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Abstract15

In addition to changes in the deformation characteristics of rock masses based on16

the water content, relatively significant deformation occurs in sedimentary rocks17

from saturation to drying. In tunnel construction, with extremely small allowable18

displacements, such as geological disposal, it is necessary to properly evaluate such19

drying deformation phenomena. In such scenarios, it is also essential to not only20

evaluate the deformation characteristics, but also to assess the changes in water con-21

tent in the rock mass accurately. During tunneling, excavation disturbed zone (EDZ)22

spreads around the tunnel due to excavation. The EDZ has a larger hydraulic con-23

ductivity than that of an intact bedrock because of which it is essential to develop24

a method for predicting water changes in the EDZ within the scope of the drought25

deformation phenomena. In this study, we derived the exact solution of the Richards26

equation at the Neumann boundary that could describe the desiccation phenomena27

in sedimentary rocks. Based on tuff samples collected in Japan, a permeability test28

via the flow pump method and a mercury intrusion porosimetry test were carried29

out to obtain the water diffusion coefficient and to verify whether the drying behav-30

ior can be described by the exact solution. Using the verified exact solution, we pro-31

posed a new stochastic differential equation that could explain the local decrease in32

permeability and the increase in variations in the area affected by excavation. Fi-33

nally, we proposed a new method for evaluating the variation in the saturation de-34

gree distribution around a tunnel using the one-dimensional stochastic differential35

equation.36

1 Introduction37

Understanding the deformation characteristics of sedimentary rocks during38

tunnel construction with small allowable displacements, such as in geological dis-39

posal, is highly important. In particular, the deformation characteristics of sedi-40

mentary rocks change significantly depending on the water content. Examining the41

drying deformation phenomena associated with the inflow of air during tunnel ex-42

cavation is of particular importance (Osada, 2014). A recent study, using tuff with43

deformation anisotropy, found that the principal strain orientation rotated with44

changes in saturation, and the relatively hard and soft directions completely reversed45

(Togashi, Imano, Osada, Hosoda, & Ogawa, 2021; Togashi, Imano, & Osada, 2021).46

Therefore, we must assess the distribution of saturation to accurately predict the47

deformation of rock masses in tunnels.48

Changes in the water content in a porous medium including sedimentary rocks49

follows the Richards equation (Richards, 1931). Various analytical studies have been50

conducted based on the Richards equation (Farthing & Ogden, 2017) to obtain ex-51

act solutions (Fleming et al., 1984; Ross & Parlange, 1994). Recently, studies have52

proposed exact solutions incorporating various nonlinear functions, such as the wa-53

ter diffusion coefficient, D (Hooshyar & Wang, 2016; Broadbridge et al., 2017). Al-54

though boundary conditions such as Dirichlet boundary conditions are often used55

to obtain the exact solution, Neumann boundary conditions are rarely used (e.g.,56

Barry et al., 1993). During the drying deformation phenomena, the changes in the57

water content of rock mass in contact with the atmosphere does not occur suddenly;58

hence, it is vital to define a Neumann boundary.59

During tunnel excavation, the surrounding rock mass becomes loose, and the60

excavation disturbed zone (EDZ) expands. Hence, it is crucial to evaluate the EDZ61

while examining the drying deformation phenomena. Previous studies have shown62

that the closer to the well wall, the higher the permeability of the EDZ. (Hou, 2003;63

Marschall et al., 2006; Lisjak et al., 2016). Some studies have compared and mod-64

elled the water diffusion coefficients of the EDZ and normal rock (Autio et al., 1998).65
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Similarly, several studies have analyzed the permeability of the EDZ, but there is66

no unified view because its properties differ depending on location, such as the geo-67

logical conditions and surface stress fields. In particular, the obtained permeability68

varies widely because the excavation disturbance is significant adjacent to the tunnel69

wall (Kurikami et al., 2008).70

Therefore, in this study, we derived the exact solution of the Richards equation71

using the Neumann boundary, which can describe the drying phenomena in sedi-72

mentary rocks. Based on tuff samples collected in Japan, a hydraulic conductivity73

test and mercury intrusion test via the flow pump method were performed to obtain74

