 2005; Qin et al., 1992). Such reaction rates163

can include, for example, the rate of chemical migration over the distance between high porosity164

veins or channels (e.g., Aharonov et al., 1995; Jull et al., 2002; Spiegelman et al., 2001; Stracke and165

Bourdon, 2009); or, at the grain scale, the solid chemical diffusivity of elements over the diameter166

of individual mineral grains (e.g., Feineman and DePaolo, 2003; Grose and Afonso, 2019; Oliveira167

et al., 2020; Van Orman et al., 2002a, 2006).168

To model this scaled reactivity scenario, here we start with our equations for disequilibrium trans-169

port in a steady-state, one-dimensional conservative system, and add a chemical back-reaction170

term that permits exchange of elements between the fluid and the solid. The reaction term is171

scaled by a reactivity rate factor, < and expressed in kg/m3/yr. (i.e., the same units as the melting172

rate).173

First, returning to the conservation of mass equations for a steady-state, one-dimensional, reactive174

system of stable trace elements, and using Γ(z) to represent the melting rate:175

d
dz

ρ f φw = Γ(z) (29)

d
dz

ρs(1− φ)W = −Γ(z) (30)

d
dz

ρ f φwc f
i (z) =

cs
i (z)

Di(z)
Γ(z)−<

(
c f

i (z)−
cs

i (z)
Di(z)

)
(31)

d
dz

ρs(1− φ)Wcs
i (z) = −

cs
i (z)

Di(z)
Γ(z) +<

(
c f

i (z)−
cs

i (z)
Di(z)

)
(32)

where, for an adiabatic upwelling column,176
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Γ(z) = ρsW0
dF
dz

(33)

From this, the equations (29) and (30) can be integrated (with appropriate boundary conditions at177

z = 0) to give178

ρ f φw = ρsW0F(z) (34)

ρs(1− φ)W = ρsW0(1− F(z)) (35)

Next, we expand the concentration equations to include the reactivity factor, and substitute the179

conservation of total mass determined above:180

ρsW0F(z)
d
dz

c f
i (z) + c f

i (z)Γ(z) =
cs

i (z)
Di(z)

Γ(z)−<
(

c f
i (z)−

cs
i (z)

Di(z)

)
(36)

ρsW0(1− F(z))
d
dz

cs
i (z)− cs

i (z)Γ(z) = −
cs

i (z)
Di(z)

Γ(z) +<
(

c f
i (z)−

cs
i (z)

Di(z)

)
(37)

If we then combine the Γ(z) terms and rearrange:181

ρsW0F(z)
d
dz

c f
i (z) = Γ(z)

(
cs

i (z)
Di(z)

− c f
i (z)

)
−<

(
c f

i (z)−
cs

i (z)
Di(z)

)
(38)

ρsW0(1− F(z))
d
dz

cs
i (z) = Γ(z)cs

i (z)
(

1− 1
Di(z)

)
+<

(
c f

i (z)−
cs

i (z)
Di(z)

)
(39)

We can now divide the fluid and solid equations by c f
i and cs

i , respectively, and rearrange the W0182

terms:183

1

c f
i (z)

dc f
i

dz
=

1
ρsW0F(z)

[
Γ(z)

(
cs

i (z)

Di(z)c
f
i (z)

− 1

)
−<

(
1−

cs
i (z)

Di(z)c
f
i (z)

)]
(40)

1
cs

i (z)
dcs

i
dz

=
1

ρsW0(1− F(z))

[
Γ(z)

(
1− 1

Di(z)

)
+
<

Di(z)

(
Di(z)c

f
i (z)

cs
i (z)

− 1

)]
(41)

The first terms on the right-hand side of each of these equations are identical to pure disequilib-184

rium melting, such that if < is zero, the equations reduce to the disequilibrium transport case of185

Spiegelman and Elliott (1993).186

To solve, the final terms that involve the reactivity factor can be further rewritten using the defini-187

tions for U f
i and Us

i :188
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c f
i (z) = c f

i,0 exp[U f
i (z)] =

cs
i,0

D0
i

exp[U f
i (z)] (42)

cs
i (z) = cs

i,0 exp[Us
i (z)] (43)

Thus:189

Di(z)c
f
i (z)

cs
i (z)

=
Di(z)

D0
i

exp[U f
i (z)−Us

i (z)] (44)

cs
i (z)

Di(z)c
f
i (z)

=
D0

i
Di(z)

exp[Us
i (z)−U f

i (z)] (45)

and:190

dU f
i

dz
=

1
ρsW0F(z)

[
Γ(z)

(
D0

i
Di(z)

exp[Us
i (z)−U f

i (z)]− 1

)
−<

(
1−

D0
i

Di(z)
exp[Us

i (z)−U f
i (z)]

)]
(46)

dUs
i

dz
=

1
ρsW0(1− F(z))

[
Γ(z)

(
1− 1

Di(z)

)
+
<

Di(z)

(
Di(z)

D0
i

exp[U f
i (z)−Us

i (z)]− 1

)]
(47)

Finally, substituting adiabatic upwelling and scaling with depth in place of Γ(z), and adding ra-191

dioactive terms gives the full solutions for dUi/dz:192

dU f
i

dz
=

1
F(z)

[
dF
dz

(
D0

i
Di(z)

exp[Us
i (z)−U f

i (z)]− 1

)]
− <h

ρsW0F(z)

[
1−

D0
i

Di(z)
exp[Us

i (z)−U f
i (z)]

]

+
ρ f φ

ρsF
λi

[
D0

i αi−1

D0
i−1αi

exp[U f
i−1 −U f

i ]− 1

]
(48)

dUs
i

dz
=

1
(1− F(z))

[
dF
dz

(
1− 1

Di(z)

)]
+

<h
ρsW0Di(z)(1− F(z))

[
Di(z)

D0
i

exp[U f
i (z)−Us

i (z)]− 1

]
+

1− φ

1− F(z)
λi

[
αi−1

αi
exp[Us

i−1 −Us
i ]− 1

]
(49)

where h is the total height of the melting column.193
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2.3.1 The Dahmköhler number194

The dimensionless combination195

Da =
<h

ρsW0
(50)

is the Dahmköhler number, which governs the reaction rate relative to the solid transport time. If196

re-equilibration is limited by solid state diffusion, < can be estimated using:197

< ≈ ρsDi

d2 (51)

where Di is the *solid state* diffusivity of element i, and d is a nominal spacing between melt-198

channels (this spacing could, for example, be the average grain diameter for grain-scale channels,199

or 10 cm for closely spaced veins).200

In this case (which we will assume for this paper), the Dahmköhler number can be written201

Da =
Dih

W0d2 (52)

