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Abstract: Minerals are information-rich materials that offer researchers a
glimpse into the evolution of planetary bodies. Thus it is important to extract,
analyze, and interpret this abundance of information in order to improve
our understanding of the planetary bodies in our solar system and the role
our planet’s geosphere played in the origin and evolution of life. Over the
past decades, data-driven efforts in mineralogy have seen a gradual increase.
The development and application of data science and analytics methods to
mineralogy, while extremely promising, has also been somewhat ad-hoc in
nature. In order to systematize and synthesize the direction of these efforts, we
introduce the concept of “Mineral Informatics”. Mineral Informatics is the next



frontier for researchers working with mineral data. In this paper, we present
our vision for Mineral Informatics, the X-Informatics underpinnings that led to
its conception, the needs, challenges, opportunities, and future directions. The
intention of this paper is not to create a new specific field or a sub-field as a
separate silo, but to document the needs of researchers studying minerals in
various contexts and fields of study, to demonstrate how the systemization and
increased access to mineralogical data will increase cross- and interdisciplinary
studies, and how data science and informatics methods are a key next step in
integrative mineralogical studies.

Keywords: Minerals; X-Informatics; Data; Data Science; Information; Scientific
Discovery.

1. Introduction

The potential for data-driven methods to make novel, unintuitive,
and groundbreaking discoveries in Earth and planetary science re-
search will only grow as the volume and variety of data increases
with time. Mineralogy, in particular, is ripe for the application of
data-driven methods.. Minerals form as a result of their unique
chemical and physical conditions and, in the process, retain informa-
tion regarding their formation information that offers an opportunity
to study the complex geologic and biologic past of these planetary
bodies (Prabhu et al. 2021a).

Mineralogy has been the subject of scientific curiosity and study for
millennia (Needham 1986; Bandy & Bandy 1955). In addition to
their roles as captivating specimens for collection and study, miner-
als and their ores are essential in the survival and industrialization
of humankind (Murray 1995; Coates 1985). This interest and utility
has led to the characterization and systemization of mineralogy and
mineral occurrence on Earth and other planetary bodies (Dana &
Dana 1895; Hazen & Morrison 2021; Bragg and Bragg 1913; Strunz
& Tennyson 1941; Lafuente et al. 2015; Lehnert et al. 2000). As a
result of this rich history of scientific investigation, vast amounts of
information are available on the occurrence and attributes of miner-
als. These data provide a robust platform for the analysis of more
complex, multidimensional, and larger mineralogical systems; the
integration of heterogeneous data types, linking to data from other
fields of science; and predictive, data-driven scientific exploration -
all of which leads to the answering of complex, multidisciplinary ques-
tions. The potential of data-driven mineralogical research has been
exemplified by important scientific advances in the last decade. Re-
cent discoveries have demonstrated periodicity of mineral formation
and diversification associated with supercontinent assemble (Bradley
2011; Voice et al. 2011; Nance et al. 2014; Hazen et al. 2014), an
association of mineral redox state to the oxidation of Earth’s atmo-
sphere (Liu et al. 2021; Hummer et al. 2022; Large et al. 2022),



and that much of Earth’s mineral inventory is the direct or indirect
result of interactions with water and/or biology (Hazen & Morrison
2021, 2022), as well as the prediction of the number of as-yet undis-
covered mineral species (e.g., Hazen et al. 2015, Hystad et al. 2019;
Hystad et al. 2015), the chemical composition of minerals on Mars
(Morrison et al. 2018 a-c), and the location of undiscovered mineral
deposits (Prabhu et al. 2019; Morrison et al 2022 (in prep)). Min-
eralogy is rapidly entering the data-driven era, tackling previously
unanswerable questions, and demonstrates the need and opportunity
for a symbiotic relationship between the mineralogy and the fields
of data science and informatics.

Data-driven efforts in mineralogy have been gradually increasing in
the past decades and there are some promising studies that have
helped researchers uncover the patterns hidden in the data and have
led to scientific discoveries (Morrison et al 2017; Hazen et al. 2019;
Prabhu et al. 2019; Morrison et al 2020; Hazen & Morrison 2020,
2022; Zhao et al. 2020; Gregory et al. 2019; Boujibar et al. 2021;
Hystad et al. 2021). While still nascent, application of data science
and data analytics methods in mineralogy shows a promising trajec-
tory. The development of these methods and advances in the past
have been somewhat ad-hoc in nature. However, development of
mineral informatics can be guided in a more deliberate and system-
atic way by taking into account the underpinnings from information
theory and data science advances, as exemplified by collaborations
in other fields, including biology, medicine, chemistry, and astron-
omy. We believe this is the start of a new era in mineralogy, where
utilizing data-driven methods to answer mineralogical (and broader
scientific) questions takes center stage.

In this paper, we take a high-level look at our vision for “Mineral
Informatics”, the underpinnings that led to its conception, the needs,
challenges and opportunities for this emerging field of mineral infor-
matics. We also discuss the implications such advances will have on
the field of mineralogy.