the water diffusion coefficients and verify whether the drying behavior can be de-75

scribed by the exact solution. Using the verified exact solution, we proposed a new76

stochastic differential equation that can express the local variations in permeabil-77

ity and the increases in the variation in areas affected by excavation. We proposed a78

new method for evaluating variations in the saturation distribution in tunnels using79

the proposed one-dimensional stochastic differential equation.80

2 Numerical method to determine saturation degree distribution81

in EDZ due to drying82

2.1 Exact solution of Richards equation considering Neumann bound-83

ary conditions for drying phenomena84

The following nonlinear partial differential equation was proposed to predict85

changes in the water content in unsaturated ground (Richards, 1931):86

∂θ

∂t
=
∂K

∂r

(
∂ψ

∂r
+ 1

)
. (1)

where θ is the volumetric water content, t is time, K is the unsaturated hydraulic87

conductivity, r is the coordinate, and ψ is the pressure head. The exact solution of88

this nonlinear partial differential equation is not known; however, in this study, we89

obtained the exact solution of this equation using a method similar to that in a pre-90

vious study (Barry et al., 1993). As this method was considerably simplified, the91

derivation is described in detail below. The Richards equation was transformed into92

the following:93

∂θ

∂t
=

∂

∂r

(
K
∂ψ

∂θ

∂θ

∂r

)
+
∂K

∂r
. (2)

where the heat equation can be obtained by considering that the water diffusion94

coefficient, D, which is the slope of the water retention curve, is always a constant95

(D = K∂ψ/(∂θ) = const.) (Gardner, 1958). Furthermore, we also considered96

that the unsaturated hydraulic conductivity does not depend on the coordinates97

(∂K/(∂r) = 0).98

∂θ

∂t
= D

∂2θ

∂r2
. (3)

The water retention curve is predominantly non-linear in the region adjacent to99

saturation and dryness. However, the assumption that D is constant in the region100

where S is neither too small nor too large holds. It is also rational to assume that101

K does not depend on coordinates if the stratum is uniform. The following can be102

obtained by substituting the effective saturation S = (θ − θr)/(θs − θr) into the103

above equation using the volume moisture content, θs, at saturation and the residual104

volume moisture content, θr (Tracy, 2011):105

∂S

∂t
= D

∂2S

∂r2
. (4)
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Further, we set the initial and boundary conditions. First, the following equa-106

tion was assumed as the initial condition:107

S(r, 0) = Si. (5)

We considered a closed interval where r is [0, L] and Si is a constant value. Here,108

the following Neumann boundary conditions were introduced to manage the various109

boundary conditions (Farlow, 1993):110

∂S(0, t)

∂r
= 0, − ∂S(±L, t)

∂r
= h(S − St). (6)

where St is the constant terminal saturation value. Although 0 to L for the interval111

of r was used in this study, the exact solution was derived from −L to L to obtain112

the necessary and sufficient boundary conditions; the result is shown by 0 ≤ r ≤ L.113

As the exact solution cannot be obtained as it is, we introduced the dimensionless114

saturation degree, sd(r, t) = (S(r, t) − St)/(Si − St), and modified the equation as115

follows:116

∂sd
∂t

= D
∂2sd
∂r2

, (7)

117

sd(r, 0) =
S(r, t)− St
Si − St

= 1 (8)

and118

∂sd(0, t)

∂r
= 0, − ∂sd(±L, t)

∂r
= hsd. (9)

First, the general solution of Eq. (7) can be expressed as follows:119

sd = (A cos pr +B sin pr)Ce−Dp
2t (10)

where A, B, and C are undetermined coefficients and p is a non-zero positive real120

number. By differentiating this equation with r and substituting r = 0, the following121

was obtained from the boundary conditions in Eq. 9:122

(−Ap sin pr +Bp cos pr)Ce−Dp
2t |r=0 = BpCe−Dp

2t = 0 (11)

When C is zero, sd is always zero; thus, B = 0. Similarly, by substituting the bound-123

ary condition of r = L in Eq. 9, the following was obtained:124

− (−Ap sin pr)Ce−Dp
2t |r=L = Ap(sin pL)Ce−Dp

2t = hA(cos pL)Ce−Dp
2t (12)

