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Abstract 17 

 18 

Global mean surface temperature (GMST) is the most widely cited climate change indicator, 19 

with trends at multiple time scales figuring prominently in IPCC reports. Here we present an 20 

alternative non-linear continuous local regression (LOESS) method using multidecadal windows 21 

and evaluate GMST changes (GMST) for five operational blended land-ocean surface 22 

temperature datasets. The best estimate of GMST from pre-industrial (1850—1900) to 2018 is 23 

1.12°C [0.93 – 1.27], based on three spatially complete global series. The IPCC’s linear trend 24 

methodology applied to the three series assessed in IPCC AR5 yields 0.99°C [0.80  – 1.18], with 25 

much of the difference attributable to the trend methodology. LOESS yields lower estimates than 26 

linear over 1951-2018, and virtually identical results over 1979-2018. LOESS outperforms linear 27 

fits when validated against a 20- or 30-year averages relative to pre-industrial.  We show that it 28 

reliably reproduces the known forced changes in GMST when applied to output of a large 29 

model ensemble, except for years affected by large volcanic eruptions. Furthermore, our estimate 30 

of statistical uncertainties from a fit are reliable, by comparing against the ensemble spread. We 31 

also present a simple and easily updated remaining carbon budget to stay below 1.5 or 2°C, 32 

based on a global surface air temperature (SAT) estimate derived from model-based adjustment 33 

of blended full global GMST.  Finally we perform a preliminary evaluation of recent short-term 34 

fluctuation. Continuous non-linear trend estimation offers a compelling alternative to linear 35 

trends for the assessment of long-term observational GMST series at multiple time scales. 36 

1 Introduction 37 

Global mean surface temperature (GMST) is arguably the key indicator of climate change 38 

(IPCC, 2013). GMST estimates and derived trends or changes, GMST, have featured 39 

prominently in all IPCC assessments. Estimates of GMST are a key component in IPCC 40 

assessments of climate change attribution (Bindoff et al., 2013), climate model validation (Flato 41 

et al., 2013), global carbon budgets (Rogelj et al., 2018) and climate impacts (Hoegh-Guldberg et 42 

al., 2018). Perhaps most importantly, long-term IPCC GMST estimates were a key scientific 43 

input to the Paris agreement to keep global surface temperature well below 2°C (UNFCCC, 44 

2015). 45 

 46 

This paper applies local regression (LOESS, Cleveland et al., 1992; Cleveland, 1979) for 47 

estimating forced changes, GMSTF. Conceptually, we decompose GMST as: 48 

Δ𝐺𝑀𝑆𝑇 = Δ𝐺𝑀𝑆𝑇𝐹 + Δ𝐺𝑀𝑆𝑇𝑣𝑎𝑟 = Δ𝐺𝑀𝑆𝑇𝐹,𝑙𝑜𝑛𝑔 + Δ𝐺𝑀𝑆𝑇𝐹,𝑠ℎ𝑜𝑟𝑡 + Δ𝐺𝑀𝑆𝑇𝑣𝑎𝑟   (1) 49 

where GMSTvar represents internal variability and we split GMSTF into two components. We 50 

are primarily interested in GMSTF,long, which represents the GMST in response to changes in 51 

long-lived forcing agents such as atmospheric CO2. This contrasts with GMSTF,short, such as 52 

that due to volcanic eruptions. If GMSTF,short is dominated by volcanism and average volcanism 53 

is constant, then for all long-term climate change relevant analyses ΔGMST𝐹,𝑠ℎ𝑜𝑟𝑡 is close to zero 54 

on average, enabling a best estimate of GMSTF,long. Methods of estimating GMST may have 55 

different sensitivities to each component of Equation 1 and so may conflate them. We discuss 56 

how this affects our analysis; for example we show in Section 2.2.4 that our decomposition is 57 

easily related to an IPCC carbon budget calculation.  58 

 59 
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We argue for LOESS as an estimator of GMSTF,long as it is conceptually simple, transparent, 60 

has quantifiable uncertainties and produces a continuous estimate. We show substantial 61 

advantages over other approaches used in the IPCC reports by applying it to a model large 62 

ensemble where we can validate against a reliable value for true GMSTF. We then apply it to 63 

observation-based datasets and show that the residual noise structure better matches that used in 64 

the calculation of uncertainties. Finally we calculate a best estimate of GMSTF, discuss recent 65 

internal variability and calculate an updated carbon budget.  66 

 67 

All observation-based GMST series discussed herein merge land near-surface air temperatures 68 

(LSAT) from meteorological stations with sea surface temperatures (SST) from ship- and buoy-69 

based measurements. Typically, monthly LSAT and SST analyses are generated for a regular 70 

longitude-latitude grid, and these are then merged to produce a GMST series. Before 2013, IPCC 71 

assessments relied solely or primarily on successive versions of the HadCRUT dataset, a 72 

collaboration of the UKMO Hadley Centre and UEA Climate Research Unit. The IPCC Fourth 73 

Assessment Report (IPCC AR4; Trenberth et al., 2007) used HadCRUT3 (Brohan et al., 2006) 74 

for its main estimate of long-term GMST relative to a pre-industrial baseline of 1850-1900. 75 

IPCC AR4 also included GMST series from NASA GISS (Hansen et al., 2001) and NOAA 76 

NCDC (Smith and Reynolds, 2005), but only during 1900—2005. The NOAA and GISS series 77 

interpolate to better account for sparsely sampled areas; in contrast, HadCRUT3 and its 78 

successor HadCRUT4 (Morice et al., 2010) are strictly non-interpolated. However, HadCRUT 79 

provides an ensemble to robustly estimate some uncertainties, such as those associated with 80 

changing instrumentation.  81 

 82 

By the IPCC Fifth Assessment Report (IPCC AR5; Hartmann et al., 2013a) the NOAA and 83 

NASA datasets stretched back to 1880 so the linear trend over 1880-2012 was introduced as a 84 

new “headline” estimate of warming since the 19th century, in addition to the intra-period 85 

estimate from HadCRUT4. Linear trends were also given for 1951-2012 and 1979-2012; all 86 

central estimates used ordinary least squares (OLS) with uncertainties adjusted to account for 87 

serial correlation in residuals by applying the Santer et al (2008) method to annual series 88 

(Hartmann et al., 2013b). The IPCC Special Report on Global Warming of 1.5°C (IPCC SR1.5; 89 

Allen et al., 2018) included two new operational GMST series (both incorporating sophisticated 90 

statistical interpolation): Cowtan-Way (Cowtan and Way, 2014a; Cowtan and Way, 2014b; 91 

Cowtan et al., 2015) and Berkeley Earth (Rohde et al., 2011). Cowtan-Way was included in all 92 

SR1.5 main estimates of GMST change along with the three “traditional” series; these estimates 93 

included both intra-period and linear trend estimates of GMST, with the four series mean from 94 

1850-1900 to 2006-2015 serving as the primary metric.  95 

 96 

IPCC AR5 Box 2.2 discusses issues with linear trends for estimating GMST: 1) poor 97 

approximation of trend evolution over time; 2) poor fit of residuals unamenable to correction via 98 

autoregressive or moving average model; 3) highly changeable estimates depending on the 99 

period selected; and 4) divergent or even contradictory sub-period estimates relative to that of a 100 

larger encompassing interval. The latter two issues were particularly relevant in AR5 Section 101 

2.4.3’s discussion of the “observed reduction in warming trend” over 1998-2012 compared to 102 

1951-2012, since addressed by piecewise linear trend (Rahmstorf et al., 2017; Risbey et al., 103 

2018). AR5 Box 2.2 presented a compelling continuous alternative for longer term GMST 104 

estimation: a smoothing spline fit. Since AR5, other studies have presented alternative estimators 105 
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for continuous long-term GMST (Cahill et al., 2015; Peng-Fei et al., 2014; Mudelsee, 2019; 106 

Visser et al., 2018).  107 

 108 

An issue of particular concern is that linear trends underestimate long-term GMST compared to 109 

intra-period or continuous trend estimates. For example, IPCC AR5 Box 2.2 estimated 110 

HadCRUT4 trends over 1900-2012 of 0.075 ± 0.013 °C decade-1 and 0.081 ± 0.010 °C decade-1 111 

for linear OLS and smoothing spline trends respectively. SR15 table 1.2 shows a linear trend for 112 