Foundation provided by X-informatics

Informatics studies the structure, algorithms, behavior, and interac-
tions of natural and artificial systems that store, process, access and
communicate information (Fox 2011). The term informatics has of-
ten been used in conjunction with the name of a domain/discipline,
for example, Bioinformatics, Geoinformatics, Astroinformatics, and
Cheminformatics. In the past, researchers with expertise in a specific
domain worked on processing and engineering information systems
designed for that domain only. But in the last decade, informat-
ics has gained a much wider visibility across a range of disciplines
(Prabhu 2018). This wider visibility is in large part due to successful



efforts at systematizing the core (i.e., discipline neutral) aspects of
informatics, for example, use-cases, human-centered design, iterative
approaches, information models etc. (Fox 2020). The core methods
of informatics are used as a foundation to explore raw data and ex-
tract information from the data that lead to scientific discoveries.
As the volume and complexity of the data increase, so does the need
for utilizing the solid foundations provided by informatics methods
and combining them with needs of the specific domain to pursue
data-driven scientific discoveries.

Mineral informatics is a nascent approach compared to fields like
Bioinformatics, Medical Informatics, and Geoinformatics that have
been pursued for decades (Collen 1986; Sinha 2006; Fox et al. 2006;
Gauthier 2019). The intention of this paper is not to create a new
specific field or a sub-field as a separate silo, but to think of and doc-
ument the needs of researchers studying minerals in various contexts
and how data science and informatics methods are a key next step
in mineralogical studies. We also need to learn from the successes
and failures of more mature domains that have applied the informat-
ics approach. Lastly, a very important factor to keep in mind is the
truly interdisciplinary and important questions that can be explored
by studying minerals. So, while the term “mineral informatics” may
seem like creating a new subclass of geoinformatics, we assert that
we are instead tying in various disciplines that use minerals as a key
part of the pursuit for answers to big science questions.

A methodology for mineral informatics explorations

In this paper, we present a general methodology for mineral informat-
ics (see Figure 1). This methodology, adapted from Fox & McGuin-
ness (2008), includes all the steps typically followed in a data-driven
scientific exploration. This approach was created for mineral infor-
matics but, as is the case with many data science and informatics
approaches, is transferable and applicable to other domains.

Most informatics explorations start in one of two ways: 1) Scientists
have a research question they want to answer, or 2) scientists have
data ready to be explored. In the second case, we perform prelim-
inary data exploration, which helps generate new hypotheses and
research questions based on interesting trends and anomalies in the
data.

Once a specific research question has been selected for scientific ex-
ploration, we start by dividing the large problem into smaller more
tractable parts. Next, we iteratively develop use cases for every one
of these parts. A “use case” is a documented collection of possible
sequences of actions and interactions between a system and its users
in pursuit of a particular goal. Identification and development of use



cases helps to define the needs (e.g., data, personnel, infrastructure)
for this data-driven approach. The next steps in the methodology
includes creating (or assigning roles to an already established) an
interdisciplinary team to conduct the data-driven research.

Next, we inventory the preliminary dataset and/or existing mineral
data resources (See section 5a) to determine if they are what is
necessary for the desired exploration. In some cases, we need to
collect, compile, and extract data from other repositories or sources
like scientific literature, websites, digital PDFs, and experimental
results. We then create an information model to better understand
and mediate data from heterogeneous sources and data types, which
provides a holistic picture of the relationships between the various
data sources, types, and attributes. The information model allows
us to extract the datasets and data attributes most relevant to an-
swering the desired research question. Note that this step differs
from the statistical and machine learning approaches used for fea-
ture selection.

We then begin applying data analytics methods (i.e., data visual-
ization as well as descriptive, predictive, and prescriptive analysis)
to identify and explore patterns and anomalies seen in the data. A
team of domain and data scientists iteratively examine the results of
the analytics methods and use their respective expertise to (1) pro-
vide interpretations and/or insight, and/or (2) recommend changes
to the analysis. The data analysis and scientific interpretation are
usually done over multiple iterations with small modifications to the
approach, algorithms, and/or code to explore different aspects of the
data.

If scientists come to an agreement that parts of the analysis would
be widely used in the larger community, they can choose to gen-
eralize and adapt their work into a system, technology, or infras-
tructure. This development can include creation of tools, code snip-
pets, reusable workflows, R packages, Python libraries, and other
resources. Irrespective of whether there is a decision to create a
general tool, technology, or package, we recommended using rapid
prototyping coding practices! (Gordon & Bieman 1995) for data sci-
ence and informatics activities.

After obtaining the desired results from our data analysis, it is impor-
tant to disseminate and effectively communicate the research prod-
ucts generated by mineral informatics explorations. Research prod-
ucts can include datasets, code, scientific literature, executable work-
flows, etc. Establishing best practices for disseminating research
products is an ongoing effort, especially in the geoscience commu-
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nity. Datasets can be published as part of a data paper, or be
assigned their own DOIs by data repositories like Zenodo, Dryad,
Figshare, or Dataverse (Assante et al. 2016). Existing mineral data
repositories like the EarthChem Library (ECL), Astromat, and the
Open Data Repository (ODR) (See section 5a) also provide DOIs
for datasets deposited by researchers. Additionally, some journals
host data associated with their publications. Similar to releasing
data used in scientific exploration, code can be maintained and re-
leased in many ways, including Github (with a persistent identifier
pointing to the repository), figshare, or Zenodo. Saving executable
code for an experiment in an interactive environment like Jupyter
or R notebooks adds to the reproducibility of the code and of the
scientific workflow in general (Prabhu & Fox 2021). Dissemination
of scientific advances through scientific publications has been prac-
ticed for more than 300 years (Fyfe et al. 2015). In addition to
journal publications, conference proceedings, preprint servers (such
as arXiv, ESSOAr, and EarthArXiv), and even press releases asso-
ciated with publications have considerably improved the landscape
of disseminating research products.