Therefore, the following relational expression for p was obtained:125

p tan pL = h (13)

If the solutions that satisfy Eqs. (13) are p1, p2, p3 · · ·, then their linear sum is also126

the solution; hence sd can be expressed as follows:127

sd =

∞∑
n=1

(Cn cos pnr) e
−Dp2nt. (14)

Substituting the initial condition in Eq. (8) into this equation yielded the following:128

sd(r, 0) = 1 =

∞∑
n=1

(Cn cos pnr) (15)

To determine the Fourier coefficient, Cn, the right-hand side of the above equation129

for n and cos pm, (m = 1, 2, · · ·) were multiplied and integrated. This integral has a130
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value only when m = n owing to the orthogonality of the trigonometric function, as131

shown below:132 ∫ L

0

Cn cos pnr · cos pmrdz = Cn

(
sin(2pnL)

4pn
+
L

2

)
(16)

Therefore, this equation is equal to the following equation:133 ∫ L

0

1 · cos pmrdz =
sin(pmL)

pm
(17)

From the above, Cn can be obtained as follows:134

Cn =
4 sin(pnL)

sin(2pnL) + 2pnL
(18)

Therefore, the exact solution of sd is given as follows:135

sd =

∞∑
n=1

4 sin(pnL)

sin(2pnL) + 2pnL
(cos pnr)e

−Dp2nt (19)

When the change in the variables in Eq. (8) is taken back, an exact solution for the136

saturation degree, S, can be obtained by setting βn = pnL.137

S(r, t) = St + (Si − St)
∞∑
n=1

4 sin(βn)

sin(2βn) + 2βn
(cosβnr/L)e

−Dβ2
nt/L

2

(20)

From Eq. 13, βn is the solution to the following transcendental function, which was138

solved via the Newton-Raphson method:139

βn
Lh

= cotβn (21)

2.2 Stochastic differential equation for description of saturation de-140

gree distribution in EDZ due to drying141

Unpredictable random behavior is known as Brownian motion, named after142

Dr. R. Brown, who discovered that pollen particles floating on the surface of the143

water behave irregularly. The total derivative first-order differential equation, includ-144

ing Brownian motion, is referred to as a stochastic differential equation in the field145

of financial engineering, which is used to predict and set stock prices for financial146

products. As ordinary Brownian motion describes future uncertainty, it is a random147

motion that accumulates one variance of time per unit of time.148

In a homogeneous stratum, the nature of the EDZ is such that the vicinity of149

the excavated tunnel wall gets disturbed and develops cracks, thus resulting in het-150

erogeneous and random properties. However, areas farther from the tunnel wall have151

more homogeneous properties. This can be explained by the Brownian motion of152

the variable r because the larger the value of r (Fig. 1), the more the variance accu-153

mulates and shows random properties. In this study, we proposed a stochastic dif-154

ferential equation that estimates the saturation distribution of the EDZ using the155

following characteristics:156

dS∗(r, t) = dS(r, t) (1 + σdW (r)) . (22)

where S∗ is the saturation distribution based on the properties of the EDZ, S is the157

exact solution to Eq. (20), σ is the volatility that controls the magnitude of Brow-158

nian motion, and W is the Wiener process indicating Brownian motion. As the in-159

finitesimal increment in the exact solution (Eq. (20)) is the coefficient of the term160

including Brownian motion, S∗ always converges to St by t → ∞, regardless of the161
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Figure 1. Concept of Excavation Disturbed Zone (EDZ). r is the coordinates toward the

center of the tunnel, and L is the width of EDZ. Random characteristics become large as the

coordinate r increase.

magnitude of σ. Figure 2 shows an example of Brownian motion, W , generated un-162

der this condition. Thus, the random property increases with an increase in the vari-163

able (i.e., r). So far, there have been studies discussing the increase in permeability164

variation in EDZ (Kurikami et al., 2008), but there is no case in which the proper-165

ties of EDZ are expressed by Brownian motion.166

3 Detection of hydraulic conductivity and water retention charac-167

teristics168

The moisture diffusion coefficient, D, was assumed to be constant in this study.169