Cowtan-Way of 1880-2015 of 0.93°C as opposed to an intra-period rise to 2006-2015 (i.e. 113 

centered at the end of 2010) of 0.91°C, implying a difference of 0.08°C to 2015, extending the 114 

period estimate by applying the SR1.5 assumption of 0.2°C per decade rise. Visser et al. (2018) 115 

compared linear trends to two multi-decadal “flexible” trend methods (integrated Random Walk 116 

and smoothing spline) for five GMST datasets over 1880-2016. The non-linear trends showed 117 

higher GMSTand the two newer interpolated series, Cowtan-Way and Berkeley Earth had 118 

differences reaching ~0.1°C. Millar et al (2017a, 2017b) calculated a remaining carbon budget, 119 

based on an estimate of anthropogenic warming of 0.93°C to 2015 relative to 1860-1879, derived 120 

from HadCRUT4 by Otto et al (2015). The corresponding 1870—2015 linear trend was 0.84°C. 121 

Generally, linear trend estimates of long term GMST rise appear to be 0.05 – 0.10°C below 122 

estimates which do not assume a linear GMST progression. 123 

 124 

In all these cases the GMST estimates for each dataset fell within each other’s 5-95% statistical 125 

uncertainties and the spread in GMST estimates between different datasets is at least as wide as 126 

differences engendered by trend methodology. Nevertheless, as the IPCC enters the AR6 127 

assessment, it may be prudent to consider whether new approaches should supplement or 128 

supplant the traditional linear trend approach. This work proposes LOESS with a fixed 129 

smoothing window of ± 20 years for the main multi-decadal trend analysis, resulting in trend 130 

evolution similar to smoothing spline and other techniques discussed above.  131 

  132 

We include two components of uncertainty in our estimate of GMST: statistical uncertainty 133 

from the LOESS fit including a correction for auto-correlation, which attempts to account for 134 

internal variability, plus dataset uncertainty derived from the spread between global temperature 135 

records. 136 

 137 

The rest of the paper is structured as follows. Section 2.1 describes source data from 138 

observations (2.1.1), CMIP6 models (2.1.2)  and a large model ensemble from (2.1.3). Section 139 

2.2 covers methods, including trend estimation (2.2.1, trend methods and performance evaluation 140 

(2.2.2), large model ensemble evaluation (2.2.3) carbon budget calculation (2.2.4) and short term 141 

trend analysis (2.2.5). We present our results in Section 3, covering long-term trend analysis 142 

(3.1), large model ensemble analysis (3.2), remaining carbon budgets (3.3) and recent trends 143 

(3.4). Finally we discuss our results and issue recommendations in Section 4. 144 

 145 
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2 Source Data and Methods 146 

 2.1 Source Data 147 

2.1.1 Global surface temperature data sets 148 

Table 1 summarizes the five operational blended LSAT-SST series in widespread use. The first 149 

two columns show considerable overlap in the underlying datasets. There are two SST data sets: 150 

HadSST3 (Kennedy et al., 2011) from the UKMO, also used in Cowtan-Way and Berkeley 151 

Earth, and NOAA’s ERSSTv5 (Huang et al., 2017), also used also by NASA GISTEMP. 152 

Similarly, the NOAA land station data set GHCNv4 (Menne et al., 2019) is also used by NASA 153 

GISTEMP, while CRUTEM4 (Jones et al., 2010) is used in Cowtan-Way. Even this description 154 

understates the overlap. For example both SST data sets rely primarily on the raw ungridded 155 

maritime observations from the International Comprehensive Ocean‐Atmosphere Data Set 156 

(ICOADS, Freeman et al., 2016), albeit processed, filtered and supplemented in different ways. 157 

Table 1. Five operational observational datasets. 158 

Series 
Land 

(LSAT) 
Ocean  (SST) 

Interpolatio

n 
Averaging 

Start 

year 
Group(s) 

HadCRUT4 

(Morice et al., 2010) 
CRUTEM4 HadSST3 None 

Hemisphere 

average of 

gridboxes 

1850 
AR5_3 

SR1.5_4 

NOAA GlobalTemp 

v5 

(Zhang et al., 2019) 

GHCNv4 ERSSTv5 EOTs 

Area 

weighted  

average 

1880 
AR5_3 

SR1.5_4 

NASA GISTEMP v4 

(Lenssen et al., 2019) 
GHCNv4 ERSSTv5 

Distance 

weighting 

(to 1200  

km) 

80 zones x 

100 sub-

boxes 

1880 

AR5_3 

SR1.5_4 

 Global_3 

Cowtan-Way v2 

(Cowtan & Way, 

2014a; Cowtan & 

Way, 2014b; Cowtan 

et al., 2015) 

CRUTEM4 

(kriged) 

HadSST3 

(kriged) 

Kriging 

(Complete) 

Area 

weighted 

average 

1850 
SR1.5_4 

Global_3 

Berkeley Earth  

(Rohde et al., 2011) 

Berkeley 

Earth 

HadSST3 

(reprocessed 

& kriged) 

Kriging  (to 

1200 km) 

Area 

weighted 

average  

1850 Global_3 

For this study’s purposes, however, the differences in interpolation and averaging methods are 159 

more important. HadCRUT4 averages data within each 5°5° gridbox and then calculates area-160 

weighted hemispheric means with no interpolation. In contrast, NASA GISTEMP, Cowtan-Way 161 

and Berkeley Earth use extensive interpolation, and crucially, extrapolate land station surface 162 

temperatures over sea ice. Comparisons with temperature reanalyses, independent surface data 163 

and satellite retrievals show that this significantly reduces bias during the strong surface 164 
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warming since the mid-twentieth century, although the evidence is mixed for earlier periods 165 

(Dodd et al., 2015; Cowtan et al., 2018a; Susskind et al., 2019).  166 

GISTEMP and Berkeley Earth areal coverage is two to three times that of HadCRUT4 in the late 167 

19th century, rising to virtually complete coverage since 1951 (See Figure S1, Supplementary 168 

Information). NOAA GlobalTemp interpolates via Empirical Orthogonal Transformations 169 

(EOTs), resulting in coverage between that of HadCRUT4 and NASA GISTEMP, but virtually 170 

no coverage at very high latitudes. 171 

For trend analysis the datasets are assigned to various (overlapping) groups as seen in the last 172 

column of Table 1; groups are labeled by an abbreviation and the number of included series 173 

included. Thus, the Global_3 group includes three “full global” series identified above; two other 174 

groups (AR5_3 and SR1.5_4) identify series included in the last two IPCC surface temperature 175 

analyses, and OpAll_5 includes all 5 operational observational datasets.  176 

For all series except Berkeley Earth, the published monthly anomaly series were used. However, 177 

there is a marked discrepancy between the Berkeley Earth’s gridded dataset and the published 178 

monthly average over 1850-1950, so we use an area-weighted average of the gridded series 179 

instead (Supplementary Information, Figure S2). The three series starting in 1850 are baselined 180 

by subtracting the overall 1850-1900 mean from the original series. NASA GISTEMP and 181 

NOAA GlobalTemp are baselined such that their 1880—1900 mean matches that of the three 182 

longer-running datasets. 183 

New versions of NASA GISTEMP and NOAA GlobalTemp were operationalized in 2019, so 184 

these should be stable for the foreseeable future. However, HadSST4 (Kennedy et al., 2019) was 185 

recently released so we also produce versions of HadCRUT4, Cowtan-Way and Berkeley Earth 186 

including HadSST4. We also perform a rudimentary sensitivity analysis of the difference 187 

between full and distance-limited interpolation by analyzing the impact on Cowtan-Way and 188 

CMIP6 ensemble trends when matching the reduced coverage of Berkeley Earth. We refer to 189 

such datasets as “masked”, since we mask (i.e. remove from the calculation) grid cells in one 190 

series so as to match the lesser geographic coverage of another.    191 

 2.1.2 MPI-ESM Grand Ensemble 192 

We only have one realization of real-world internal variability, and we do not know the true 193 

GMSTF. To address this we use output from the 100 historical simulations of the Max Planck 194 

Institute for Meteorology Grand Ensemble (MPI-GE, Maher et al., 2019)), taking the global 195 

mean near surface air temperature (SAT) over the full simulations (1850—2005) and baselining 196 

each to 1850—1900. Our approach is conceptually similar to that of Dessler et al. (2018), who 197 

used the MPI-GE to estimate how model internal variability can affect derived estimates of 198 

climate sensitivity. 199 

By taking the ensemble mean as our best estimate of GMSTF, we can compare the performance 200 

of different estimators for GMSTF as described in Section 2.2.2 below, and the ensemble 201 
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spread provides an estimate of the uncertainty introduced by internal variability, conditional on 202 

the MPI-GE model’s representation of GMSTvar.  203 

We also use the ensemble mean top of atmosphere net energy imbalance (NTOA) to flag years 204 

that are affected by volcanism and which will therefore contain a strong GMSTF,short 205 

component. This is done by identifying all years where the year-over-year change in NTOA is 206 

equivalent to more than 0.3 W m-2 of cooling. Given the typical lifetime of volcanic effects on 207 

temperature, we exclude the identified years plus the two subsequent years. These are included in 208 

all calculations but separately discussed in some analyses. Note that we use global SAT only 209 

since we expect little effect of blending or masking in the comparison of derived GMST to 210 