Substituting the definition of Da above yields the final dimensionless ODEs for the disequilbrium202

transport model:203

dU f
i

dz
=

1
F(z)

(
dF
dz

+ Da
)(

D0
i

Di(z)
exp[Us

i (z)−U f
i (z)]− 1

)
+

ρ f φ

ρsF
λi

[
D0

i αi−1

D0
i−1αi

exp[U f
i−1 −U f

i ]− 1

]
(53)

dUs
i

dz
=

1
(1− F(z))

[
dF
dz

(
1− 1

Di(z)

)
+

Da
Di(z)

(
Di(z)

D0
i

exp[U f
i (z)−Us

i (z)]− 1

)]
+

1− φ

1− F(z)
λi

[
αi−1

αi
exp[Us

i−1 −Us
i ]− 1

] (54)

with initial conditions Us
i = U f

i = 0.204

In the limit where the Dahmköhler number approaches zero, the above formulas reduce to pure205

disequilibrium transport, whereas if Da approaches infinity (i.e., infinitely fast reactivity com-206

pared to physical transport), the system approaches equilibrium conditions (cs
i → Dic

f
i ).207

2.3.2 Initial conditions208

Inspection of equation (53) shows that for the initial conditions described above and F(0) = 0, dU f
i

dz209

is ill-defined (at least numerically in a floating-point system). However, taking the limit z → 0210

and applying L’Hôpital’s rule yields211
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lim
z→0

dU f
i

dz
=

U
′s
i (0)−U

′ f
i (0)

F′(0)

(
dF
dz

+ Da
)
+ λi

[
D0

i αi−1

D0
i−1αi

− 1

]
(55)

where212

U
′s
i (0) =

dUs
i

dz

∣∣∣∣
z=0

(56)

U
′ f
i (0) =

dU f
i

dz

∣∣∣∣∣
z=0

(57)

F′(0) =
dF
dz

∣∣∣∣
z=0

(58)

The initial radiogenic term also uses the limit from equation (34):213

lim
z→0

ρ f φ

ρsF
=

W0

w(0)
= 1 (59)

Rearranging equation (55) gives the value for U
′ f
i (0) for F = 0 as214

lim
z→0

dU f
i

dz
=

1
2 + Da

F′(0)

[
U
′s
i (0)

(
1 +

Da
F′(0)

)
+ λi

[
D0

i αi−1

D0
i−1αi

− 1

]]
(60)

3 A pyUserCalc Jupyter notebook215

3.1 Code design216

The UserCalc Python package implements both equilibrium and disequilibrium transport mod-217

els and provides a set of code classes and utility functions for calculating and visualizing the re-218

sults of one-dimensional, steady-state, partial melting forward models for both the 238U and 235U219

decay chains. The code package is organized into a set of Python classes and plotting routines,220

which are documented in the docstrings of the classes and also demonstrated in detail below. Here221

we briefly describe the overall functionality and design of the code, which is open-source and can222

be modified to suit an individual researcher’s needs. The code is currently available in a Git repos-223

itory (https://gitlab.com/ENKI-portal/pyUsercalc), and any future edits or merge requests will224

be managed through GitLab.225

The equilibrium and disequilibrium transport models described above have each been imple-226

mented as Python classes with a generic code interface:227

```228

I n t e r f a c e :229

−−−−−−−−−−230

model ( alpha0 , lambdas ,D,W0, F , dFdz , phi , rho_f =2800 . , rho_s =3300 . , method=method , Da= i n f )231
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232

Parameters :233

−−−−−−−−−−−234

alpha0 : numpy array of i n i t i a l a c t i v i t i e s235

lambdas : numpy array of decay cons tants sca led by s o l i d t r a n s p o r t time236

D : Function D( z ) −− re turns an array of p a r t i t i o n c o e f f i c e n t s a t sca led height z237

W0 : f l o a t −− Sol id mantle upwelling r a t e238

F : Function F ( z ) −− re turns the degree of melting F239

dFdz : Function dFdz ( z ) −− re turns the d e r i v a t i v e of F240

phi : Function phi ( z ) −− re turns the poros i ty241

rho_f : f l o a t −− melt dens i ty242

rho_s : f l o a t −− s o l i d dens i ty243

method : s t r i n g −− ODE time −stepping scheme to be passed to solve_ivp ( one of ' RK45 ' , ' Radau ' , 'BDF ' )244

Da : f l o a t −− Dahmkohler Number ( d e f a u l t s to \inf , unused in equi l ibr ium model )245

246

Required Method :247

−−−−−−−−−−−−−−−−248

model . so lve ( ) : re turns depth and log c on ce nt ra t i on numpy arrays z , Us , Uf249

```250

which solves the scaled equations (i.e., equations (9) or equations (53) and (54) for the log concen-251

trations of nuclides U f
i and Us

i in a decay chain of arbitrary length, with scaled decay constants λ′i252

and initial activity ratios α0. The model equations are always solved in a one-dimensional column253

with scaled height 0 ≤ z ≤ 1, where bulk partition coefficients Di(z), degree of melting F(z),254

melting rate dF/dz(z), and porosity φ(z) are provided by functions with height in the column.255

Optional arguments include the melt and solid densities ρ f and ρs, the Dahmköhler number Da,256

and the preferred numerical integration method (see scipy.integrate.solve_ivp ).257

UserCalc provides two separate model classes, EquilTransport and DisequilTransport , for258

the different transport models; the user could add any other model that uses the same interface,259

if desired. Most users, however, will not access the models directly but rather through the driver260

class UserCalc.UserCalc , which provides support for solving and visualizing column models261

for the relevant 238U and 235U decay chains. The general interface for the UserCalc class is:262

```263

A c l a s s f o r c o n s t r u c t i n g s o l u t i o n s f o r 1−D, steady − s t a t e , open−system U− s e r i e s t r a n s p o r t c a l c u l a t i o n s264

as in Spiegelman ( 2 0 0 0 ) and Elk ins and Spiegelman ( submitted ) .265

266

Usage :267

−−−−−−268

269

us = UserCalc ( df , dPdz = 0 . 3 2 3 7 3 , n = 2 . , t o l =1. e −6 , phi0 = 0 . 0 0 8 ,270

W0 = 3 . , model=EquilTransport , Da=None , s t a b l e =False , method= ' Radau ' )271

272

Parameters :273

−−−−−−−−−−−274

df : A pandas dataframe with columns [ ' P ' , ' F ' , Kr ' , 'DU ' , 'DTh ' , 'DRa ' , 'DPa ' ]275

dPdz : f l o a t −− Pressure gradient , to convert pressure P to depth z276

n : f l o a t −− Permeabi l i ty exponent277

t o l : f l o a t −− Tolerance f o r the ODE s o l v e r278

phi0 : f l o a t −− Reference melt poros i ty279

W0 : f l o a t −− Upwelling v e l o c i t y (cm/yr )280

model : c l a s s −− A U− s e r i e s t r a n s p o r t model c l a s s ( one of Equi lTransport or Disequi lTransport )281

Da : f l o a t −− Optional Da number f o r disequi l ibr ium t r a n s p o r t model282
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s t a b l e : bool283

True : c a l c u l a t e s c o n c e n t r a t i o n s f o r non−radiogenic nuc l ides with same chemical p r o p e r t i e s ( i . e . s e t s lambda =0)284

Fa lse : c a l c u l a t e s the f u l l radiogenic problem285

method : s t r i n g286

ODE time −stepping method to pass to solve_ivp ( usual ly one of ' Radau ' , 'BDF ' , or ' RK45 ' )287