S = (θ − θr)/(θs − θr), if θ is differentiated by S, then dS
dθ = 1

θs−θr can be obtained.170

Therefore, the expansion of the formula for D is as follows:171

D = K
∂ψ

∂θ
= K

∂ψ

∂S

∂S

∂θ

= K · ∂ψ
∂S

· 1

θs − θr
. (23)

where K is the unsaturated hydraulic conductivity. If the saturated hydraulic con-172

ductivity, ks, is proportional to the degree of saturation, unsaturated hydraulic con-173

ductivity can be described as K = ksS. Therefore, it is sufficient to determine K174

using the results of the saturated hydraulic conductivity test. In the above equa-175

tion, θs and θr were determined using a mercury intrusion porosimetry test as the176

void volume in the sample can be determined by this test. ∂ψ
∂S is the slope of the177

water retention curve, which can be obtained by performing a mercury intrusion178

porosimetry test for rocks. The following sections detail the three tests conducted179

in this study to obtain D.180
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Figure 2. Relationship between random EDZ characteristics by Brownian motion and dis-

tance r. It can be expressed that the closer r is to L, the more random the property is, as shown

in Fig. 1.

3.1 Rock sample181

A Neogene tuff collected from a depth of 100 m in Utsunomiya City, Japan182

was used as the rock test sample. This marine-origin tuff was formed by the con-183

solidation of eruptive deposits that originated from submarine volcanoes dated to184

10 Mya. This green colored tuff is known as a Tage tuff, as shown in Fig. 3; it is185

widely used in Japan as a research sample and building material (e.g., the Old Impe-186

rial Hotel Japan designed by Frank Lloyd Wright). This tuff has uniform and homo-187

geneous properties. The minerals contained in the Tage tuff are tuffy glass, plagio-

������

 �����

 �����

Figure 3. Cuboidal block sample of Tage tuff.

188

clase, quartz, and biotite amphibole pyroxene. (Seiki, 2017). Table 1 lists the phys-189

ical properties of the Tage tuff. Tage tuff is characterized by a large porosity and a190
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Table 1. Physical properties of the Tage tuff

Density in natural state Dry density Wet density Porosity Natural moisture

ρt(Mg/m
3
) ρd(Mg/m

3
) ρt(Mg/m

3
) % content ratio w (%)

1.81 1.76 2.04 26.7 3.8

slightly soft deformation property (Togashi et al., 2018, 2019; Togashi, Kikumoto,191

et al., 2021). The porosity of the sample was determined by the soil particle density192

test, which yielded a density of 2.56 Mg/m3.193

3.2 Permeability test194

The hydraulic conductivity was obtained using the flow pump method (Esaki195

et al., 1996). In this method, the saturated hydraulic conductivity was obtained by196

controlling the flow rate with a syringe pump, as shown in Fig. 4, and measuring197

the pressure head difference. Saturated hydraulic conductivity can be expressed as198

follows:199

ks =
Q

At

H

ψ
(24)

where Q is the controlled flow rate, A is the cross-sectional area of the specimen,200

t is time, and H is the length of the specimen. During this experiment, the room201

temperature was maintained at 22 ◦C while the test was conducted.202
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Figure 4. Permeability test based on the flow pump method

3.3 Mercury intrusion porosimetry test203

In the mercury intrusion porosimetry test, mercury is press-fitted while pres-204

surizing a dry sample, and the distribution of the gap diameter in the sample is in-205

ferred based on the pressure and the amount of press-fitted mercury (Thomas et al.,206
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1968; ASTM, 2004). This test determines the void diameter distribution of a sample;207

however, in this study, it was used to determine the water retention curve as pro-208

posed in previous studies (Sun & Cui, 2020). Based on the results of this test, the209

saturation degree, S, was calculated as follows:210

S =
CI(P )

CI(Pmax)
(25)

where CI is the amount of press-fitted mercury, P is the arbitrary press-fitting pres-211

sure, and Pmax is the maximum pressure. By investigating S using P as the capil-212

lary pressure, a water retention curve could be obtained.213

3.4 Detection of continuous moisture content variation by drying214

deformation test215

Figure 5 shows the drying deformation experiment (Togashi, Imano, Osada,216

Hosoda, & Ogawa, 2021). In this experiment, a strain gauge was installed on a wet217

rock specimen, which was air-dried. The change in the water content was measured218

using an electronic balance. We estimated the change in saturation by considering219

the change in the void structure estimated from the deformation of the specimen.220