The final stage of our informatics methodology follows the sharing of
the research products. If researchers follow FAIR and Open Science
practices (Wilkinson et al. 2016; Stall et al. 2019; Ramachandran
et al. 2020) not only for the dissemination of their scientific results,
but also during the use case development, information modeling, and
analysis stages, then it becomes easier to evolve, improve, redesign,
or adapt your work. Ongoing research and recommendations on
designing FAIR and Open scientific workflows will help improve the
methodology of data-driven exploration (e.g., Prabhu & Fox 2021;
Kluyver et al 2016; Sandve et al. 2013).

It is important to evaluate the outcomes at almost every stage of the
informatics methodology. The evaluation method or metric used at
each stage will be significantly different, but it is important to stop
at the end of every stage and assess not only the progress made, but
also lessons learnt for future iterations in the same exploration or
the beginning of a different exploration. For example, a data col-
lection/resource may be evaluated based on a set of quality criteria
(e.g., Prabhu et al. 2021a), but results from the data analysis may
need to use quantitative metrics to evaluate results from a descrip-
tive, prescriptive, or predictive model (e.g., Statnikov et al. 2008;
Tomasev & Radovanovic 2016; Hossin & Sulaiman 2015; Zhou et al.
2021). Established evaluation methods exist for each stage of the
informatics methodology, and we recommend following those estab-
lished best practices and standards set by the scientific community.
Issues found during evaluation will need to be documented in the
use case and thus improve the data-driven exploration during the



next iteration or redesign of the approach.
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[Figure 1: Mineral Informatics Methodology]

Caption: Mineral informatics methodology adapted from
Semantic Web methodology by Fox & McGuinness (2008).

1. Challenges and opportunities in Mineral Informatics

Mineral informatics methods not only systematize the mineral data
landscape, but also provide a path to answering some of the big,
interdisciplinary scientific questions. Figure 2 gives an example of
the domains influenced by the research questions being broached
with mineral informatics methods.

Figure 2: Interdisciplinary research questions related where mineral
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informatics play a key role.

Major scientific questions that can be addressed with mineral
informatics

(a) Can complex chemical and physical attributes of
mineral specimens predict paragenetic modes and
function as proxies for biosignatures?

Minerals record the physical, chemical, and, in some cases, biolog-
ical conditions of their paragenetic modes (i.e., formational and al-
teration environments). This information is stored in the myriad
attributes of mineral specimens, including major, minor, and trace
elements, isotopic ratios, texture, and grain size. Therefore, condi-
tions of mineralization, including whether or not there was biological
input, can be characterized with cluster analysis performed on the
various properties of mineral samples (Gregory et al. 2019). Fur-
thermore, robust classification schemes can be developed from the
clustering models that will enable prediction not only of the geologic
environment of formation but also of any biogenic origins (Hazen
2019). Therefore, this work will deconvolve our understanding of
the minerals that formed in environments influenced by life from
those that formed under strictly abiotic conditions.

Is a planet’s diversity and statistical distribution of min-
eral species influenced by the presence of life?



Life creates unique niches of chemical disequilibrium for minerals
to exploit. These processes likely drove a significant fraction of the
mineral diversity we see on Earth today, influencing the spatial and
temporal patterns of mineral distribution (Hazen et al. 2018; Mor-
rison et al. 2020; Hazen & Morrison 2022). These trends on Earth
and other planetary bodies can be modeled, compared, and used
to develop statistical biosignatures and abiosignatures regularizing
the diversity and distribution of mineral species across a planetary
body (Hystad et al. 2019) and provide models for planetary-scale
mineralogical biosignatures of inhabited worlds.

Can we predict mineral occurrence on other planets
given limited planetary data?

From orbital infrared spectroscopy, we have obtained global or
near-global datasets of the mineralogy of other terrestrial worlds,
including Mars, Mercury, Vesta, and Ceres (Murchie et al. 2009;
de Sanctis et al. 2012; Ehlmann & Ewards 2014; Namur & Charlier 2017;
Prettyman et al. 2019). Informatics methods, such as association
analysis, can be used to predict the existence of minerals that cannot
be detected from space. By understanding mineral affinities for
assemblages, localities, and geochemical parameters, we may be able
to use a sparse mineralogical dataset to anticipate future discoveries
(Prabhu et al. 2019), but first a robust small/sparse-data frame-
work must be developed (see Section 6a). Enhancing predictive
capabilities will help to prioritize landing sites for future landers
and rovers with broad science goals that relate to mineralogy, like
understanding planetary history or searching for signs of life. Such
predictions would be strategically important because interplanetary
missions cost hundreds of millions to billions of dollars and take
years to decades to develop, build, and launch.

We also have geochemical indicators of the mineralogy of the ice-
covered ocean world Enceladus from plume flybys and E-ring anal-
yses performed by the Cassini spacecraft (Postberg et al. 2008;
Waite et al. 2017; Glein & Waite 2020). Mineral informatics meth-
ods can help predict the mineral composition of ice-covered ocean
worlds, whose mineralogy is planetologically and perhaps astrobio-
logically relevant but cannot be accessed directly in the near future.