GMSTF differences. 211 

 2.1.3 Climate Model Intercomparison Project, phase 6 (CMIP6) output 212 

We include historical simulations over 1850-2014 from CMIP6 models which have the required 213 

fields for blending SAT over land or sea ice and SST over ocean (Eyring et al, 2016). These 214 

include near-surface air temperature (“tas”) and sea surface temperature (“tos”), plus sea ice 215 

concentration (“sciconc” or “sciconca”). The simulations are listed in Table S1. 216 

Following Cowtan et al (2015) and Richardson et al (2018), each simulation is processed to 217 

produce two series: 1) global SAT and 2) global blended SAT-SST.  At each grid cell i, j for 218 

each month, the blended temperature Tblend,i,j is obtained as follows:   219 

Tblend,i,j = wSAT,i,j TSAT,i,j + (1 − wSAT,i,j) TSST,i,j    (10)   220 

where wSAT,i,j  is the fraction of the grid cell that is land or sea ice, and TSAT,i,j  and TSST,i,j are the 221 

local anomalies relative to 1850-1900. The global SAT series is calculated with wSAT,i,j = 1 222 

everywhere. For the blended series, wSAT,i,j is fixed for each calendar month by assigning all 223 

ocean area in a grid cell to sea ice if any of that calendar months over 1961-2014 has siconc > 224 

3%. 225 

 2.2 Methods 226 

Next we describe our approach to obtain GMST, our uncertainty estimation, and the remaining 227 

carbon budget calculation. Section 2.2.1 explains the trend fits and their errors, Section 2.2.2 228 

explains the GMST calculations, observational error and methods by which the fit quality are 229 

judged using observational data. Section 2.2.3 discusses the large ensemble methodology, 230 

Section 2.2.4 the CMIP6 comparison and carbon budget calculation, and Section 2.2.5 the short-231 

term trend analysis. 232 

2.2.1 Trend calculations and their statistical uncertainty  233 

The main analysis compares OLS linear trends to a continuous multidecadal LOESS trend 234 

(Cleveland et al., 1992), hereafter denoted LOESSmd. Estimates of GMST are then easily 235 
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obtained, for example the change from 1880—2018 is the fit evaluated in 2018 minus the 1880 236 

value.  237 

For a time series of n temperature observations xi  each at time ti, a linear trend is found by 238 

fitting: 239 

xi =  a + bti + ei,   i = 1, …, n       (2) 240 

where a and b are intercept and slope parameters to be fitted by OLS and ei are residual errors. 241 

The slope estimate b̂ is used to obtain GMST as b̂ (tn – ti), with the uncertainty of b̂  (and thus 242 

GMST) determined as explained below. 243 

Our LOESSmd uses a fixed span αmd  of ± 20 years, tricube weighting (the default) and a degree 1 244 

smoothing parameter (i.e. locally weighted linear trend). We choose local linear trend over 245 

quadratic, as this yields more stable end points.     246 

An advantage of LOESSmd  is that it is evaluated once over the whole series, and GMST can 247 

then be estimated for any interval, whereas OLS trends must be evaluated anew for each interval 248 

and may have mismatched or highly changeable sub-interval trends.  249 

Both methods assume statistically independent noise, necessitating a correction to the trend 250 

uncertainty if the fit residuals are autocorrelated. Santer et al (2000) presented a procedure for 251 
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assessing an effective sample size (and associated reduction in degrees of freedom) based on the 252 

general formula 253 

1

1
2 )(1

e n

jj

tn
n


−

=

=
+ 

     (3)                                                             254 

   255 

where 𝝆𝒋 is the autocorrelation function of a noise model estimated from the residuals of the 256 

(linear) trend fit. If the noise follows a simple autoregressive(1) (AR(1)) process,  then with 257 

𝜌𝑗 =  𝜙𝑗    258 

( )

( )

( )

1

1

12
1 2 1

1 1

n

jj




 

−

=

+
+  + =

− −
      (4) 259 

where 𝜙 is estimated from the lag-one autocorrelation coefficient (Mitchell et al, 1966). 260 

However, Foster and Rahmstorf (2011) demonstrated that the AR(1) model underestimated the 261 

autocorrelation of surface and tropospheric temperature trend residuals over 1979-2010, and 262 

proposed an autoregressive moving average, ARMA(1, 1) model in the form  263 

𝜌1 =
(𝜙 +  𝜃)(1 + 𝜙𝜃)

1 + 2𝜙𝜃 +  𝜃2
     264 

                                                                                     (5) 265 

 𝜌𝑗 =  𝜌1𝜙𝑗−1            𝑗 ≥ 2 266 

Substituting (5) into (4) yields 267 

( )

1
1

1

2
1 2 1

1

n

jj






−

=
+  +

−
       (6) 268 

Foster and Rahmstorf estimated the ARMA(1, 1) model in (5) from the Yule-Walker “method of 269 

moments” with   𝜙̂ = 𝜌̂1 / 𝜌̂2. Hausfather et al (2017) instead used Maximum Likelihood 270 

Estimation (MLE) to first obtain both 𝜙̂ and 𝜃 and then estimated 𝜌̂1 according to (5). The MLE 271 

approach yields a more robust and efficient estimator 𝜙̂, suitable for even very short series, as 272 

demonstrated by Monte Carlo simulations (see Figure S3).  273 

Hausfather et al also introduced a bias correction to account for underestimated autocorrelation 274 

in shorter series.  The bias correction is derived from the AR(1) in Tjøstheim and Paulsen (1996), 275 

extended to account for the positive difference between 𝜙̂ and 𝜌̂1.    276 

  
( )( )

( )( )
1

1 1 1

ˆ ˆ ˆ  1  4 2   /

    = 1     /ˆ4 2

BC t

tBC

n

n

   

   

= + + −

+ + −

     (7) 277 

Although this bias correction is most pertinent for very short series, Monte Carlo simulations 278 

have demonstrated its relevance for highly autocorrelated series up to 720 months (60 years) in 279 
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length. A modified bias correction based on Nychka et al (2000) was also evaluated but was 280 

found to slightly overcorrect. For further details, see Figure S4. 281 

Substituting the bias corrected parameters and simplifying the correction term as in (5) yields the 282 

final form of the effective length correction. 283 

1

11
1 2 / (1 )ˆ1 2

e n

BCjj

t tn n
n

 
−

=

= 
+ −+ 

     (8) 284 

In this study, corrections are estimated from the residuals of both LOESS and OLS. To apply this 285 

correction, we define nominal degrees of freedom v = nt – p and effective degrees of freedom ve 286 

= ne – p, where p is the number of actual or equivalent parameters of the trend fitting 287 

methodology.  288 

In the linear case, the required correction is applied directly to sb, the standard error of the slope 289 

term b in (1), with p = 2. 290 

  
' 2

2

t
b b b

e e

v n
s s s

v n

−
= =

−
       (9) 291 

For non-parametric trend estimation such as LOESS, Monte Carlo simulations can be used to 292 

establish trend uncertainties, as in Visser et al (2016) for smoothing spline trends. Here we 293 

propose an alternative plausible heuristic uncertainty method. First the above correction is 294 

applied to se, the standard errors of the residual fit, with p set to the equivalent number of 295 

parameters of the LOESS trend, derived from the trace of the LOESS projection matrix 296 

(Cleveland and  Grosse, 1991); generally p ≈ 2/α + 0.5 for GMST datasets. For an equally 297 

spaced time series, se  reaches its maximum at the start and end points of the LOESS trend fit. If 298 

errors at these two points are independent, the corrected standard error 
'

Tn

s


 GMSTn becomes  299 

  
' '2 max( ) 2 max( )

Tn
e e

t

e

n p
s

p
s s

n

−
= =

−
    (10) 300 

Monte Carlo simulations of trend plus simulated ARMA(1, 1) noise produces a trend probability 301 

distribution function nearly identical to that engendered by (10) for Cowtan-Way over 1880-302 

2018 (see Figure S5). For both OLS and LOESSmd we evaluate the sample autocorrelation 303 

function (ACF) of the fit residuals as well as the ACFs of the ARMA(1, 1) and AR(1) noise 304 

models fit to those residuals.  305 

 2.2.2 Estimates of observational GMST, error components and performance tests 306 

Following IPCC AR5, we assess OLS and LOESSmd GMST from 1880, 1951 and 1979 for 307 

each GMST series and our GMST groups. We also provide an additional “hybrid” LOESSmd 308 