The cylindrical Tage tuff specimen, with a diameter of 50 mm and height of 100221

mm, had a volumetric strain of approximately 2,000 μ, with changes in its void di-222

ameter. The degree of saturation was estimated while considering the change in void223

diameter due to drying (Togashi, Imano, Osada, Hosoda, & Ogawa, 2021). Using the224

time-series changes in the saturation of the Tage tuff measured using this method,225

the validity of the exact solution to the Richards equation, as derived above, was226

verified.227
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Figure 5. Drying deformation experiment (Togashi, Imano, Osada, Hosoda, & Ogawa, 2021).

4 Verification of the exact Richards equation solution228

4.1 Identifying parameters that compose D229

Table 2 lists the test results obtained in the permeability test and the mercury230

intrusion porosimetry tests. The saturated permeability coefficient, ks, obtained was231

the average value from nine specimens. However, the permeability coefficient was232

rather small for its correspondingly large porosity. Similar findings have also been233

reported in previous studies (Watanabe & Sato, 1979); hence, the value obtained for234

the hydraulic conductivity was considered to be appropriate. The void volume could235

be obtained from the volume of the press-fitted mercury in the mercury intrusion236

porosimetry test. The void volume obtained was the average value of three mercury237

intrusion tests. Volume moisture content can be defined as θ and θ = Vw

V , where Vw238
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and V are the water volume and total volume, respectively. As the volume of the239

void is equal to the water volume ,Vw, at saturation, the total volume, V , was cal-240

culated using the mass and dry density, ρs, of the sample in the mercury intrusion241

test; finally, the saturated volume moisture content was determined. Thus, the value242

of 1
θs−θr was 3.8, assuming θr = 0.243

Table 2. Results of the permeability test and the mercury intrusion porosimetry test

Saturated hydraulic Void Volume Saturated volume moisture content
conductivity ks (m/s) (cm3/g) Moisture content θs

5.7 × 10−11 0.15 0.26

Figure 6 shows the water retention curve specified by Eq. (25) in the mer-244

cury intrusion test. A value of P = 5 MPa, equivalent to the suction specified at245

S = 0.13, was confirmed in the dry deformation experiment of a previous study (?,246

?), thus validating this result. Based on Fig. 6, the inclination of the curve was rela-247

tively constant from S = 0.2−−0.9. Therefore, the value of ∂ψ∂S corresponds to 341.4248

m, as the suction is converted to a pressure head of ψ = P/(ρwg), where ρw (=249

1.0(g/cm3)) and g (= 9.81m/s2) are the water density and gravitational acceleration,250

respectively. The unsaturated hydraulic conductivity, K = Sks = 0.55×5.7×10−11 =
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Figure 6. Water retention curve (relationship between suction P and saturation degree S) for

the Tage tuff.

251

3.1× 10−11 when calculated in the middle of S = 90%− 20%. Therefore, the desired252

D can be calculated as D = K · ∂ψ∂S ·
1

θs−θr = 3.1×10−11·341.4·3.8 = 4.02×10−8 (m2/s).253

As the drying process of S = 0.9 to 0.2 was calculated, ∂ψ∂S was set as positive in the254

direction of increasing suction, which is opposite to that illustrated in Fig. 6.255

4.2 Nature of exact solution256

Using the value of D specified in the previous section, the nature of the ex-257

act solution was assessed (Eq.20). Figure 7 shows the effect that the difference in h258

has on the exact solution. Table 3 lists the input parameters of the exact solution.259

Here, L = 0.1 m was set to accelerate the convergence of the saturation degree, and260
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Table 3. Input parameters of the exact solution.