Co-occurrence of minerals and life: do minerals enable
or shape the metabolic landscape?

Minerals play a key role in biological redox transformations. Mi-
croorganisms, (e.g., of the genus Geobacter) are able to use metals in
their environment to power their metabolisms (Childers et al. 2002).
Several studies have suggested deep similarities between miner-
als and metalloenzymes (Nitschke et al. 2013; Zhao et al. 2020;



https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JE003342
https://www.science.org/doi/full/10.1126/science.1219270
https://www.annualreviews.org/doi/abs/10.1146/annurev-earth-060313-055024
https://www.nature.com/articles/ngeo2860
https://www.sciencedirect.com/science/article/pii/S0019103517308643
https://ui.adsabs.harvard.edu/abs/2019AGUFMEP23D2286P/abstract
https://www.science.org/doi/full/10.1126/science.aai8703
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL085885
https://www.nature.com/articles/416767a
https://www.sciencedirect.com/science/article/pii/S0005272813000340
https://www.mdpi.com/2075-1729/10/12/338

McGuinness et al. 2022 (In Review)). Thus, minerals may play an
important role in shaping the metabolic landscape of ecosystems by
providing electron donors/acceptors or raw materials (Novikov &
Copley 2013) that organisms assimilate to create metalloenzymes.
Mineral informatics methods may be able to elucidate connections
between minerals and biology. If minerals are found to be critical
in shaping which metabolisms occur/do not occur in certain
environments, this may allow for the prediction of metabolisms
in terrestrial and extraterrestrial environments for which we have
mineralogical data.

What role did minerals play in the origin of life?

Several studies have posited that minerals played a critical role
at the emergence of life on Earth, whether by influencing the
homochirality of organic molecules or performing redox transfor-
mations and carbon fixation (Hazen & Scholl 2003; Hazen 2005;
Hazen & Sverjensky 2010; Nitschke et al. 2013; Russell et al. 2018).
Others have suggested that clays and other minerals with lay-
ered structures may have been the first self-replicating entities
(Cairns-Smith & Hartmann 1986; Cairns-Smith 1990; Greenwell &
Coveney, 2006; Brack 2013), though these hypotheses have not been
confirmed experimentally (Bullard et al., 2007; Krivovichev et al.,
2012). Mineral informatics, combined with phylogenetics, geology,
and laboratory experiments, could be informative for deducing the
likely role(s) that minerals played at the origin of life in Earth’s deep
past. If certain minerals are found to be uniquely critical to the
emergence of life on Earth, this would have profound implications
for the emergence of life on other planetary bodies where those
minerals may or may not occur. The origin of life from a non-living
substance involves considerable jump in the informational (static)
complexity of the underlying molecular structures, which should be
taken into account in any possible scenario of molecular (r)evolution
that led to the appearance of self-replicating living entities. The
sudden rise in structural complexity corresponds to the drop
in configurational entropy (Krivovichev, 2016). Can the (local)
entropic changes associated with the origin of life be measured
quantitatively and understood using mineral informatics data?

Can mineral networks serve as a planetary-scale biosig-
nature?

Roughly half of all known minerals are mediated by biology and 34%
are exclusively biotic (Hazen & Morrison 2022; Hazen et al. 2021a;
Morrison et al. 2021). Many of these minerals are formed when
life opens up a new compositional space for the planet, such as the
Great Oxidation Event (Hazen et al. 2008; Sverjensky & Lee 2010).
However, some of this biogenic chemical space may be abiotically
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accessed on other worlds. Abundant atmospheric O,, for instance,
may be abiotically generated by various star-planet interactions
(Meadows et al. 2018 and references therein). Earth and planetary
mineral network analysis may reveal whether mineral networks of
environmental, biological, geochemical, and mineralogical attributes
can distinguish living from nonliving worlds.

Can mineral networks serve as a proxy for the extent
of planetary evolution?

Mineralogical evolution occurs when processes create new
pressure—temperature—compositional regimes where solids can
form (Hazen et al. 2008; Cleland et al. 2021; Hazen et al. 2021a;
Hazen & Morrison 2020). Each stage of mineral evolution expands
the network of mineralogy through the introduction of new minerals,
localities, and paragenetic modes. The network of martian mineral-
ogy, therefore, is thought to be a subset of the network of Earth’s
mineralogy, due to the halting or slowing of mineral-generating
geological processes on Mars. One can consider Mars and Earth
to be two points along a spectrum of terrestrial worlds whose
geological (and biological) activities have differed in temporal
extent. A hypothetical world where plate tectonics was sustained
for ~1 Gyr but then ceased should have a mineral network that
surpasses Mars’s mineral diversity, but is still a subset of Earth’s.
In this way, mineral informatics helps us interpret the extent of a
planet’s mineralogical network as a record of ancient and extinct
processes, revealing a planet’s geological history.

When considering exoplanetary systems where element ratios (e.g.,
C:0 or Mg:Si) differ greatly from those of our own solar system, this
linear spectrum on which Mars and Earth lie becomes a multidimen-
sional phase space (Unterborn et al. 2016; Unterborn and Panero
2019; Hinkel and Unterborn 2018; Putrika et al. 2021). Understand-
ing mineral networks from an informatics point of view may help
to predict how planetary mineralogy might evolve in vastly different
geochemical contexts.