GMST relative to the 1850-1900 baseline, which is simply LOESSmd evaluated at a recent end 309 

point. We extend our calculations to 2018, the latest full year of data. Following IPCC SR1.5 we 310 

also calculate intra-period GMST estimates by subtracting mean GMST over 1850—1900 from 311 



manuscript submitted to Earth and Space Science 

 11 

selected recent decades, for example that during 2009—2018. We compare “hybrid” LOESSmd 312 

to intra-period GMST by taking the central value of the end period fit, e.g. for 2009—2018 we 313 

evaluate LOESS at the beginning of 2014. LOESSmd hybrid long term trends are also compared 314 

to selected to selected GMST-derived estimates of “human induced” warming (Haustein et al., 315 

2017) and to CMIP6 outputs (see Section 2.2.4).  316 

For each GMST period we report statistical and observational uncertainty (where available). 317 

Firstly the statistical errors derived in Section 2.2.1, which are based on the fit residuals, so 318 

capture uncertainty introduced by internal variability and due to differences between the true 319 

GMST evolution and that assumed in the statistical model. For example, the OLS fit is linear, so 320 

any nonlinear components of GMSTF will lead to larger residuals and increased statistical error. 321 

Secondly, for the observational uncertainty we report the 5—95 % range of GMST values for 322 

OLS and LOESSmd applied to each of the 100 member HadCRUT4 and Cowtan-Way ensembles. 323 

The HadCRUT4 ensemble uses a Monte-Carlo method to assess the fully correlated errors 324 

engendered by parametric uncertainty related to bias adjustments (Kennedy et al., 2011); 325 

Cowtan-Way reprocesses the HadCRUT4 the ensemble by the application of kriging to each 326 

ensemble member.    327 

As well as comparing the temperature evolution, we compare the autocorrelation of the OLS and 328 

LOESSmd residuals. Given that the statistical uncertainty calculation assumes ARMA(1,1) noise, 329 

the residual autocorrelation should follow ARMA(1,1) in order for the fit statistics to be 330 

considered reliable. Finally we assess the performance of the fit-derived GMSTs against period 331 

mean differences for the Global_3 group. IPCC SR1.5 explicitly considered their main intra-332 

period 2006-2015 GMST estimate to be a proxy of the eventual 1996-2025 mean. We therefore 333 

compare the GMST estimates for every year from 1995 against centered 20-year and 30-year 334 

means. We also compare to “extended” running 30-year periods, generated by assuming a 335 

continuation of the 1999-2018 linear trend through 2028. We argue that a smaller bias and root 336 

mean square error (RMSE) relative to the 20- and 30-year means represents better performance. 337 

 338 

 2.2.3 Large Ensemble Analysis for Method Validation and Uncertainty Calculation 339 

The performance of each GMST estimator is assessed by applying it to each of the MPI-GE 340 

members.  LOESSmd fits are calculated for each simulation’s annual output, as are linear OLS 341 

fits ending in 2005 from every start year from 1850—1980. We also use the “hybrid” calculation 342 

above, evaluating the fit at the end of 2000 to approximate the 1850—1900 to 1996—2005 343 

GMST, and compare it against the difference of period means. An advantage of this large 344 

ensemble is that we can estimate GMSTF from the ensemble mean in each year and thereby 345 

compare each estimator’s performance against this. The distribution of ensemble member 346 

GMST-GMSTF values then provides an estimate of the bias and uncertainties for each 347 

estimator and each period. In particular, for LOESSmd the spread should be comparable to the 348 
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statistical uncertainty from Section 2.2.2 provided that the residual variance is primarily driven 349 

by GMSTvar.  350 

2.2.4 CMIP6 comparisons, SAT adjustment and remaining carbon budget 351 

LOESS series are generated for each CMIP6 SAT and blended SAT-SST series, and the 352 

ensemble is used to evaluate a median trend and uncertainty envelope. The blended series are 353 

then compared to the corresponding GMST observations. As several CMIP6 models have 354 

effective climate sensitivity (ECS) outside the IPCC’s 1.5-4.5°C likely range, a subset of “likely 355 

ECS” models was also assessed (Forster et al., 2019).  356 

The percentage increase in LOESSmd SAT  relative to blended SAT-SST GMST, Ablend = 357 

(ΔTSAT - ΔTblended)/ ΔTblended was evaluated for each ensemble member. This yields an adjustment 358 

factor that can be applied to the blended observation series to estimate historical SAT, a key 359 

input to the calculation of the remaining carbon budget. 360 

The carbon budget calculation is based on the framework established in IPCC SR15 (Rogelj et 361 

al., 2017), elaborated by Rogelj et al (2019) and implemented by Nauel et al (2019). We simplify 362 

the Rogelj et al (2019) remaining carbon budget equation to: 363 

( )
2 , – /  lim lim hist nonCO fut EsfbB T T T TCRE E=  −   −     (11) 364 

where Blim is the remaining carbon budget associated with a temperature limit ΔTlim (1.5 or 2°C), 365 

with ΔThist the historical human-induced warming to date and 
2 ,nonCO futT the expected future 366 

warming from non-CO2 anthropogenic forcing. TCRE is the transient climate response to 367 

cumulative CO2 emissions, while EEsfb is an adjustment for Earth system feedbacks from 368 

permafrost thaw and warming wetlands. Building on the finding that observed and “human-369 

induced” warming to date can be regarded as equivalent (Allen et al., 2018; Haustein et al., 370 

2017), SR15 assessed ΔThist as 0.97°C in 2006-2015 relative to 1850-1900, based on the 371 

HadCRUT4 average for that decade (0.84°C) adjusted by the difference between the equivalent 372 

CMIP5 blended-masked estimate (0.86°C) and global SAT (0.99°C).  373 

In contrast, here we select the Global_3 GMST group and so do not need to rely on a model 374 

correction for the bias introduced by incomplete and changing geographic coverage. This means 375 

we are relying more heavily on observation-based statistics and less on climate model outputs, 376 

since the SAT adjustment factor is much smaller than the blended-masked adjustment. Our 377 

estimate for Thist is: 378 

Δ𝑇ℎ𝑖𝑠𝑡 = 𝐴𝑏𝑙𝑒𝑛𝑑Δ𝑇𝐺𝑙𝑜𝑏𝑎𝑙_3       (12) 379 

where Ablend is the median of the Ablend values calculated for CMIP6 ensemble members and 380 

TGlobal_3 is the LOESSmd GMST of the Global_3 group. TGlobal_3 uncertainty is assessed by 381 

combining the 5—95% observational uncertainty of Cowtan-Way with the spread of central 382 

estimates of the Global_3 series and Ablend 
 uncertainty is determined from the 5—95 % range of 383 
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the ensemble. Thist 5—95% uncertainty is the sum of the relative uncertainties of  TGlobal_3 and 384 

Ablend. 385 

As in Rogelj et al (2019),
2nonCOT is estimated as 0.1°C (0.2°C) for Tlim of 1.5°C (2°C). TCRE 386 

uncertainty percentiles are based on AR5 likely range of 0.2–0.7°C per 1,000 Gt CO2 (Collins et 387 

al., 2013), as in Nauels et al (2019). EEsfb of 100 Gt CO2 from permafrost thawing by until 2100 388 

is included in one of the two primary analyses. SR1.5 also included alternative carbon budgets 389 

based on a lower Thist from the average of the blended GMST datasets with no SAT adjustment. 390 

Our alternative is the Global_3 dataset average without the SAT adjustment. To contextualize the 391 

remaining budget against cumulative emissions to date we include data from the 2019 Global 392 

Carbon Budget (Friedlingstein et al., 2019). 393 

 2.2.5 Short term trend analysis 394 

Finally, having validated LOESSmd, presented evidence for its advantages in estimating long-395 

term GMST and shown an example of its application to carbon budgets, we consider its 396 

implications for short-term trend analysis in more detail. In particular, we evaluate recent 15-397 

year overlapping trends compared to the corresponding 30-year and 60-year trends. Such 15-year 398 

OLS trends were discussed in AR5 and are planned for inclusion in AR6. 399 

For continuous non-linear 15-year trends, we apply a pentadal LOESSpent as for LOESSmd but 400 

with span αpent ± 5 years. We calculate GMST as before, but over shorter intervals and express 401 

results in °C decade-1. These 15-year trends are compared to the corresponding 30 and 60 year 402 