Initial saturation Terminal saturation D (m2/s) L (m) Number of Fourier
degree Si degree St series terms n

0.9 0 4.02 ×10−8 0.1 100

Si and St were set to 0.9 and 0, respectively. To observe the nature of the solution261

over a wide area, we performed calculations in which Srangedfrom0.2−−0.9, which262

assumed linearity based on the previous section. The results are shown as the distri-263

bution of the daily r for 20 d. The number of terms, n, in the Fourier series in the264

exact solution was set to 100. Larger h values yielded a faster convergence of the265

saturation degree, as well as the closer it is to the Dirichlet boundary condition. Ad-266

ditionally, the smaller the value of h, the closer the saturation is to a constant inside267

the region. By introducing the Neumann boundary condition, we could express vari-268

ous situations.269
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Figure 7. Characteristics of the exact solution (saturation degree S and distance r relation-

ships) based on D = 4.02 × 10−8 (m2/s): (a) h = 1 m−1, (b) h = 10 m−1, and (c) h = 100

m−1.

4.3 Comparison between the exact solution and test results for veri-270

fication271

Figure 8 compares the proposed exact solution with the results of the dry de-272

formation experiment. In the experimental results, the cylindrical specimen was273
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soaked in water for ≥ 10 d to increase the saturation degree to approximately 0.8,274

and followed by air drying. Table 4 lists the input parameters of the exact solution.275

Here, the exact solution was calculated using the D obtained in section 4.1.Si and St

Table 4. Input parameters of the exact solution.

Initial saturation Terminal saturation D h L Number of Fourier
degree Si degree St (m2/s) (m−1) (m) Series terms n

0.81 0 4.02 ×10−8 12.2 0.0375 100

276

were set to 0.9 and 0, respectively. The exact solution exceeded the linearity range277

of the water retention curve assumed in the range of S = 0.2 − −0.9 when D was278

calculated in the previous section; however, we verified the error. The exact solution279

data showed a change in the saturation at x = 0, where h was set to 12.2 m−1. In280

the experiment, the length of the region was L = 0.0375m, the average value of the281

half diameter was 25 mm, and half height was 50 mm for the cylindrical specimen.282

Here, L was set by assuming an element test to examine uniform behavior; however,283

if L was on the same level, it could be adjusted by changing h. The results were in284

good agreement, even in the region where S was small. As the experimental value285

and exact solution were nearly identical, we confirmed the validity of the proposed286

exact solution.287
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Figure 8. Comparison of saturation degree S and time t relationships between the exact

solution and drying deformation test results

What we have verified here is the phenomenon of small specimen size. How-288

ever, even if the width of the region L is large, the convergence of the exact solution289

can be delayed by reducing h as shown in Fig. 7. Therefore, if the stratum has ho-290

mogeneous properties, the exact solution shown here can be applied even if the area291

L is large. Based on this, the proposed stochastic differential equation was discussed292

in the next chapter.293
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5 Random saturation degree distribution in the EDZ294

In this section, we discuss the properties of the stochastic differential equa-295

tion proposed in Eq. (22) using the exact solution, whose validity was confirmed296

via the drying deformation test results. Equation (22) was solved using the Eular-297

Maruyama method (Higham, 2001). This is a type of backward finite differential298

method, which can be derived as follows. For the region of [0, L], let ∆r = r/N be299

an infinitesimal increment in the coordinate direction r. Here, N is the number of300

divisions in the area. Using the positive integer j, rj can be written as rj = j∆r.301

Thus, Eq. (22) can therefore be modified as follows:302

dS∗ = dS (1 + σdW )

=
∂S

∂r
dr (1 + σdW ) , (26)

When the EulerMaruyama method was applied with dr as ∆r, the following back-303

ward differential equation was obtained:304

S∗(rj , t) = S∗(rj−1, t) +
∂S

∂r
(rj−1, t)∆r. [1 + σ (W (rj)−W (rj−1))] (27)

The relationship between Wj and Wj−1 could be expressed as follows (Higham,305

2001):306

Wj = Wj−1 + dWj

= Wj−1 +
√
∆rN(0, r) (28)

where N(m,Σ) is a normal random number with mean m and variance Σ. The prop-307

erties and applications of Eq. (22), as solved by this method, are discussed in the308

following section.309

5.1 Nature of proposed stochastic differential equation310

Figure 9 shows the solution of the proposed stochastic differential equation311

when σ = 0 and 100. When σ = 0, the random term W is not included in the312

equation, such that it is identical to solving Eq. (20). Table 5 lists the input pa-313

rameters of the exact solution. To set D, h, Si, and St, the parameters of Tage tuff

Table 5. Input parameters of the proposed stochastic differential equation.