Did the emergence and evolution of life play a role in
the increase of average mineral structural complexity
on Earth through deep time?

It has been shown that complexity of Earth’s mineral kingdom in-
creased gradually during planetary evolution (Krivovichev et al.,
2018), but it is unclear whether this trend is related to the increase
in complexity in the course of biological evolution. The average
structural complexity of minerals on the abiotic moon, for example,
does not follow the same trend of increasing complexity through
time. Minerals are relatively less complex than biological organisms,
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both in terms of their static (Krivovichev 2013, 2015) and functional
(Hazen et al., 2007) complexities. However, Since life and the min-
eral kingdom co-evolved, the character of the evolution of mineral
complexity on Earth (Krivovichev et al., 2018) may have been influ-
enced by biological activity, and is thereby a potential bio-signature.

Successful Use Cases in Mineral Informatics

(a) The evolution of mineralizing environments, as char-
acterized by their myriad, complex attributes

Mineralization, and associated formational environments, vary sig-
nificantly across Earth and neighboring planetary bodies, as well
as throughout the different historical stages of planetary evolution.
These stages and environmental parameters dictate the types of min-
eralization that occur and, likewise, leave their mark in the complex
chemical and physical attributes of the resulting mineral specimens.
Understanding the changing characteristics of mineralizing environ-
ments spatially and temporally across our planetary systems requires
the examination of huge volumes of mineralogical information. The
beginning steps of this work included a survey of all formational en-
vironments of ~5700 known mineral species, resulting in a compiled
dataset ripe for exploration (Hazen and Morrison 2022; Hazen et
al., 2022). Initial exploration has led to the discovery that (1) 80%
of all mineral species formed through processes that involved water;
(2) 50% of minerals formed through processes directly or indirectly
related to biology, with 34% of minerals forming exclusively through
biotic processes; (3) 42% of minerals contain one or more rare ele-
ments (e.g., REE, PGE, As, Mo, Sn), elements which all together
represent only 0.01% of crustal atoms; and (4) most minerals have
only one (59%) or two (24%) modes of formation, with a few notable
exceptions, including pyrite with the most modes of formation at 21
(Hazen and Morrison 2022).

An additional component of this work involves analyzing those myr-
iad attributes of mineral specimens via cluster analysis to relate their
complex characteristics to their modes of formation, thereby deter-
mining the natural kind clustering of these mineral systems. There
are many such projects underway, including those examining the for-
mation of pyrite (Gregory et al. 2019; Zhang et al., 2019), garnet
minerals (Chiama et al., 2020; 2022a; 2022b(in prep) ), spinel oxide
phases (Hindrichs et al., 2022), and presolar SiC (Boujibar et al.,
2021; Hystad et al. 2021). Boujibar et al. (2021) performed cluster
analysis on a range of isotopic data from presolar SiC grains in order
to examine and compare the origins of these materials. This study
made several exciting discoveries - while the clustering model agreed
with previously defined grain types and origins in several aspects,
there were notable and important deviations, including: a division
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of one grain type into three distinct types based on varying metal-
licity of the parent star, the arbitrary nature of certain divisions in
systems that are continuous rather than discrete, the observation
that asymptotic giant branch (AGB) stars with narrow ranges of
mass and metallicity tend to have enhanced production of SiC, and
enrichment in N and 26Al that is not explained by existing AGB
models.

Next steps: This exploration of mineralizing environments and their
characteristics not only provides an opportunity to integrate data
from heterogeneous sources and types (e.g., X-ray diffraction, elec-
tron microprobe analysis, inductively coupled plasma mass spec-
trometry), but also to link data from different fields of science to bet-
ter understand mineral paragenesis. Handling heterogeneous data
is a challenge (Reichman et al. 2011; Wang 2017) and many re-
searchers have been actively working on using heterogeneous data
for their analysis by creating methods, approaches, and pipelines to
seamlessly clean, integrate, process, and analyze data (Wang 2017;
Zhang et al. 2018; Beneventano & Bergamaschi 2004; Wiederhold
1999; Nazabal 2020). Additionally, the exploration conducted by
Boujibar et al. (2021), provided another use case to test out ma-
chine learning methods on sparse data sets, thereby aiding in the
eventual development of a sparse data framework (see Section 5a for
more details).