LOESSmd  trends. The LOESSpent trends can be overly sensitive to variability near the end points, 403 

so an end adjustment that modulates the LOESSpent by partial “return” to the long-term LOESSmd 404 

trend was instituted. Two techniques were evaluated, and following superior validation (see 405 

Figure S6) results we selected a “first difference adjustment” which gradually matches the first 406 

difference of the LOESSpent trend line to that of the LOESSmd trend. The 15-year OLS linear 407 

trends are evaluated conventionally, and are similarly compared to 30 and 60 year linear trends.  408 

While the statistical uncertainty methodology described in Section 2.2.1 has been applied to very 409 

short term OLS trends (Hausfather et al., 2017) and could be extended to LOESSpent, we defer 410 

this aspect for now. We do note that methods based on annual series (as in IPCC AR5) are ill-411 

suited for 15 or even 30 year trends, as robust estimate of autocorrelation necessarily requires the 412 

higher sample numbers of monthly series. As well, observational uncertainties at very short time 413 

scales are dominated by partially correlated errors that are not captured in GMST ensembles 414 

(Kennedy et al., 2019; Hausfather et al., 2017), implying large underestimation of observational 415 

uncertainties in the HadCRUT4 15-year trend presented in Fyfe et al (2011) and  IPCC AR5 416 

(Flato et al., 2013).  417 

 418 

Therefore for this preliminary analysis of very short term LOESSpent and OLS trends, we follow 419 

Fyfe et al (2016) and calculate central estimates of GMST series observational trends, and 420 

compare to the spread of CMIP6 ensemble trends.    421 
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3 Results 422 

3.1 Long term trend analysis 423 

The 1880—2018 Cowtan-Way GMST estimates in Figure 1 demonstrate that the OLS and 424 

LOESSmd central estimates lie outside each other’s 5-95% uncertainty range according to 425 

statistical fit uncertainty (panel 1a) or observational uncertainty (panel 1b). The autocorrelation 426 

function of the residuals more closely matches ARMA(1,1) for LOESS (panel 1c) than OLS 427 

(panel 1d), supporting LOESSmd over linear OLS and justifying our use of an error correction 428 

derived from ARMA(1,1) assumptions. 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

Figure 1: LOESS and OLS linear trend estimation 1880-2018.  Top (a - b) Cowtan -Way 

monthly series (light gray) is shown with LOESS multi-decadal trend (blue), OLS linear trend 

(red) and 2009-2018 average (black square).  The OLS linear trends have been shifted to zero start 

per IPCC methodologyz.  (a) Trends are given with ARMA(1,1) corrected 5%-95% confidence 

interval  (dotted lines).  (b) LOESS (thin light blue lines) and  OLS (thin pink lines) trends are 

derived from Cowtan and Way 100-member ensemble. Bottom (c) Autocorrelation function 

(ACF) of statistical fit residuals (black), compared to that estimated with ARMA(1, 1) model 

(blue) and AR(1) model (red) for LOESS trend. (d) As in (c), except for OLS linear trend. 

 (a)                        Statistical fit              (b)               Observational ensemble 

(c)              LOESS                                                      (d)              Linear 
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Estimates of GMST for the observational series and groups, along with CMIP6 are given in 464 

Table 2. The datasets have similar rankings for both OLS and LOESSmd over 1880-2018, with 465 

the highest being Berkeley Earth (1.17°C and 1.07°C) and the lowest HadCRUT4 (0.98°C, 466 

0.94°C). All long-term LOESSmd GMST values are greater than the corresponding OLS 467 

estimates. The Global_3 series exhibit a greater relative difference than the non-global series; the 468 

difference between Berkeley Earth and HadCRUT4 in LOESS trend is ~0.2°C, but only 0.13°C 469 

for OLS. Thus OLS not only produces lower GMST, but also de-emphasizes the differences 470 

between the datasets. It’s also notable that the LOESS-OLS difference is higher for the three 471 

HadSST4 based series than for the two ERSSTv5 based series, with NOAA showing the smallest 472 

difference.  473 

 474 

  475 
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 476 

 477 

 478 

The same patterns holds for LOESS changes from 1850—1900 to 2018, with GMST ranging 479 

from 1.05°C [0.88-1.20] for the AR5 group up to 1.12°C [0.93-1.27] for the Global_3 series, 480 

which we report as our best estimate. This best estimate is 0.13 °C larger than the 0.99 °C from 481 

an OLS fit to the AR5 datasets through 1880—2018. Of the difference, 0.01 °C comes from the 482 

switch to an 1850—1900 baseline, 0.08 °C from the application of LOESS rather than OLS, and 483 

Period:  

 

Series: 

1850-1900 

to 2018 
1880 - 2018 1951 - 2018 1979 - 2018 

LOESS LOESS Linear LOESS Linear LOESS Linear 

HadCRUT4 

1.00 

[0.88 - 1.11] 

(0.95 – 1.04) 

0.98 

[0.86- 1.09] 

(0.93 – 1.02) 

0.94 

[0.80 - 1.08] 

(0.88 – 1.01) 

0.73 

[0.61 - 0.85] 

(0.67 – 0.76) 

0.82 

[0.67 - 0.97] 

(0.76 – 0.88) 

0.67 

[0.56 - 0.78] 

(0.64 – 0.71) 

0.68 

[0.56 - 0.80] 

(0.65 – 0.72) 

NOAA 

GlobalTemp 

1.06 

[0.89 - 1.13] 

1.03 

[0.90 - 1.15] 

1.02 

[0.87 - 1.17] 

0.84 

[0.72 - 0.96] 

0.94 

[0.83 - 1.06] 

0.70 

[0.59 - 0.82] 

0.68 

[0.55 - 0.80] 

NASA 

GISTEMP 

1.09 

[0.97 - 1.20] 

1.06 

[0.94 - 1.18] 

1.02 

[0.86 – 1.18] 

0.90 

[0.80 – 1.01] 

1.00 

[0.88 - 1.12] 

0.75 

[0.65 - 0.86] 

0.73 

[0.62 - 0.85] 

IPCC AR5     

(3 series) 

1.05 

[0.88 – 1.20] 

1.02 

[0.85 – 1.18] 

0.99 

[0.80 - 1.18] 

0.82 

[0.61 - 0.97] 

0.92 

[0.67 - 1.12] 

0.71 

[0.56 - 0.86] 

0.70 

[0.54 - 0.85] 

Cowtan & 

Way 

1.09 

[0.98 – 1.21] 

(1.00 – 1.19) 

1.11 

[1.00 - 1.22] 

(0.99 – 1.18) 

0.99 

[0.86 – 1.12] 

(0.88 – 1.09) 

0.78 

[0.67 - 0.89] 

(0.72 – 0.81) 

0.86 

[0.70 - 1.01] 

(0.80 – 0.92) 

0.73 

[0.62 - 0.84] 

(0.69 – 0.78) 

0.74 

[0.62 - 0.86] 

(0.71 – 0.78) 

IPCC SR15   

(4 series) 

1.06 

[0.88 – 1.20] 

1.04 

[0.85 – 1.22] 

0.99 

[0.80 - 1.18] 

0.81 

[0.59 - 0.97] 

0.90 

[0.67 - 1.12] 

0.71 

[0.56 - 0.86] 

0.71 

[0.54 - 0.86] 

Berkeley 

Earth 

1.16 

[1.05 - 1.27] 

1.17 

[1.06 - 1.28] 

1.07 

[0.94 - 1.20] 

0.82 

[0.72 - 0.92] 

0.89 

[0.75 - 1.03] 

0.74 

[0.64 - 0.83] 

0.74 

[0.63 - 0.85] 

All 

Operational  

1.08 

[0.88 - 1.27] 

1.07 

[0.85 - 1.28] 

1.01 

[0.80 - 1.20] 

0.81 

[0.59 - 0.97] 

0.90 

[0.67 - 1.12] 

0.72 

[0.56 - 0.86] 

0.71 

[0.54 - 0.86] 

Full Global  

(3 series) * 

1.12 * 

[0.97 - 1.27] 

(1.00 – 1.25) 

1.11 

[0.94 - 1.28] 

1.03 

[0.86 - 1.20] 

0.83 * 

[0.67 - 0.97] 

0.91 

[0.70- 1.12] 

0.74 * 

[0.62 - 0.86] 

0.74 

[0.62 - 0.86] 

CMIP6 

global 

SAT/SST  

1.04    

{0.88 – 1.40} 

1.08    

{0.91 – 1.42}  

0.82 

{0.52 – 1.32} 

0.99 

{0.71 – 1.30} 

0.96 

{0.77 – 1.31} 

0.87 

{0.63 – 1.35} 

0.97 

{0.60 – 1.48} 

CMIP6 

global SAT 

1.09 

{0.91 – 1.45} 

1.12 

{0.94 – 1.48} 

0.85 

{0.56 – 1.37} 

1.03 

{0.72 – 1.33} 

1.00 

{0.78 – 1.36} 

0.91 

{0.65 – 1.37} 

1.00 

{0.63 – 1.53} 

Table 2: Observed increase in GMST (°C) in datasets and dataset groupings. 