Initial Saturation Terminal saturation D h L Number of Fourier N
degree Si degree St (m2/s) (m−1) (m) Series terms n

0.81 0 4.02 ×10−8 12.2 1.0 100 300

314

determined in the previous section were used. The values of L and N were set to 1315

m and 300, respectively. Figure 9 shows the results at different times, i.e., t = 0, 50,316

100, and 1,000 d. Even if the random term σ was large, the exact solution reached317

a constant value, St, as t elapsed. For the difference in σ, solutions containing ran-318

dom terms with σ = 20 were distributed along the exact solution of Eq. (20) with319

σ = 0. As z increased, there was an increase in the uncertainty of the Brownian320

motion, such that there was increase in the influence of the random term. Brownian321

motion according to coordinate r was generated by the same normal random number322

with a mean of 0 and variance of r because the nature of the EDZ was assumed to323

be invariant with respect to time. Therefore, a relatively similar noise was generated324
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Figure 9. Saturation degree distributions of distance r due to volatility σ and time t for the

EDZ and its characteristics.

in the results at the same r. Thus, this is a saturation distribution that reflects the325

properties of the EDZ.326

Figure 10 was fixed at t = 100 d and σ = 100; the effect of N was investi-327

gated using the same parameter settings as those in Fig. 9. When N is exceedingly328

small, the difference step is large, such that the effect of the random term is exces-329

sively large. In the example in Fig. 10 (N = 50), S is ≥ 1, which is unrealistic. Ad-330

ditionally, when N is too small, and the effect of the random term is negligible. As331

the value of N also affects the uncertainty, a realistic value must be set. With this332

parameter setting, N > 100 would be preferable.333

As described above, the proposed stochastic differential equation can express334

the properties of the EDZ and the influence of the random term can be determined335

via σ and N .336

5.2 Method verification337

Previous studies examined the difference in the saturated hydraulic conductiv-338

ity of approximately 1–10 m behind the tunnel wall by conducting a laboratory test339

using a boring core or in situ hydraulic conductivity test (Hou, 2003), (Marschall340

et al., 2006), (Kurikami et al., 2008). In these studies, the hydraulic conductivity341

varied by 104 to 1010 m/s at the maximum as it approached the well wall. Partic-342

ularly, the sedimentary rock sites targeted in this study have a maximum variation343

of 104 m/s (Kurikami et al., 2008). In our study, we considered the case where the344

saturated hydraulic conductivity, ks, of the intact Tage tuff was disturbed by tun-345

nel excavation of the tunnel and it increased by 104 m/s. In the rock mass at this346

time, if the hydraulic conductivity of the intact part (r = 0) and disturbed part347

(r = L) are linearly interpolated, the intermediate average hydraulic conductivity,348

ks, is 5.7× 10−11 m/s. As shown in Fig. 11, the validity of the proposed method was349

evaluated by calculating the stochastic differential equation of Eq. (22) using the av-350

erage hydraulic conductivity, with σ = 20, and comparing it with the results of the351

hydraulic conductivity of the intact and disturbed parts, with σ = 0. This compar-352
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Figure 10. Effect of N on random terms in the saturation degree distribution of distance r

ative analysis used the data in Table 5, except for D. Each D was calculated using353

ks = 5.7 × 10−11 m/s for the intact part and ks = 5.7 × 10−7 for the disturbed part;354

ks = 5.7 × 10−9 m/s was employed in the average case using the stochastic differ-355

ential equation [Eq. (22)]. Equation (22) was solved 100 times with different Brow-356

nian motions, W . Figure 11 shows the results 10 d after the experiment, at which357

point the disturbed rock mass had already converged, where S = 0.42 at r = L.358

For stochastic differential equations, the average hydraulic conductivity lies between359

the results of the intact case and the disturbed case. Although the hydraulic conduc-360

tivity was distributed in the actual bedrock, in the disturbed part near the tunnel361

wall, the hydraulic conductivity was small. Therefore, the behavior near the tunnel362

wall was similar to that of the disturbed case. As the saturation in the part with the363

high hydraulic conductivity near the mine wall decreases, there is also a decrease in364

the saturation in the intact part. Therefore, the saturation degree near r = 0 was365

considered smaller than that in the case for the intact hydraulic conductivity. Fur-366

thermore, considering that the hydraulic conductivity in the EDZ has a large vari-367

ation, we can conclude that the results of the stochastic differential equation [Eq.368