```288

The principal required input is a pandas.Dataframe object that provides a spreadsheet contain-289

ing the degree of melting F(P), relative permeability Kr(P), and bulk partition coefficients for290

the elements DU , DTh, DRa and DPa as functions of pressure P. The structure of the input data291

spreadsheet is the same as that described in Spiegelman, (2000). Once given this spreadsheet, the292

code routine initializes the decay constants for the isotopic decay chains and provides functions293

to interpolate F(z) and Di(z) and calculate the porosity φ(z). Once thus initialized, the UserCalc294

class further provides the following methods:295

```296

P r i n c i p a l Methods :297

−−−−−−−−298

phi : re turns poros i ty as a funct ion of column height299

set_column_parameters : r e s e t s p r i n c i p a l column parameters phi0 , n , W0300

solve_1D : 1D column s o l u t i o n f o r a s i n g l e Decay chain301

with a r b i t r a r y D, lambda , alpha_0302

so lve_a l l_1D : Solves a s i n g l e column model f o r both 238U and 235U chains .303

re turns a pandas dataframe304

so lve_gr id : Solves mult ip le column models f o r a grid of p o r o s i t i e s and upwelling r a t e s305

re turns a 3−D array of a c t i v i t y r a t i o s306

```307

Of these, the principal user-facing methods are:308

• UserCalc.solve_all_1D , which returns a pandas.Dataframe containing solutions for the309

porosity (φ(z)), the log concentrations of the specified nuclides in the 238U and 235U decay310

chains in both the melt and the solid at each interpolated depth z, and the U-series activity311

ratios, likewise for each depth z.312

• UserCalc.solve_grid , which solves for a grid of one-dimensional solutions for different313

reference porosities (phi0) and solid upwelling rates (W0) and returns arrays of U-series ac-314

tivity ratios at a specified depth (usually the top of the column), as described in Spiegelman315

and Elliott (1993).316

3.1.1 Visualization Functions317

In addition to the principal classes for calculating U-series activity ratios in partial melts, the318

UserCalc package also provides functions for visualizing model inputs and outputs. The pri-319

mary plotting functions include:320

• UserCalc.plot_inputs(df) : Visualizes the input dataframe to show F(P), Kr(P) and321

Di(P).322

• UserCalc.plot_1Dcolumn(df) : Visualizes the output dataframe for a single one-323

dimensional melting column.324
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• UserCalc.plot_contours(phi0,W0,act) : Visualizes the output of UserCalc.solve_grid325

by generating contour plots of activity ratios at a specific depth as functions of the porosity326

(φ0) and solid upwelling rate (W0).327

• UserCalc.plot_mesh_Ra(Th,Ra,W0,phi0) and UserCalc.plot_mesh_Pa(Th,Pa,W0,phi0) :328

Generates ’mesh’ plots showing results for different φ0 and W0 values on (226Ra/230Th) vs.329

(230Th/238U) and (231Pa/235U) vs. (230Th/238U) activity diagrams.330

Both the primary solver routines and visualization routines will be demonstrated in detail below.331

3.2 An example demonstrating pyUserCalc functionality for a single melting column332

The Python code cells embedded below provide an example problem that demonstrates the use333

and behavior of the model for a simple, two-layer upwelling mantle column, with a constant melt-334

ing rate within each layer and constant Kr = 1. This example is used to compare the outcomes335

from the original UserCalc equilibrium model (Spiegelman, 2000) to various other implementa-336

tions of the code, such as pure disequilibrium transport and scaled reactivity rates, as described337

above.338

To use this Jupyter notebook, while in a web-enabled browser the user should select an embedded339

code cell by mouse-click and then simultaneously type the ’Shift’ and ’Enter’ keys to run the cell,340

after which selection will automatically advance to the following cell. The first cell below imports341

necessary code libraries to access the Python toolboxes and functions that will be used in the rest342

of the program.343

[1]: # Select this cell with by mouseclick, and run the code by simultaneously typing␣
↪→the 'Shift' + 'Enter' keys.

# If the browser is able to run the Jupyter notebook, a number [1] will appear␣
↪→to the left of the cell.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# Import UserCalc:
import UserCalc

344

3.2.1 Entering initial input information and viewing input data345

In the full Jupyter notebook code available in the Git repository and provided here as supple-346

mentary materials, the user can edit a notebook copy and indicate their initial input data, as has347

been done for the sample data set below. The name for the user’s input data file should be set in348

quotes (i.e., replacing the word ’sample’ in the cell below with the appropriate filename, minus349

the file extension). This name will be used both to find the input file and to label any output files350

produced. Our sample file can likewise be downloaded and used as a formatting template for351

other input files (see Supplementary Materials), and is presented as a useful example below. The352

desired input file should be saved to a ’data’ folder in the notebook directory prior to running the353

code.354
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Once the cell has been edited to contain the correct input file name, the user should run the cell355

using the technique described above.356

[2]: runname='sample'
357

The cell below will read in the input data using the user filename specified above:358

[3]: input_file = 'data/{}.csv'.format(runname)
df = pd.read_csv(input_file,skiprows=1,dtype=float)
df