Numbers in square brackets correspond to 5–95% statistical trend fit uncertainty ranges, 

accounting for autocorrelation in fit residuals. Round brackets denote observational 

uncertainty where available (HadCRUT4, Cowtan & Way) and curly brackets denote 

CMIP6 ensemble spread. Best estimates from 3 full global series are denoted by *. 
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0.04 °C from the use of the global datasets. Therefore we attribute most of the difference to the 484 

differing trend methodology, although some of this is due to the combined effect of how the 485 

OLS-LOESS difference increases for the Global_3 dataset relative to the non-global series. For 486 
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1951-2018, LOESS GMSTs are lower than OLS, while 1979-2018 GMSTs are almost 487 

identical, reflecting the near-linear rise since the mid-1970s. 488 

 489 

 490 

 491 

The observation-based and CMIP6 blended ensemble LOESSmd (Figure 2) show broadly similar 492 

changes: a rise to 1950, followed by flattening during 1950—1975, and strong warming from 493 

Figure 2:  GMST series and group surface warming estimates. (a) Monthly series and multi-decadal LOESS 

trends (span ± 20 years) are shown for HadCRUT4 (red), NOAA GlobalTemp (light blue), NASA GISTEMP 

(blue), Cowtan and Way (purple) and Berkeley Earth (orange), together with OLS and period estimates from 

IPCC AR5 and SR15. NOAA GlobalTemp and NASA GISTEMP have been matched to the longer datasets over 

the overlapping 1880-1900 period. Also shown are 21 CMIP6 SAT-SST model runs, blended following Cowtan et 

al (2015) and Richardson et al (2018). (b) LOESS trend (solid line with filled circle) is shown for each GMST 

grouping: Global_3 (purple), AllOper_5 (dark red), SR1.5_4 (dark blue), AR5_3 (light blue), along with 

HadCRUT4 (orange). AR5_3 and HadCRUT4 are shown as dashed lines to indicate these are now deprecated. 

Also shown are selected additional warming estimates: anthropogenic following Haustein et al (2017) (diamonds), 

decadal average (crosses) and OLS linear trend from 1880 (x-crosses). Updated IPCC SR15 estimates have been 

circled in dark blue. The AR_5 OLS trend and Global_3 LOESS trends to 2018 are highlighted by light blue and 

purple .squares respectively.  
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about 1975. However the observations show more variability, with stronger 1920—1950 494 

warming, especially in the three HadSST-based series, and weaker post-1975 warming.  495 

The difference in GMST between blended 100% spatially complete and distance-limited 496 

interpolated series is negligible, when assessed by masking Cowtan-Way or the CMIP6 497 

ensemble to Berkeley Earth coverage. This implies that the CMIP6 blended ensemble is directly 498 

comparable to the three global series. The Global_3 rise of 1.12°C is firmly in the upper half of 499 

the extended CMIP6 estimate extended to 2018, 1.04°C [0.88 – 1.44]. However, the Global_3 500 

incremental trend of 0.20°C/decade is lower than the CMIP6 trend of 0.26°C/decade [0.18 – 501 

0.38] or the CMIP6 likely ECS sub-ensemble 0.25°C/decade [0.18 – 0.29]. CMIP6 also shows 502 

more acceleration than observations since 1979 as evidenced by CMIP OLS-LOESS differential 503 

in this period (0.97°C versus 0.87°C). 504 

Figure 2(b) affords a closer view of GMST estimates for different periods from models, 505 

observations and “human induced warming” from Haustein et al (2017). Our values are slightly 506 

higher than in SR1.5, as the most recent versions of the datasets are slightly warmer. As 507 

expected, the SR1.5 OLS estimates are below those from LOESS. Even the SR1.5 2006-2015 508 

mean GMST of 0.88°C (centered at the end of 2010) is slightly under the LOESS value at the 509 

same time of 0.91°C. This discrepancy may be related to internal variability, which suppressed 510 

early 2000s warming; the most recent available decade at the time of SR15’s publication, 2008-511 

2017, is virtually identical to the corresponding LOESS GMST. The Haustein “human induced 512 

warming” estimate of 1.05°C to 2017 is slightly higher.  513 

The Global_3 LOESS GMST is more consistent with the corresponding 2008—2017 mean and 514 

Haustein estimates. As can be seen in Figure 3a, the LOESS-OLS difference arose in the early 515 

2000s and has been entrenched since 2005. Comparison of these estimates to the corresponding 516 

centered 20-year or 30-year average in Figure 3b demonstrates that the LOESS trend has tracked 517 

the longer periods closely recently, and the comparison with 30-year “extended” average (which 518 
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assumes continuation of the 30-year trend over the next 15 years) indicates that LOESS’s smaller 519 

errors could continue for some time.  520 

Use of HadSST4 instead of HadSST3 raises GMST estimates of the three HadSST-based 521 

series, while LOESS-OLS differences remain similar.  We conservatively estimate that Global_3 522 

GMST rises by 0.04°C to 1.16°C [1.97 – 1.31] (see Figure S7). 523 

The LOESS and decadal intra-period estimates are more consistent with each other than with that 524 

of OLS. Figure 3(d) shows that the decadal mean and LOESS perform similarly, with slightly 525 

lower RMSE for LOESS since the late 1990s. 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

(a)                                                                      (b)        

(c)                                                                         (d)        
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 535 

 536 

 537 

 538 

3.2 Grand Ensemble Validation  539 

 540 

Figure 4(a) shows the MPI-GE annual SAT range, LOESS fits and GMSTF estimate while 541 

Figure 4(b) contains example LOESS and OLS fits to a single simulation. The continuity 542 

advantage of LOESS compared with OLS is obvious from this panel, as LOESS must only be 543 

calculated once for a given series. The forced, LOESS and OLS GMST estimates through 2005 544 

are shown for each start year from 1850—1980 in Figure 4(c).  545 

 546 

The GMST for LOESS and the forced series agree for all periods outside of those obviously 547 

affected with known volcanic eruptions. This suggests that the LOESS reliably estimates the 548 

forced change that is not associated with volcanoes, i.e. is close to the GMSTF,long from 549 

Equation 1 that is primarily related to human-caused forcing changes. By contrast, the longer 550 

term OLS estimates are biased, with the true forced change commonly outside the 5—95 % 551 

range. More recently the OLS range is ~66 % larger, and while OLS better captures the volcano-552 

driven excursion, this is not desirable for many assessments of long-term forced climate change. 553 

Furthermore, we argue that the LOESS fit reliably excludes the GMSTvar component: the 554 

correlation coefficient between the residuals from the LOESS fits and GMSTF for all simulations 555 

is 0.88 when excluding values that fall within 3 years of a major volcanic eruption. This 556 

reinforces the findings of Takahashi et al (2019) who found that LOESS residuals and control 557 

simulation variability behaved similarly. 558 

 559 

 560 

 561 

 562 

Figure 3: Trend estimation method validation based on average of 3 global series.  (a-b) LOESS (light blue) versus 

linear trend (orange). (c-d) LOESS versus decadal period (red). Validation targets are 30-year average, 30-year average 

extended with linear trend and 20-year average. 
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 563 
Figure 4. (a) MPI-GE SAT outputs, full ensemble range is shaded, each simulation’s LOESS fit is in grey and the 564 
ensemble mean (our estimate of GMSTF) is in red. (b) example of fits applied to a single simulation (black) 565 
including LOESS (dark blue) and OLS over three different periods (straight lines) with GMSTF in red. (c) calculated 566 
GMST for GMSTF (red), based on the LOESS fit (dark blue) and based on OLS (cyan). For the fits, the lines are 567 
the ensemble median and the shaded regions the 5—95 % range. 568 

 569 

Table 3 contains estimates of GMST from the Grand Ensemble. For differences between 570 

periods (e.g. 1850—1900 to 1996—2005), LOESS follows the hybrid method from Section 2.2.2 571 

and OLS is fit between the middle of each period . This table reinforces the fact that OLS tends 572 

to underestimate the true forced warming since the late 19th century. Furthermore, LOESS is 573 

similar to the standard approach of differencing period means, with similar 5—95 % spread 574 

magnitude, albeit with all values shifted down by approximately 0.02 °C. This validates the 575 