Mineral association analysis

Prediction of the locations of as yet undiscovered mineral deposits
has long been a point of great scientific and economic interest. Min-
eralization and mineral co-occurrence across the varied geologic ter-
rains of Earth and other planetary bodies has a level of complexity
that makes prediction of mineral locations, or even the mineral inven-
tory at a locality of interest, difficult. However, recent advances in
the mineral locality data resources (e.g., mindat.org and the Mineral
Evolution Database) have provided an opportunity to begin tack-
ling this tough problem with machine learning. Association analysis
can be used to create a recommender system (Burke et al. 2011;
Shah et al. 2017) that generates association rules based on known
co-occurrences and these rules can be queried to determine the like-
lihood of currently unknown co-occurrences. In the case of minerals,
we can query our mineral association rules to predict: A) previously
unknown locations of a mineral species, B) previously unknown loca-
tions of mineral assemblages, including those that represent analog
environments for study, and C) the mineral inventory at a locality of
scientific interest. The mindat.org team have conducted preliminary
explorations using pairwise associations to predict the occurrence of
certain minerals on Earth.
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Next Steps: Mineral association analysis provides new types of data
problems. We need to modify the association analysis algorithms
to better handle larger mineral occurrence datasets. For example,
our models can currently handle only 2,473 minerals occurring in
87,306 localities (Prabhu et al. 2019; Morrison et al. 2022 (in prep)),
but there are at present ~5760 mineral species in the International
Mineralogical Association’s (IMA) list of approved mineral species
(https://rruff.info/ima/), which occur in more than 375,000 locali-
ties (https://www.mindat.org/stats.php). In addition to improving
the scalability of association analysis methods, we also need to work
on the dimensionality and reducing the minimum support of our
method. For example, our method currently develops rules contain-
ing 4 minerals at a time, but there are localities with more than
50 coexisting minerals. Therefore, an important next step in our
research is to increase the dimensionality of the association analysis
method to handle more complex mineral assemblages. We also need
to adapt our methods to enable inclusion of rarer mineral species
that are known to occur in 17 or fewer localities (Prabhu et al. 2019).
Lastly, we are currently developing a new approach to evaluate as-
sociation rule mining methods (Prabhu et al. 2021b).

Martian crystal chemistry

The scientific payload onboard the NASA Mars Science Laboratory
(MSL) rover, Curiosity, is the one of the most advanced instrument
suites ever landed on another planet. Part of this payload is the
CheMin X-ray diffraction (XRD) instrument, which is used to char-
acterize the mineralogy of rock and soil samples. CheMin is capable
of identifying mineral phases present in samples, as well as their
abundances and, for phases with an abundance 1-3 wt %, their
unit-cell parameters. While there are instruments that analyze the
bulk composition of martian samples, there is no instrument that
directly measures the chemical composition of these mineral phases.
However, in compiling data resources on mineral unit-cell parameters
and compositions measured on Earth, the CheMin XRD patterns
and resulting mineralogical data are used to predict the composition
of the mineral phases observed on the martian surface (Morrison et
al. 2018a-b).

These initial studies, as those predating it, used unit-cell parame-
ters to predict mineral composition in chemically limited systems,
generally 2- or 3-element systems such as Fe-Mg olivine or Mg-Fe-
Ca pyroxene (Morrison et al. 2018a-b). This limitation was due to
the complexity of the compositional and structural parameter space
when for or more elements are considered together. One way to
develop a model that accounts for the complexity associated with
multi-component systems and predicts the chemical composition of
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crystalline phases based on their crystallographic parameters is by
using Label Distribution Learning (LDL) (Geng et al. 2013, 2014;
Geng 2016). LDL is a machine learning algorithm originally created
for facial recognition applications. When the approach was adapted
for application to crystallographic and chemical parameters, it re-
sulted in a model that accurately predicted the multi-component
chemical compositions (up to 12 elements, in some mineral systems)
of samples based solely on their unit-cell parameters (Morrison et al.
2018c¢). This crystal-chemical method has expanded the capability
of XRD on spacecraft to that of a powerful chemical analysis tool,
such as an electron microprobe, and has dramatically deepened our
understanding of the geologic history of Mars.

Next steps: This exploration was the initial inspiration that moti-
vated us to create a framework for small and sparse data (See section
6.a. for more details). In addition to our work developing a frame-
work for small and sparse data, we will also need to develop methods
to evaluate the accuracy of predictions made by our data models.
This evaluation will attempt to address sources of uncertainty and
how that affects our predictions. The LDL evaluation method be-
ing developed will address uncertainty of measurement (instrument
errors), uncertainty from sampling (various sampling strategies to
train predictive models), and most interestingly, scope compliance
(Klas 2018) of the LDL method.

Machine Learning Majorite Barometer

Diamond-hosted majoritic garnet inclusions provide important in-
sights in processes that occur in Earth’s deep mantle. Majoritic
garnets provide the most accurate estimates for diamond formation
pressures because laboratory experiments have shown that garnet
chemistry varies as a function of pressure (Thomson et al. 2021;
Akaogi & Akimoto 1977; Irifune 1987; Collerson et al., 2010; Wi-
jbrans et al., 2016; Beyer et al., 2017). Thomson et al. (2021)
show that none of the available barometers in the literature reliably
reproduce the pressures of experimentally synthesized majoritic gar-
net over the entire pressure-temperature-composition space inves-
tigated. Hence, they developed a barometer built using machine
learning algorithms (specifically random forest regression) and ex-
perimental training data. This machine learning approach, tested
with various cross-validation methods, produces a barometer with a
much improved fit to the experimental data, especially at the highest
pressures and at extremes of composition space, and thus provides
more reliable estimates of formation pressures of diamond-hosted
majoritic inclusions. Applying the machine learning barometer to
the global database of diamond-hosted inclusions reveals that their
formation occurs over specific depth intervals that can be related to
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melting and decarbonation of subducted oceanic crust.