359

[3]: P F Kr DU DTh DRa DPa
0 40.0 0.00000 1.0 0.00900 0.00500 0.00002 0.00001
1 39.0 0.00241 1.0 0.00900 0.00500 0.00002 0.00001
2 38.0 0.00482 1.0 0.00900 0.00500 0.00002 0.00001
3 37.0 0.00723 1.0 0.00900 0.00500 0.00002 0.00001
4 36.0 0.00964 1.0 0.00900 0.00500 0.00002 0.00001
5 35.0 0.01210 1.0 0.00900 0.00500 0.00002 0.00001
6 34.0 0.01450 1.0 0.00900 0.00500 0.00002 0.00001
7 33.0 0.01690 1.0 0.00900 0.00500 0.00002 0.00001
8 32.0 0.01930 1.0 0.00900 0.00500 0.00002 0.00001
9 31.0 0.02170 1.0 0.00900 0.00500 0.00002 0.00001
10 30.0 0.02410 1.0 0.00900 0.00500 0.00002 0.00001
11 29.0 0.02650 1.0 0.00900 0.00500 0.00002 0.00001
12 28.0 0.02890 1.0 0.00900 0.00500 0.00002 0.00001
13 27.0 0.03130 1.0 0.00900 0.00500 0.00002 0.00001
14 26.0 0.03370 1.0 0.00900 0.00500 0.00002 0.00001
15 25.0 0.03620 1.0 0.00900 0.00500 0.00002 0.00001
16 24.0 0.03860 1.0 0.00900 0.00500 0.00002 0.00001
17 23.0 0.04100 1.0 0.00899 0.00500 0.00002 0.00001
18 22.0 0.04340 1.0 0.00893 0.00498 0.00002 0.00001
19 21.0 0.04610 1.0 0.00852 0.00488 0.00002 0.00001
20 20.0 0.05000 1.0 0.00700 0.00450 0.00002 0.00001
21 19.0 0.05610 1.0 0.00548 0.00412 0.00002 0.00001
22 18.0 0.06340 1.0 0.00507 0.00402 0.00002 0.00001
23 17.0 0.07100 1.0 0.00501 0.00400 0.00002 0.00001
24 16.0 0.07860 1.0 0.00500 0.00400 0.00002 0.00001
25 15.0 0.08620 1.0 0.00500 0.00400 0.00002 0.00001
26 14.0 0.09370 1.0 0.00500 0.00400 0.00002 0.00001
27 13.0 0.10133 1.0 0.00500 0.00400 0.00002 0.00001
28 12.0 0.10892 1.0 0.00500 0.00400 0.00002 0.00001
29 11.0 0.11651 1.0 0.00500 0.00400 0.00002 0.00001
30 10.0 0.12410 1.0 0.00500 0.00400 0.00002 0.00001
31 9.0 0.13169 1.0 0.00500 0.00400 0.00002 0.00001
32 8.0 0.13928 1.0 0.00500 0.00400 0.00002 0.00001
33 7.0 0.14687 1.0 0.00500 0.00400 0.00002 0.00001
34 6.0 0.15446 1.0 0.00500 0.00400 0.00002 0.00001
35 5.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001

360

15



36 4.0 0.16964 1.0 0.00500 0.00400 0.00002 0.00001
37 3.0 0.17723 1.0 0.00500 0.00400 0.00002 0.00001
38 2.0 0.18482 1.0 0.00500 0.00400 0.00002 0.00001
39 1.0 0.19241 1.0 0.00500 0.00400 0.00002 0.00001
40 0.0 0.20000 1.0 0.00500 0.00400 0.00002 0.00001

361

Table 1. Input data table for example tested here, showing pressures in kbar (P), degree of362

melting (F), permeability coefficient (Kr), and bulk solid/melt partition coefficients (Di) for363

the elements of interest, U, Th, Ra, and Pa.364

The next cell will visualize the input dataframe in Figure 1, using the utility function365

plot_inputs :366

[4]: UserCalc.plot_inputs(df)
367

368

Figure 1. Diagrams showing example input parameters F, Kr, and Di as a function of pressure,369

for the sample input file tested here.370

3.2.2 Single column equilibrium transport model371

In its default mode, UserCalc solves the one-dimensional steady-state equilibrium transport372

model described in Spiegelman (2000). Below we will initialize the model, solve for a single col-373

umn and plot the results.374

First we set the physical parameters for the upwelling column and initial conditions:375

[5]: # Maximum melt porosity:
phi0 = 0.008

376
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# Solid upwelling rate in cm/yr. (to be converted to km/yr. in the driver␣
↪→function):

W0 = 3.

# Permeability exponent:
n = 2.

# Solid and liquid densities in kg/m3:
rho_s = 3300.
rho_f = 2800.

# Initial activity values (default is 1.0):
alpha0_238U = 1.
alpha0_235U = 1.
alpha0_230Th = 1.
alpha0_226Ra = 1.
alpha0_231Pa = 1.
alpha0_all = np.array([alpha0_238U, alpha0_230Th, alpha0_226Ra, alpha0_235U,␣

↪→alpha0_231Pa])
377

Next, we initialize the default equilibrium model:378

[6]: us_eq = UserCalc.UserCalc(df)
379

and run the model for the input code and display the results for the final predicted melt composi-380

tion in List 1:381

[7]: df_out_eq = us_eq.solve_all_1D(phi0,n,W0,alpha0_all)
df_out_eq.tail(n=1)

382

[7]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.164941 1.590091 2.10557 -3.121055

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.556171 -8.613841 -3.121055 -3.556171 -8.613841 -3.121909 -9.179718

Us_235U Us_231Pa
40 -3.121909 -9.179718

383

List 1. Model output results for the equilibrium melting scenario tested above.384

The cell below produces Figure 2, which shows the model results with depth:385

[8]: fig = UserCalc.plot_1Dcolumn(df_out_eq)
386
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387

Figure 2. Equilibrium model output results for the degree of melting, residual melt porosity,388

and activity ratios (230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of pressure.389

3.2.3 Single column disequilibrium transport model390

For comparison, we can repeat the calculation using the disequilibrium transport model, and391

compare the results to the equilibrium model. We first initialize a new model with Da = 0, which392

will calculate full disequilibrium transport:393

[9]: us_diseq = UserCalc.UserCalc(df, model=UserCalc.DisequilTransport, Da=0.)
394

The cells below calculate solutions for this pure disequilibrium scenario, as shown in List 2:395

[10]: df_out = us_diseq.solve_all_1D(phi0,n,W0,alpha0_all)
df_out.tail(n=1)

396

[10]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.051064 1.001054 1.055847 -3.096744

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.634727 -9.155135 -39.606509 -39.945908 -42.201598 -3.096769 -9.844821

Us_235U Us_231Pa
40 -39.602818 -45.46502

397

List 2. Model output results for the disequilibrium melting scenario tested above.398

Next we compare the results to our equilibrium calculation above:399
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[11]: fig, axes = UserCalc.plot_1Dcolumn(df_out)
for s in ['(230Th/238U)','(226Ra/230Th)','(231Pa/235U)']:

axes[2].plot(df_out_eq[s],df_out['P'],'--',color='grey')
axes[2].set_title('Da = {}'.format(us_diseq.Da))
plt.show()