LOESS calculation approach, and the latter columns show its advantage over period means since 576 

its calculation can be extended to the latest available year without greatly inflated uncertainty. 577 

 578 

The 1880—2005 LOESS ensemble spread of 0.19 °C is in good agreement with the statistically 579 

derived 5—95 % uncertainties for observational datasets in Table 3. This provides support for 580 

our statistical estimates of uncertainty introduced in GMST. 581 

 582 

We propose that the absolute discrepancies between the LOESS and the GMSTF period means 583 

may be largely explained by volcanism. Firstly, Figure 2 shows that LOESS fits are less sensitive 584 

to volcanic perturbations than GMSTF, and while the 1996—2005 is largely unaffected by 585 

volcanism, the ±20 year LOESS window captures some of the Pinatubo-induced cooling after 586 

1991.  By contrast, GMSTF for 1880—2005 is 0.02 °C lower than that from LOESS. While the 587 

1880 GMSTF has no substantial volcanic cooling, the LOESS window now captures Krakatoa’s 588 

large post-1883 cooling, which cools the 1880 LOESS estimate, and increases its 1880—2005 589 

GMST. 590 

 591 

This Grand Ensemble analysis has: 592 

(i) supported our LOESS-based statistical uncertainty estimates,  593 

(ii) shown that LOESS has lower long-term bias and short-term uncertainty than 594 

OLS,  595 

(iii) verified that LOESS reliably reproduces GMSTF, with bias magnitudes <0.05 °C 596 

depending on volcanism during the periods considered, 597 
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(iv) provided evidence that LOESS better estimates GMSTF,long, and is generally less 598 

sensitive to volcanism within a window. 599 

Points (iii) and (iv) would not be possible with observational datasets since we cannot determine 600 

true GMSTF so precisely. Point (iii) is strong evidence in support of LOESS, and point (iv) 601 

suggests that LOESS may better estimate the human-caused warming component for 602 

applications such as carbon budget calculation. 603 

 604 
Table 3. Long-term GMST estimated for various periods for the ensemble mean TF, plus the ensemble 605 
medians and 5—95 % ranges for estimates based on LOESS, OLS or taking the mean of the raw SAT 606 
outputs. Uncertainties in TF differences are derived by treating TF as a sample mean and assuming the 607 
ensemble members follow a Gaussian distribution in any given year. The period errors are then combined in 608 
quadrature. 609 

GMST Method 1850-1900 to 1996-2005 

[°C] 

1850-1900 to 2005 

[°C] 

1880 to 2005 

[°C] 

TF 0.88 [0.87-0.89] 0.96 [0.94-0.98] 0.91 [0.88-0.94] 

LOESS 0.86 [0.76-0.95] 0.93 [0.83-1.03] 0.93 [0.83-1.06] 

OLS 0.75 [0.64-0.87] 0.78 [0.67-0.90] 0.86 [0.75-0.97] 

Individual run means 0.88 [0.79-0.97] 0.88 [0.61-1.16] 0.90 [0.63-1.21] 

 610 

3.3 Global SAT estimate and Remaining Carbon Budget 611 

The percentage increase of the CMIP6 LOESSmd SAT historical ensemble relative to the blended 612 

ensemble reaches 4.9% [3.2, 6.4 ] in 2014. The ratio stands at 6.4% in 1930, peaks at 8.6% in 613 

1970 and descends thereafter.  Our 4.9% is lower than Richardson et al (2018)’s 6.1%. However, 614 

Richardson et al. used CMIP5 with different periods, and when we select our likely ECS CMIP6 615 

sub-ensemble with time periods matched to Richardson et al (2018) we find better agreement 616 

with a 5.7 % difference. 617 

This ratio implies a central Global_3 SAT estimate of 1.17°C [1.03 – 1.32] from 1850—1900 618 

to 2018. Figure 5 shows the calculation for the headline remaining carbon budget with a 66% 619 
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chance to stay below 1.5°C, along with the historical cumulative CO2 emissions and temperature 620 

change.  621 

 622 

 623 

The remaining carbon budgets from the start of 2019 for a 66% (50%) chance to stay below 624 

1.5°C and 2.0°C are 275 (405) GtCO2 and 935 (1225) GtCO2 respectively (all numbers rounded 625 

to the nearest 5 GtCO2). Given current annual emissions of just over 40 GtCO2, the 66% 1.5°C 626 

remaining carbon budget is virtually identical to the equivalent carbon budgets in SR1.5 (320 627 

GtCO2 from 2018) and Nauels et al (235 GtCO2 from 2020).  However, our 50% 1.5°C carbon 628 

budget is ~30 GtCO2 below those two studies. This follows from the slightly higher ΔThist found 629 

in this study, combined with an identical TCRE spread starting in 2019 rather than a reference 630 

period centered at the start of 2011. In effect, the up-to-date estimate of ΔThist reduces TCRE 631 

uncertainty, as there is less ΔT “to go”. 632 

SR1.5 also gave secondary carbon budgets for Thist based on an unadjusted GMST four-series 633 

average over 2006-2015. We provide a corresponding budget based on unadjusted global GMST. 634 

Our 66% 1.5°C unadjusted GMST carbon budget is 360 GtCO2 from 2019; the corresponding 635 

SR1.5 budget was 470 GtCO2 from 2018. This large differential is to be expected as our 636 

Figure 5: Global temperature change from 1850–1900 versus cumulative CO2 emissions. The smoothed 

temperature response from the Global3 blended GMST group as decadal average (blue) and LOESSmd trend (purple) 

are shown relative to cumulative CO2 emissions from Friedlingsten et al (2019). The thick black line shows the 

Global3 GMST LOESSmd trend, adjusted by the median difference between SAT and blended historical runs from an 

ensemble of 21 CMIP5 models, again relative to cumulative CO2 emissions.  The pink shaded plume and dark red 

line are estimated temperature response to cumulative CO2 emissions (TCRE) from 2019 on. Also shown are other 

remaining carbon budget factors, 
2nonCOT and EEsfb (gray arrows). The thick black double arrow represents the 

remaining carbon budget for 66% chance of remaining below 1.5°C. 
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unadjusted full global GMST estimate still accounts for coverage bias, whereas the SR1.5 group 637 

GMST does so only partially. 638 

Following Rogelj et al (2019), all of the above estimates include EEsfb approximate downward 639 

adjustment to account for Earth system feedbacks (release of CO2 and CH4 from warming 640 

wetland and permafrost thaw). Carbon budgets excluding this term would therefore be 100 641 

GtCO2 higher.  642 

 643 

3.4 Recent trends 644 

The recent trend evolution of Cowtan-Way can be seen in Figure 5a. The LOESSpent fluctuations 645 

around the smoothly rising LOESSmd trend since ~1975 are characterized by surges and 646 

slowdowns. The first two brief slowdowns correspond to major volcanic eruptions, El Chichon 647 

in 1982 and Pinatubo in 1991. The early 2000s slowdown has since given away to a surge in 648 

GMST from 2012 to present. In our analysis, that surge has been slightly reduced (0.01°C) by 649 

our endpoint adjustment as described in Section 2.2.5. Figure 5b shows relatively good 650 

agreement between LOESS and OLS for overlapping 30- and 60-year trends, while illustrating 651 

the stark contrast between the more variable OLS and smoother LOESS over 15 years. The 652 

extreme OLS change from 1992-2006 (~0.3°C/decade) to 1998-2012 (~0.1°C/decade) is perhaps 653 

the clearest example of “broken” linear trends in the instrumental record. 654 

The IPCC specifically pointed to a 1998-2012 trend between “a third to a half” of the 1951-2012 655 

trend. However as seen in Figure 5c, only HadCRUT4 currently fulfils that criterion. The 15-656 

year OLS trends of the updated versions of the other two AR5 series, NOAA GlobalTemp and 657 

NASA GISTEMP, now lie much closer to the 60-year trend, primarily due to an improved SST 658 
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analysis. Meanwhile the two newer global series, Berkeley Earth and Cowtan-Way, have 659 

virtually identical 15-year and 60-year trends to 2012.  660 

A different and clearer picture emerges with the continuous LOESSpent trends shown in Figure 661 

5d.  The 2012 trough in the 15-year LOESSpent trend of all five series is well above the 60-year 662 

LOESSmd trend, and by 2018 most have returned to or above the 30-year trend.  663 

 664 

 665 

 666 
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 667 
 668 

 669 

This panel shows important differences between the datasets: of the Global_3 series, NASA 670 

GISTEMP’s 15-year trends show the smallest slowdown and strongest recent rise, dipping from 671 