Next Steps: While the machine learning approach improved the fit
to the available experimental data, it also revealed regions in pres-
sure, temperature, and most critically, composition space where the
experimental data set is sparse. Because many of the mineral in-
clusions have compositions lying near or within sparse data regions,
uncertainty remains as to whether the barometer is accurately cap-
turing their pressure (and depth) of origin. Experiments can now be
targeted to these specific P-T-X regimes for an even more improved
barometer. Machine learning methods also can be used to predict the
compositional variables that correlate most strongly with changes
in pressure, leading to an improved crystal chemical and thermo-
dynamic understanding of pressure-sensitive substitutions in garnet.
These methods can also be applied to other mineral thermometers
and barometers where large experimental datasets are fitted to ex-
tract thermodynamic solution parameters.

Comparison of mineral and protein metal clusters

Understanding the evolutionary stages of biology on a geological
timescale is hampered by the propensity of organic matter to degrade
within thousands of years without leaving physical fossil records. To
understand how life evolved over the course of billions of years, proxy
data are required.

At least five observations suggest that minerals can act as a source of
proxy data from which to infer how biology evolved: 1) biology and
geology are intimately connected, for instance, cellular organisms
excrete minerals as metabolic end products (hazenite; Yang et al.
2011; greigite; Gorlas et al. 2018) and cellular organisms transmit
electrons to and from minerals (Shi et. al. 2016), 2) cellular organ-
isms and minerals use transition metals (Fe, Mn, Co, Mo, Cu, V, W,
Ni) to perform electron transfer reactions, 3) mineral surfaces are hy-
pothesized and shown to be capable of prebiotic reactions similar to
those that extant proteins perform (Wachtershauser 1988, Novikov
& Copley 2013), 4) minerals are similar to the rings of a tree in that
they provide information (e.g., temperature, humidity, etc.) about
the environment of formation, and 5) metal cluster structures of
extant proteins were observed to be so similar to the structure of
bulk mineral metal clusters as to be considered vestiges of minerals
that were co-opted and assimilated into biological systems (Russell
& Hall 1997, Nitschke et al. 2013, Zhao et al. 2020).

Access to large mineral and protein structure databases allows the
potential to understand how mineral and protein metal clusters are
connected. Connecting the mineral world with biology will allow
a deeper understanding of how geology and biology co-evolved. Di-
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rectly quantifying metal cluster similarity between minerals and pro-
teins is a challenge due to comparing the finite protein cluster to a
periodic lattice of a mineral. Solutions using graph-based methods
have been proposed (Zhao et al. 2020; McGuinness et al. 2022 (in
review)). Each solution compared subgraphs of mineral and protein
metal clusters, however without including metal coordination, and
mineral dimensionality (2D-layer vs 3D lattice) metal clusters were
quantified as being highly similar (Zhao et al. 2020). Subsequent
studies, building off the quantitative pioneering work of Zhao et al.,
included these chemically important characteristics and found FeS
minerals and protein were significantly less similar (McGuinness et
al. 2022 (in review)) than previously proposed (Russell & Hall 1997,
Nitschke et al. 2013) Even though McGuinness et al. 2022 show that
FeS mineral lattices and protein metal clusters are not structurally
similar, this method has not been applied to other metal types such
as Ni or Cu. Applying the method developed by McGuinness et al.
2022 to additional metal types may help understand the extent to
which proteins and minerals co-evolved as cellular metabolism and
minerals became more complex (Moore et al. 2017; Krivovichev et
al. 2018).

Next Steps: An additional step towards a potentially more clear
understanding of how minerals and proteins are related is to com-
pare mineral surface and protein metal cluster structures. Mineral
surfaces expose the chemically active components that may have cat-
alyzed biologically relevant products under hydrothermal conditions
on early Earth (Novikov & Copley 2013). Comparing the surface
properties of minerals to the chemical properties of protein metal
clusters might elucidate the extent to which minerals acted as prim-
itive enzymes at the dawn of life. Did biology co-opt the chemical
configuration of the chemically active surface of minerals to repro-
duce the reactions that were possible abiotically? Or did biology
incorporate and reconfigure metal building blocks (e.g., 2Fe2S) to
meet growing cellular needs? Answering these questions is challeng-
ing because mineral surfaces are complex, subject to relaxation, are
chemically active, display complexly irregular surface topologies, and
are affected by many solution conditions (pH, salinity, temperature,
etc.) Alternatively, there also exists the possibility that protein
metal clusters do not bear any significant resemblance to miner-
als (neither surface, nor lattice structure), suggesting an alternative
pathway and relationship between mineralogy and biology in which
biology acts independently, only relying on minerals for the feedstock
(i.e., metals) to nucleate the information-rich systems that remain
far from equilibrium.

Mineral Information Systems
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(a) A non-exhaustive list of open access mineral data resources

The mineral data resources we have chosen to highlight below are
open and among the most widely used in the community. There are
many other useful and important mineral data resources that are
not yet available as open resources.

1. International Mineralogical Association (IMA) list of
approved minerals (https://rruff.info/ima/) - a searchable
database of mineral species information, including chemical
formula, unit-cell parameters, paragenetic modes, and links to
other important mineralogical data resources (e.g., American
Mineralogist Crystal Structure Database, mindat.org, Mineral
Evolution Database, Handbook of Mineralogy)

2. The RRUFF Project (https://rruff.info/) - a mineral library
and database of chemical, spectral, and diffraction data for min-
eral species (Lafuente et al. 2015).