400

401

Figure 3. Disequilibrium model output results for the degree of melting, residual melt poros-402

ity, and activity ratios (230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of pressure,403

for the Dahmköhler number shown (Da = 0). For comparison, the dashed gray curves show404

solutions for the equilibrium transport model.405

The dashed grey curves in Figure 3 illustrate the equilibrium transport solution, which is signif-406

icantly different from the disequilibrium solution. If we increase the value of Da, however, the407

disequilibrium transport solution should converge towards the equilibrium scenario. To illustrate408

this, below we calculate the result for Da = 1:409

[12]: us_diseq.Da=1.
df_out = us_diseq.solve_all_1D(phi0,n,W0,alpha0_all)
df_out_eq.tail(n=1)

410

[12]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.164941 1.590091 2.10557 -3.121055

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.556171 -8.613841 -3.121055 -3.556171 -8.613841 -3.121909 -9.179718

Us_235U Us_231Pa
40 -3.121909 -9.179718

411
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List 3. Model output results for the disequilibrium melting scenario tested above, where412

Da = 1.413

[13]: fig, axes = UserCalc.plot_1Dcolumn(df_out)
for s in ['(230Th/238U)','(226Ra/230Th)','(231Pa/235U)']:

axes[2].plot(df_out_eq[s],df_out['P'],'--',color='grey')
axes[2].set_title('Da = {}'.format(us_diseq.Da))
plt.show()

414

415

Figure 4. Disequilibrium model output as in Figure 3, but for Da = 1.416

The outcome of the above calculation (Figure 4, List 3) approaches the equilibrium scenario more417

closely, as predicted. Below is an additional comparison for Da = 10:418

[14]: us_diseq.Da=10.
df_out = us_diseq.solve_all_1D(phi0,n,W0,alpha0_all)
fig, axes = UserCalc.plot_1Dcolumn(df_out)
for s in ['(230Th/238U)','(226Ra/230Th)','(231Pa/235U)']:

axes[2].plot(df_out_eq[s],df_out['P'],'--',color='grey')
axes[2].set_title('Da = {}'.format(us_diseq.Da))
plt.show()

419
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420

Figure 5. Disequilibrium model output as in Figure 3, but for Da = 10.421

For Da = 10 (Figure 5), the activity ratios in the melt are indistinguishable from the equilibrium422

calculation, suggesting that a Dahmköhler number of 10 is sufficiently high for a melting system423

to approach chemical equilibrium, and illustrating that the equilibrium model of Spiegelman and424

Elliott (1993) and Spiegelman (2000) is the limiting case for the more general disequilibrium model425

presented here. For this problem, equilibrium transport always provides an upper bound on426

activity ratios.427

3.2.4 Stable element concentrations428

For a stable element, i.e., λi = 0, Spiegelman and Elliott (1993) showed that the equilibrium melt-429

ing model reduces identically to simple batch melting (Shaw, 1970), while the disequilibrium430

model with Da = 0 is equivalent to true fractional melting. This presents a useful test of the431

calculator that verifies the program is correctly calculating stable concentrations. To simulate sta-432

ble element concentrations for U, Th, Ra, and Pa during equilbrium melting, we can use the same433

input file example as above and simply test the scenario where λi values are equal to zero.434

First, we impose a "stable" condition that changes all decay constants λi = 0:435

[15]: us_eq = UserCalc.UserCalc(df,stable=True)
df_out_eq = us_eq.solve_all_1D(phi0,n,W0,alpha0_all)
df_out_eq.tail(n=1)

436

[15]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.003937 1.015919 1.019959 -3.120895

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.704753 -9.21042 -3.120895 -3.704753 -9.21042 -3.120895 -9.903528

437
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Us_235U Us_231Pa
40 -3.120895 -9.903528

438

List 4. Model output results for equilibrium porous flow melting where λi = 0, simulating439

stable element behavior for U, Th, Ra, and Pa and thus true (instantaneous) batch melting.440

For comparison with the results in List 4, we can use the batch melting equation (Shaw, 1970) to441

calculate the concentrations of U, Th, Ra, and Pa using the input values in Table 1 for F(z) and Di,442

where:443

c f
i

c0
i
=

1
F + Di(1− F)

(61)

and determine radionuclide activities for the batch melt using the definition of the activity a for a444

nuclide i:445

ai = λic
f
i (62)

and the initial nuclide activities a0
i , such that:446

ai =
a0

i
F + Di(1− F)

(63)

As the activity ratios in List 5 illustrate, the outcomes of this simple batch melting equation are447

identical to those produced by the model for equilibrium transport and λ = 0.448

[16]: df_batch=df[['P','F','DU','DTh','DRa','DPa']]
df_batch['(230Th/238U)'] = (alpha0_all[1]/(df_batch.F-df_batch.F*df_batch.

↪→DTh+df_batch.DTh))/(alpha0_all[0]/(df_batch.F-df_batch.F*df_batch.DU+df_batch.
↪→DU))

df_batch['(226Ra/230Th)'] = (alpha0_all[2]/(df_batch.F-df_batch.F*df_batch.
↪→DRa+df_batch.DRa))/(alpha0_all[1]/(df_batch.F-df_batch.F*df_batch.DTh+df_batch.
↪→DTh))

df_batch['(231Pa/235U)'] = (alpha0_all[4]/(df_batch.F-df_batch.F*df_batch.
↪→DPa+df_batch.DPa))/(alpha0_all[3]/(df_batch.F-df_batch.F*df_batch.DU+df_batch.
↪→DU))

# Extract columns and concatenate dataframes
cols = ['P', 'F', '(230Th/238U)', '(226Ra/230Th)', '(231Pa/235U)']
df_compare = pd.concat([ df_batch[cols].tail(1), df_out_eq[cols].tail(1)])
df_compare['model'] = ['Batch Melting', 'Equilibrium Transport: stable elements']
df_compare.set_index('model')

449

[16]: P F (230Th/238U) (226Ra/230Th)
model

450
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Batch Melting 0.0 0.2 1.003937 1.015919
Equilibrium Transport: stable elements 0.0 0.2 1.003937 1.015919

(231Pa/235U)
model
Batch Melting 1.019959
Equilibrium Transport: stable elements 1.019959

451

List 5. Simple batch melting calculation results using the methods of Shaw (1970), demon-452

strating identical activity ratio results to those calculated using the equilibrium transport453

model with λi = 0.454

Similarly, we can also determine pure disequilibrium melting using the disequilibrium transport455

model with λi = 0. A simple fractional melting problem is easiest to test using constant melt pro-456

ductivity and partitioning behavior, so here we test a simplified, one-layer scenario with constant457

dF/dz and Di values:458

[17]: input_file_2 = 'data/simple_sample.csv'
df_test = pd.read_csv(input_file_2,skiprows=1,dtype=float)
UserCalc.plot_inputs(df_test)
df_test.tail(n=1)