(22)] are generally rational.369

5.3 Random saturation distribution around a circular tunnel due to370

drying371

Assuming that the drying phenomena occurs uniformly around the tunnel due372

to tunnel excavation without considering groundwater advection, we can estimate373

the saturation distribution around the tunnel using the 1-D stochastic differential374

equations proposed in this study. For example, this condition is applicable when375

constructing a deep tunnel, such as in geological disposal because it can be assumed376

that the head difference between the tunnel crown and invert is small from a macro-377

scopic perspective. Considering the analysis area in Fig. 12, we assumed that the378

1-D equation [Eq. (22)] can be applied in the r axis orientation in each circum-379

ferential direction, Θ. Figure 13 is a comparison of this analysis when σ = 0 and380

σ = 30. Here, using the Igor Pro graphing software, the 3-D coordinate points were381

contoured under exactly the same conditions. The set analysis conditions were the382

same as those in Table 5 by N = 300. These results represent 100 d after excavation.383
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Figure 11. Comparison between the proposed stochastic differential equation using the aver-

age hydraulic conductivity and saturation distribution in the intact and disturbed parts.

As drying progressed from the wall surface of the tunnel, this part had the lowest384

saturation. The result of σ = 0 assumes that cracks do not occur during excava-385

tion; furthermore, a smooth curved surface with a saturation degree distribution can386

be confirmed. In contrast, for σ = 30, the variation in saturation became larger as387

it approached the tunnel wall surface. Moreover, for σ = 30, which considers the388

formation of the EDZ due to excavation, the variation in saturation increased as it389

approached the tunnel wall surface. This is not the same as the nature of the EDZ390

shown in Fig. 1.391

Furthermore, in this analysis method, we can consider the anisotropy of the392

spatial variation in the saturation. The following function distributes σ in the cir-393

cumferential direction, Θ:394

σ = p| sinΘ|+ q (29)

where p and q are appropriate real numbers. Figure 14 shows the results of the same395

analysis performed at p = 150 and q = 30. This indicates that the variation in the396

saturation on the y axis is five-fold larger than that on the x axis. Sharp irregular-397

ities accumulate on the y axis (x axis), which is possible if the crustal pressure is398

anisotropic.399

6 Conclusions400

Evaluations of the water content in EDZs are indispensable for proper assess-401

ments of the deformation characteristics of the rock mass around a tunnel.402

In this study, we derived a simple exact solution of Richards equation consid-403

ering the Neumann boundary for drying deformation phenomena. Permeability test404

and mercury intrusion porosimetry tests were performed using Neogene tuff from405

Japan, and the water diffusion coefficient was specified based on the obtained pa-406

rameters. The validity of the exact solution was confirmed using the specified water407

diffusion coefficient, which was compared with the change in the water content in408

the drying deformation test.409
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Figure 12. Analytical area of the EDZ. r is a coordinate system that radiates toward the

center of the tunnel. (x, y) is a two-dimensional Cartesian coordinate system. Θ is the angle

between the x and r axes.

Furthermore, we proposed a new stochastic differential equation using the veri-410

fied exact solution, which can express the change in the water content in an EDZ. In411

this equation, the hydraulic conductivity of the EDZ is expressed by indifferentiable412

Brownian motion. We confirmed the validity of the proposed stochastic differential413

equation based on calculations that assume a sedimentary rock tunnel to confirm414

that the properties of the water content in an EDZ can be appropriately expressed.415

Using the proposed 1-D stochastic differential equation, we showed that the water416

content distribution in the EDZ around a 2-D tunnel can also be evaluated.417
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