0.21°C/decade in early 2008 to 0.17°C/decade and now back up to 0.24°C/decade, above the 30-672 

year LOESSmd’s 0.19°C/decade. 15-year trends of Berkeley Earth and Cowtan-Way dip lower 673 

and have risen back to 0.21°C  and 0.19°C per decade respectively. These differences can 674 

tentatively be attributed to an acknowledged cool bias in HadSST3 in recent years due to 675 

uncorrected changes in ship measurements, as confirmed by independent satellite and Argo float 676 

data (Karl et al., 2015; Hausfather et al., 2017). Meanwhile the recent HadCRUT4 trend 677 

evolution reflects both coverage bias (Cowtan and Way, 2013) and HadSST3 cool bias. The 678 

release of HadSST4 appears to have mitigated the latter issue and 15-year trends of the three 679 

HadSST-based series should move upward. 680 

 681 

4 Discussion and Conclusions 682 

Our analysis has explored the range of estimates of long-term GMST rise since the late 19th 683 

century in five observational series using two trend estimation methodologies. These estimates 684 

range from 0.94°C [0.80-1.06] (HadCRUT4 with OLS) up to 1.16°C [1.05 – 1.28] (Berkeley 685 

Earth with LOESS). Faced with a similar range of estimates, Vissar et al (2018) proposed that 686 

GMST be estimated as a grand average of all estimates. We recommend a very different 687 

approach.  688 

Vissar et al argue that the spread due to trend method is minor compared to that of choice of 689 

GMST dataset. However, we show that LOESS is a reliable GMST estimator and that the gap 690 

between OLS and LOESS estimates reaches 0.12°C for HadSST-based datasets with good spatial 691 

coverage such as Cowtan-Way over 1880—2018. This is comparable to the largest inter-dataset 692 

OLS difference of 0.13 °C between HadCRUT4 and Berkeley Earth. We have also demonstrated 693 

a clear lack of consistency of OLS in observational series, not only with LOESS, but also with 694 

intra-period estimates and regression-derived values of anthropogenic warming from Haustein et 695 

al (2017). 696 

Furthermore, we validated LOESS against output from the MPI-GE, a large ensemble of a 697 

climate model. A large ensemble allows reliable determination of the forced component of 698 

GMST, and this analysis demonstrated that LOESS consistently has very small bias as an 699 

estimator of forced GMST relative to OLS, except for periods affected strongly by volcanic 700 

eruptions. For applications such as estimating anthropogenic warming or calculation of carbon 701 

Figure 5: Short-term fluctuations versus medium-term trends.  (a) Comparison of LOESS multi-decadal and 

pentadal trends over 1950-2018 with 5-95% uncertainty bands for Cowtan and Way monthly series. (b) Derived 

overlapping Cowtan and Way LOESS 15- and 30-year sub-trends compared to corresponding linear trends.  (c)  

Overlapping OLS linear  15- and 30-year sub-trends derived from five operational GMST series. (d) Same as 

(c), except with overlapping LOESS 15- and 30-year sub-trends. (e-f) Same as (c-d), but with CMIP6 ensemble 

trends added (median with 5-95% spread). 
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budgets, this lower sensitivity to temporary volcanic perturbations in GMST is an advantage. 702 

The MPI-GE results also showed a similar spread of LOESS estimates to the statistical estimates 703 

obtained from the observation-based series, lending further support to LOESS. By contrast, OLS 704 

was consistently biased low when estimating forced GMST relative to preindustrial, and had 705 

substantially larger uncertainty when calculating shorter term GMST. 706 

Whereas Visser et al. combined GMST series, we propose that only those that provide spatially 707 

complete GMST series should be used in the best estimates of GMST. Firstly, global coverage 708 

is self-evidently more representative of global climate change, and secondly the past geographic 709 

extent of data coverage is arbitrary and may change as data rescue efforts digitize more historical 710 

data (Hawkins et al., 2019). While the infilled datasets will also change with the addition of this 711 

data, they should be less sensitive to such changes.  712 

The selection of our Global_3 datasets leads to a substantial discrepancy of 0.12 °C relative to 713 

HadCRUT4 for GMST from 1850-1900 to 2018. The differences since 1951 or 1979 are 0.10 714 

°C and 0.07 °C respectively, i.e. they are smaller in absolute magnitude but larger in °C/decade. 715 

These divergences may grow, as the Global_3 LOESSmd trend is now 0.03°C/decade higher than 716 

HadCRUT4 (0.20 versus 0.17 °C/decade). The recent divergence is likely attributable to bias 717 

coverage in HadCRUT4, as it implicitly assumes that areas without data coverage have the same 718 

mean temperature anomaly as areas with data coverage. By excluding fast-warming areas such as 719 

much of the Arctic, it under-reports recent warming according to independent satellite data and 720 

reanalyses (Dodd et al., 2015; Cowtan et al., 2018a; Susskind et al., 2019).  721 

We also noted that recent SST dataset updates may be important for shorter term GMST 722 

analyses, as the 1990s—2000s saw a transition from ship-based to buoy measurements of SST, 723 

and a change in the average properties of ships that recorded SST. The NOAA and NASA 724 

datasets use ERSST, whose version 4 was independently validated against satellite and Argo 725 

data, plus a buoy only dataset in Hausfather et al. (2017). As ERSST5 is similar to ERSST4 in 726 

recent decades, we judge that it reliably represents short-term SST changes. However, the 727 

Hausfather analysis discovered a slight cooling bias in HadSST3 that should be addressed in 728 

HadSST4 and thereby result in increased short-term GMST estimates.  729 

However, we cannot confirm whether SST updates or changes in data coverage during the pre-730 

World War II (WWII) period will greatly affect the derived OLS-LOESS GMST difference 731 

from the late 19th century or not. The substantial changes in ship-based measurements during 732 

WWII introduce numerous discontinuities that may result in errors in GMST derived between 733 

pre- and post-WWII periods (Cowtan et al., 2018b). Similarly, it is not clear that pre-WWII 734 

sampling biases led to the same cooling bias that occurs in HadCRUT4 under recent warming. 735 

Future data updates may change the linearity across the full period and therefore the LOESS-736 

OLS differences. Despite this, our proposed LOESS method is simple and transparent and may 737 

be quickly updated following any changes to the observation-based GMST series. 738 

To summarize the GMST analysis, we argue strongly in favor of using series that report near-739 

global coverage and use the most up-to-date SST data available. This results in a current best 740 

estimate of warming from 1850—1900 to 2018 of 1.12 °C [1.00 – 1.25]. The fact that we can 741 

present an estimate of warming to 2018 with well-defined uncertainties is a substantial advantage 742 

over the IPCC’s difference of period means approach: for example, the 1850—1900 to 2006—743 
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2015 difference included in the SR15 was effectively years out of date, since it represented 744 

conditions in the middle of the 2006—2015 period. 745 

As a final part of our GMST analysis, we present an update to global near-surface air 746 

temperature, as opposed to the blended estimate of air and water temperatures that is provided by 747 

observational data. Our scaling was derived from CMIP6 climate models and found to be 4.9 748 

[3.0—6.1] %, a much smaller correction than that required if we must also account for biases due 749 

to incomplete geographical coverage, as would be required if datasets like HadCRUT4 were 750 

included in the analysis. Despite our arguments against the use of HadCRUT4, its provision of 751 

an ensemble for the estimation of error introduced due to changing measurement technologies 752 

means that it still has a useful role in such analyses. 753 

We find that our GMST estimate implies a 2019-onwards carbon budget of 275 (405) GtCO for 754 

a 66% (50%) chance to stay below 1.5°C, implying less than a decade to exhaust the budget at 755 

the current rate of emissions. 756 

Our proposed LOESS approach has shown promise in analysis of a large ensemble for 757 

disentangling long-term forced climate changes from internal variability, with caveats for the 758 

years following major volcanic eruptions. It provides a reliable estimate of forced GMST and 759 

may be useful in future for the study of how long term trends and internal variability interact in 760 

observations and in upcoming analysis of the new CMIP6 model outputs. For example, our 761 

preliminary analysis shows that the high ECS CMIP6 models show non-ARMA(1,1) residual 762 

noise structures, in contrast  to the observations. This may be a useful tool for investigating long-763 

term modes of internal variability or changes in temperature driven by multi-decadal forcing 764 

variability, such as that due to anthropogenic aerosol. 765 

Based on the evidence presented here we argue for the adoption of LOESS or a similarly flexible 766 

non-linear trend method such as smoothing spline as the primary trend estimation method for 767 

long-term GMST rise and trend evolution.  768 

 769 

 770 
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