459

[17]: P F Kr DU DTh DRa DPa
40 0.0 0.0964 1.0 0.009 0.005 0.00002 0.00001

460

461

Figure 6. Simple alternative input file with constant melt productivity and constant462

solid/melt partitioning, used here to test pure fractional melting outputs.463
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We note that numerical ODE solvers may not successfully solve for pure fractional melting with464

Da = 0 and stable elements, because the resulting extreme changes in solid concentrations for465

highly incompatible elements are difficult to resolve using numerical methods. Stable solutions466

can nonetheless be obtained for very small values of Da that approach Da = 0, and such solutions467

still provide a useful test of the disequilibrium transport model. Here we use Da = 10−10; for such468

low Da values, the liquid closely approaches the composition of an accumulated fractional melt,469

and although the liquid and solid outcomes are slightly different from pure fractional melting, the470

solid is still essentially depleted of all incompatible nuclides.471

[18]: us_diseq_test = UserCalc.UserCalc(df_test, model=UserCalc.
↪→DisequilTransport,stable=True,Da=1.e-10)

472

[19]: df_diseq_test = us_diseq_test.solve_all_1D(phi0,n,W0,alpha0_all)
473

Similar to our approach for equilibrium and batch melting, we can compare the results of dise-474

quilibrium transport for stable elements with pure fractional melting for constant partition coeffi-475

cients using the definition of aggregated fractional melt concentrations (Figure 7):476

cs
i

cs,0
i

= (1− F)1/Di−1 (64)

c f
i

c f ,0
i

=
Di

F

(
1− (1− F)1/Di

)
(65)

or in log units:477

Us
i = (1/Di − 1) log(1− F) (66)

U f
i = log

(
1− (1− F)1/Di

)
+ log

(
Di

F

)
(67)

[20]: df_frac=df_test[['P','F','DU','DTh','DRa','DPa']]
df_frac['(230Th/238U)'] = ((alpha0_all[1]/df_frac.F)*(1.-(1.-df_frac.F)**(1./

↪→df_frac.DTh))) / ((alpha0_all[0]/df_frac.F)*(1.-(1.-df_frac.F)**(1./df_frac.
↪→DU)))

df_frac['(226Ra/230Th)'] = ((alpha0_all[2]/df_frac.F)*(1.-(1.-df_frac.F)**(1./
↪→df_frac.DRa))) / ((alpha0_all[1]/df_frac.F)*(1.-(1.-df_frac.F)**(1./df_frac.
↪→DTh)))

df_frac['(231Pa/235U)'] = ((alpha0_all[4]/df_frac.F)*(1.-(1.-df_frac.F)**(1./
↪→df_frac.DPa))) / ((alpha0_all[3]/df_frac.F)*(1.-(1.-df_frac.F)**(1./df_frac.
↪→DU)))

478

[21]: fig, axes = UserCalc.plot_1Dcolumn(df_diseq_test)
for s in ['(230Th/238U)','(226Ra/230Th)','(231Pa/235U)']:

axes[2].plot(df_frac[s],df_diseq_test['P'],'--',color='black')
plt.show()

479
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480

Figure 7. Model output results for the degree of melting, residual melt porosity, and activity481

ratios (230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of pressure. The solid curves482

plot the results of pure fractional melting for stable elements, while the dashed black curves483

illustrate the outcomes of the disequilibrium transport model with Da = 10−10 and λi = 0.484

The outcomes of the two methods are indistinguishable.485

3.2.5 Considering lithospheric transport scenarios486

In mantle decompression melting scenarios, melting is expected to cease in the shallow, colder487

part of the regime where a lithospheric layer is present. The effects of cessation of melting prior488

to reaching the surface can be envisioned as affecting magma compositions in a number of ways,489

some of which could be calculated using the models presented here by setting dF = 0.490

There are, however, several limitations when using our transport models to simulate lithospheric491

melt transport in this way, as the model equations are written to track steady-state decompression492

and melting. The first limitation is thus the underlying assumption that the solid is migrating and493

experiencing progressive melt depletion in the model, while the solid lithosphere should in fact494

behave as a rigid matrix that does not experiencing upwelling. For the disequilibrium transport495

model with Da = 0, no chemical reequilibration occurs while dF = 0, so the lack of solid migration496

after the cessation of melting does not pose a problem; instead, in the pure disequilibrium trans-497

port case, imposing dF = 0 simply allows for radioactive decay and ingrowth during transport498

through the lithospheric layer.499

The equilibrium transport model, on the other hand, permits full equilibration even if dF = 0,500

but the liquid composition does not directly depend on the solid concentration, cs
i (z), so ongoing501

chemical reequilibration between the liquid and a modified lithospheric solid could be simulated502

by modifying the bulk solid/liquid partition coefficients Di. However, the underlying model503

assumes that the liquid with mass proportion Fmax reequilibrates with the solid matrix in a steady-504

state transport regime, at the maximum reference porosity, which may not accurately simulate the505
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transport regime through the fixed lithosphere with no melting.506

The case of the scaled disequilibrium transport model with Da > 0 is the most complex, since the507

model directly calculates reequilibration of the liquid with a progressively melting solid layer, and508

thus may not accurately simulate transport through the fixed solid lithosphere. We advise that if509

the model is used in this way, the results must be interpreted with caution.510

Finally, calculating a given transport model through the upwelling asthenosphere and into a fixed511

overlying lithospheric layer neglects an additional, significant limitation: namely that melt-rock512

interactions, and thus the magma transport style, may be different in the lithosphere than in the513

melting asthenosphere. While it is not possible to change transport models during a single 1D run514

in the current implementation, one alternative approach is to change the relative permeability, Kr,515

in the lithosphere, in addition to modifying the bulk partition coefficients to reflect lithospheric516

values. It may also be possible to run a separate, second-stage lithospheric calculation with mod-517

ified input parameters and revised liquid porosity constraints, but this option is not currently518

implemented and would require an expansion of the current model.519

Despite these caveats, there are some limited scenarios where users may wish to simulate equilib-520

rium or disequilibrium magma transport through a capping layer with constant dF = 0, constant521

φ = φ0, and revised Di values for a modified layer mineralogy. The cells below provide options522

for modifying the existing input data table to impose such a layer. The first cell identifies a final523

melting pressure PLithos, which is defined by the user in kbar. This value can be set to 0.0 if no524

lithospheric cap is desired; in the example below, it has been set at 5.0 kbar. There are two over-525

all options for how this final melting pressure could be used to modify the input data. The first526

option (implemented in the Supplementary Materials but not tested here) simply deletes all lines527

in the input dataframe for depths shallower than PLithos. This is a straightforward option for a528

one-dimensional column scenario, where melting simply stops at the base of the lithosphere and529

the composition of the melt product is observed in that position. This is an effective way to limit530

further chemical interactions after melting has ceased; it fails to account for additional radioactive531

decay during lithospheric melt transport, but subsequent isotopic decay over a fixed transport532

time interval could then be calculated using the radioactive decay equations for U-series nuclides.533

A second option, shown here to demonstrate outcomes, changes the degree of melting increments534

(dF) to a value of 0 for all depths shallower than PLithos, but allows model calculations to con-535

tinue at shallower depths. This is preferable if the user aims to track additional radioactive decay536

and/or chemical exchange after melting has ceased and during subsequent transport through the537

lithospheric layer, and shall be explored further below.538

[22]: Plithos = 5.0

Pfinal = df.iloc[(df['P']-Plithos).abs().idxmin()]
F_max = Pfinal[1].tolist()
df.loc[(df['P'] < Plithos),['F']] = F_max

539

For equilibrium transport scenarios, the cell below offers one possible option for modifying litho-540

spheric solid/melt bulk partition coefficients. We note that if the disequilibrium transport model541

is used with Da = 0 (i.e., pure chemical disequilibrium), this cell is not necessary.542

The option demonstrated below imposes new, constant melt-rock partition coefficients during543

lithospheric transport. These values are assumed to be fixed. An alternative choice, included in544
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the Supplementary Materials, instead fixes the shallower lithospheric solid/melt bulk partition545

coefficients such that they are equal to Di values at the depth where melting ceased (i.e., PLithos).546

[23]: # Define new bulk solid/liquiud partition coefficients for the lithospheric␣
↪→layer:

D_U_lith = 0.002
D_Th_lith = 0.006
D_Ra_lith = 0.00002
D_Pa_lith = 0.00001

# Implement the changed values defined above:
df.loc[(df['P'] < Plithos),['DU']] = D_U_lith
df.loc[(df['P'] < Plithos),['DTh']] = D_Th_lith
df.loc[(df['P'] < Plithos),['DRa']] = D_Ra_lith
df.loc[(df['P'] < Plithos),['DPa']] = D_Pa_lith

547

Following any changes implemented above, the cells below will process and display the refined548

input data (Figure 8, Table 2).549

[24]: UserCalc.plot_inputs(df)
550

551

Figure 8. Diagrams showing input parameters F, Kr, and Di as a function of pressure, for the552

example input file and modified lithospheric conditions.553

[25]: df
554
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[25]: P F Kr DU DTh DRa DPa
0 40.0 0.00000 1.0 0.00900 0.00500 0.00002 0.00001
1 39.0 0.00241 1.0 0.00900 0.00500 0.00002 0.00001
2 38.0 0.00482 1.0 0.00900 0.00500 0.00002 0.00001
3 37.0 0.00723 1.0 0.00900 0.00500 0.00002 0.00001
4 36.0 0.00964 1.0 0.00900 0.00500 0.00002 0.00001
5 35.0 0.01210 1.0 0.00900 0.00500 0.00002 0.00001
6 34.0 0.01450 1.0 0.00900 0.00500 0.00002 0.00001
7 33.0 0.01690 1.0 0.00900 0.00500 0.00002 0.00001
8 32.0 0.01930 1.0 0.00900 0.00500 0.00002 0.00001
9 31.0 0.02170 1.0 0.00900 0.00500 0.00002 0.00001
10 30.0 0.02410 1.0 0.00900 0.00500 0.00002 0.00001
11 29.0 0.02650 1.0 0.00900 0.00500 0.00002 0.00001
12 28.0 0.02890 1.0 0.00900 0.00500 0.00002 0.00001
13 27.0 0.03130 1.0 0.00900 0.00500 0.00002 0.00001
14 26.0 0.03370 1.0 0.00900 0.00500 0.00002 0.00001
15 25.0 0.03620 1.0 0.00900 0.00500 0.00002 0.00001
16 24.0 0.03860 1.0 0.00900 0.00500 0.00002 0.00001
17 23.0 0.04100 1.0 0.00899 0.00500 0.00002 0.00001
18 22.0 0.04340 1.0 0.00893 0.00498 0.00002 0.00001
19 21.0 0.04610 1.0 0.00852 0.00488 0.00002 0.00001
20 20.0 0.05000 1.0 0.00700 0.00450 0.00002 0.00001
21 19.0 0.05610 1.0 0.00548 0.00412 0.00002 0.00001
22 18.0 0.06340 1.0 0.00507 0.00402 0.00002 0.00001
23 17.0 0.07100 1.0 0.00501 0.00400 0.00002 0.00001
24 16.0 0.07860 1.0 0.00500 0.00400 0.00002 0.00001
25 15.0 0.08620 1.0 0.00500 0.00400 0.00002 0.00001
26 14.0 0.09370 1.0 0.00500 0.00400 0.00002 0.00001
27 13.0 0.10133 1.0 0.00500 0.00400 0.00002 0.00001
28 12.0 0.10892 1.0 0.00500 0.00400 0.00002 0.00001
29 11.0 0.11651 1.0 0.00500 0.00400 0.00002 0.00001
30 10.0 0.12410 1.0 0.00500 0.00400 0.00002 0.00001
31 9.0 0.13169 1.0 0.00500 0.00400 0.00002 0.00001
32 8.0 0.13928 1.0 0.00500 0.00400 0.00002 0.00001
33 7.0 0.14687 1.0 0.00500 0.00400 0.00002 0.00001
34 6.0 0.15446 1.0 0.00500 0.00400 0.00002 0.00001
35 5.0 0.16205 1.0 0.00500 0.00400 0.00002 0.00001
36 4.0 0.16205 1.0 0.00200 0.00600 0.00002 0.00001
37 3.0 0.16205 1.0 0.00200 0.00600 0.00002 0.00001
38 2.0 0.16205 1.0 0.00200 0.00600 0.00002 0.00001
39 1.0 0.16205 1.0 0.00200 0.00600 0.00002 0.00001
40 0.0 0.16205 1.0 0.00200 0.00600 0.00002 0.00001

555

Table 2. Input data table for an example scenario with modified lithospheric transport condi-556

tions, showing pressures in kbar (P), degree of melting (F), permeability coefficient (Kr), and557

bulk solid/melt partition coefficients (Di) for the elements of interest, U, Th, Ra, and Pa.558
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The cells below will rerun the end member models for the modified lithospheric input file. First,559

equilibrium transport:560

[26]: us_eq = UserCalc.UserCalc(df,stable=False)
df_out_eq = us_eq.solve_all_1D(phi0,n,W0,alpha0_all)

561

And second, for disequilibrium transport with Da = 0:562

[27]: us_diseq = UserCalc.UserCalc(df,model=UserCalc.
↪→DisequilTransport,Da=0,stable=False)

df_out_diseq = us_diseq.solve_all_1D(phi0,n,W0,alpha0_all)
563

List 6 below displays the activity ratios determined for the final melt compositions at the end of564

the two simulations (i.e., the tops of the one-dimensional melting columns).565

[28]: df_compare = pd.concat([df_out_eq.tail(n=1), df_out_diseq.tail(n=1)])
df_compare['model'] = ['Equilibrium Transport', 'Disequilbrium Transport']
df_compare.set_index('model')

566

[28]: P z F phi (230Th/238U)
model
Equilibrium Transport 0.0 0.0 0.16205 0.008 1.015792
Disequilbrium Transport 0.0 0.0 0.16205 0.008 1.039704

(226Ra/230Th) (231Pa/235U) Uf_238U Uf_230Th
model
Equilibrium Transport 1.894057 1.792975 -2.901132 -3.473250
Disequilbrium Transport 1.000828 1.034719 -2.891833 -3.440684

Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U
model
Equilibrium Transport -8.355990 -2.901132 -3.473250 -8.355990 -2.902001
Disequilbrium Transport -8.961317 -30.351986 -30.353121 -30.353146 -2.884920

Uf_231Pa Us_235U Us_231Pa
model
Equilibrium Transport -9.120520 -2.902001 -9.120520
Disequilbrium Transport -9.653185 -30.272812 -30.272749

567

List 6. Model output results for the disequilibrium (Da = 0) melting scenarios tested here,568

with modified lithospheric input conditions.569

The following cell generates Figure 9, which illustrates outcomes with depth for the equilibrium570

and disequilibrium transport models. The model outcomes for the two transport scenarios are571

notably different, particularly for the shorter-lived isotopic pairs.572

29



[29]: fig, axes = UserCalc.plot_1Dcolumn(df_out_diseq)
axes[2].set_prop_cycle(None)
for s in ['(230Th/238U)','(226Ra/230Th)','(231Pa/235U)']:

axes[2].plot(df_out_eq[s],df_out['P'],'--')
axes[2].set_title('Da = {}'.format(us_diseq.Da))
plt.show()

573

574

Figure 9. Comparison of equilibrium (dashed) and disequilibrium (Da = 0; solid) trans-575

port model output results for the degree of melting, residual melt porosity, and activity ratios576

(230Th/238U), (226Ra/230Th), and (231Pa/235U) as a function of pressure, for the modified litho-577

spheric transport scenario explored above. Symbols and lines as in Figure 3.578

3.3 Batch operations579

For many applications, it is preferable to run a batch of model scenarios over a range of input580

parameters directly related to questions about the physical constraints on melt generation, such581

as the maximum residual or reference melt porosity (φ0) and the solid mantle upwelling rate (W0).582

The cells below determine a series of one-dimensional column results for the desired transport583

model for the parameters defined above, but over a range of values for φ0 and W0; these results584

are then shown in a series of figures and exported as data tables. The user can select whether to585

define the specific φ0 and W0 values as evenly spaced log grid intervals (option 1) or with manually586

specified values (option 2). As above, all upwelling rates are entered in units of cm/yr. We note587

that because some of these models tend to be stiff and the Radau solver is relatively expensive,588

the batch operations below may require a few minutes of computation time for certain scenarios.589

Here we show the results for the default equilibrium model over a range of selected φ0 and W0590

values of interest:591

30



[30]: # Option 1 (evenly spaced log grid intervals):
# phi0 = np.logspace(-3,-2,11)
# W0 = np.logspace(-1,1,11)

# Option 2 (manual selection of values):
phi0 = np.array([0.001, 0.002, 0.005, 0.01])
W0 = np.array([0.5, 1., 2., 5., 10., 20., 50.])

import time
tic = time.perf_counter()
toc = time.perf_counter()

# Calculate the U-238 decay chain grid values:
act = us_eq.solve_grid(phi0, n, W0, us_eq.D_238, us_eq.lambdas_238, us_eq.

↪→alphas_238)
Th = act[0]
Ra = act[1]
df = pd.DataFrame(Th)
df = pd.DataFrame(Ra)

592

W = 0.5 . . . .
W = 1.0 . . . .
W = 2.0 . . . .
W = 5.0 . . . .
W = 10.0 . . . .
W = 20.0 . . . .
W = 50.0 . . . .

[31]: # Calculate the U-235 decay chain grid values:
act_235 = us_eq.solve_grid(phi0, n, W0, us_eq.D_235, us_eq.lambdas_235, us_eq.

↪→alphas_235)
Pa = act_235[0]
df = pd.DataFrame(Pa)

593

W = 0.5 . . . .
W = 1.0 . . . .
W = 2.0 . . . .
W = 5.0 . . . .
W = 10.0 . . . .
W = 20.0 . . . .
W = 50.0 . . . .

The figures below illustrate the batch model results in a variety of ways. First, each isotopic594

activity ratio is contoured in φ0 vs. W0 space (Figure 10), and then outcomes for W0 and φ0 values595

are contoured as mesh "grids" in activity ratio-activity ratio plots (Figure 11).596
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[32]: UserCalc.plot_contours(phi0,W0,act, figsize=(12,12))
597
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598
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[33]: UserCalc.plot_contours(phi0,W0,act_235)
599

600

Figure 10. Diagrams of upwelling rate (W0) vs. maximum residual melt porosity (φ) show-601

ing contoured activity ratios for (230Th/238U) (top panel), (226Ra/230Th) (middle panel), and602

(231Pa/235U) (bottom panel).603

[34]: UserCalc.plot_mesh_Ra(Th,Ra,W0,phi0)
604
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605

[35]: UserCalc.plot_mesh_Pa(Th,Pa,W0,phi0)
606
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607

Figure 11. Diagrams showing (226Ra/230Th) vs. (230Th/238U) (top) and (231Pa/235U) vs.608

(230Th/238U) (bottom) for the gridded upwelling rate (W0) and maximum residual porosity609

(φ) values defined above.610

4 Summary611

We present pyUserCalc, an expanded, publicly available, open-source version of the UserCalc612

code for determining U-series disequilibria generated in basalts by one-dimensional, decompres-613

sion partial melting. The model has been developed from conservation of mass equations with614

two-phase (solid and liquid) porous flow and permeability governed by Darcy’s Law. The model615

reproduces the functionality of the original UserCalc equilibrium porous flow calculator (Spiegel-616

man, 2000) in pure Python code, and implements a new disequilibrium transport model. The617

disequilibrium transport code includes reactivity rate-limited chemical equilibration calculations618

controlled by a Damköhler number, Da. For stable elements with decay constants equal to zero,619

the equilibrium model reduces to batch melting and the disequilibrium transport model with Da620

= 0 to pure fractional melting. The method presented here can be extended to other applications621

in geochemical porous flow calculations in future work.622
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