3. The Mineral Evolution Database (MED; https://rruff.info/Evolution/)
- a database of mineral locality and age information, with
~200,000 species/locality/age records extracted primarily from

scientific literature and mindat.org. (Golden et al. 2016;
Golden 2019)

4. The American Mineralogist Crystal Structure Database
(AMCSD; http://rruff.geo.arizona.edu/AMS/amcsd.php) - a
crystal structure database that includes every structure
published in the American Mineralogist, The Canadian Min-
eralogist, Furopean Journal of Mineralogy, and Physics and
Chemistry of Minerals, as well as selected datasets from other
journals.

5. The Handbook of Mineralogy - a five volume set with
each of the 4988 pages dedicated to a mineral species descrip-
tion, with information such as crystallographic and physical
attributes, microprobe chemical analyses, paragenetic mode
and locality information, and select references.

6. Mindat.org - the world’s largest open database of minerals,
rocks, meteorites and the localities from which they were found.?
7. Mineral Properties Database (MPD; https://odr.io/MPD)

- a database of various mineral attributes including age, color,
redox state, structural complexity, and method of discovery.

8. Evolutionary System of Mineralogy Database (ESMD;
https://odr.io/esmd) - a database containing measured geo-
chemical and physical characteristics of mineral samples,

2https://www.mindat.org/
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including major, minor, trace elements as well as isotopic ratios.
(Chiama et al. 2022a)

The CheMin Database (https://odr.io/chemin) - a database
containing the X-ray diffraction data from martian rock and soil
samples analyzed by the CheMin instrument onboard the NASA
Mars Science Laboratory.

The Astromaterials Data System (AstroMat; https://www.astromat.org/)
- a data infrastructure that stores, curates, and provides access

to laboratory data acquired on samples curated in the NASA

Johnson Space Center Astromaterials Collection, including the

Apollo lunar samples and the Antarctic meteorite collection

(Lehnert et al. 2019).

EarthChem (https://earthchem.org/) - a data system provid-
ing open data services to the geochemical, petrological, miner-
alogical, and related communities, including data preservation,
discovery, access, and visualization.

GEOROC (Geochemistry of Rocks of the Oceans and Conti-
nents; http://georoc.mpch-mainz.gwdg.de/georoc/) - a global
geochemical database containing published chemical and iso-
topic data as well as extensive metadata for rocks, minerals and
melt/fluid inclusions.

MetPetDB (https://tw.rpi.edu/project/MetPetDB) - a rela-
tional database and repository for global geochemical data on
and images collected from metamorphic rocks from the earth’s
crust.

The Planetary Data System (PDS; https://pds.nasa.gov/)
- a long-term archive of digital data products returned from
NASA’s planetary missions, and from other kinds of flight
and ground-based data acquisitions, including laboratory
experiments.

Mineral RI (https://odr.io/mineralRI): a database containing
the refractive indices minerals and synthetic compounds. (Shan-
non et al. 2017).

Mineral Information Models

The global research community of mineralogy has made impressive
progress on information models for database construction and data
sharing in the past decades. From the point of view of data manage-
ment, a good information model should be correct, complete, and
consistent. An effective way for information modeling in real-world
practice is to follow or adapt existing community agreements or stan-
dards on mineralogy, such as those on the physical, chemical, and
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biological characteristics of minerals. For instance, the Database of
Mineral Properties (https://rruff.info/ima/) maintained by the In-
ternational Mineralogical Association (IMA) keeps an up-to-date list
of mineral species. The main components in the information model
include mineral name, chemistry, mineral groups, origins, parage-
netic mode, IMA status, relevant references, and links to external
sources such as mindat.org, Google Images, and Wikipedia.

As open data and data-driven studies are increasingly accepted in
the geoscience community, many databases in the field of mineralogy
also increase the visibility of their information model and build ma-
chine interfaces for data query, access, and download. For instance,
the RRUFF database (https://rruff.info) has integrated records of
Raman spectra, X-ray diffraction, and chemistry data for miner-
als. The user interface enables data query through mineral name
and chemistry includes/excludes. Interested users can also contact
the database manager for batch data download and sharing. Min-
dat.org (https://www.mindat.org) is another widely used database
in the field of mineralogy. Its construction and maintenance follow
a crowd-sourcing style. Besides the physical and chemical attributes
of mineral species, a unique attribute on mindat.org is a comprehen-
sive list of the localities where that mineral species has been found.
In the past years, many research activities benefited from the open
data shared by mindat.org. As each of those open databases has its
own focus and information model, scientists in large-scale research
activities often need to collect data from multiple sources. Recently,
researchers in geoinformatics and data science also discussed the
need for a more comprehensive mineral information model to docu-
ment the extensive facets of mineral data, such as the global earth
mineral inventory (GEMI) proposed by Prabhu et al. (2021a). Com-
plementing these efforts are initiatives using semantic technologies
to build knowledge graphs for mineral species, as a preparation to ex-
plore new ways for annotating and discovering mineral data shared
on the Internet (Brodaric and Richard, 2020).

The FAIR (findable, accessible, interoperable, and accessible) data
principles (Wilkinson et al. 2016) are now widely accepted in geo-
science. Information models are an important part of FAIR data.
More community efforts, such as through IMA, the Mineralogical So-
ciety of America (MSA), and the Geoinformation Committee of the
International Union of Geological Sciences (IUGS-CGI), are needed
to promote the quality and usefulness of the model outputs.

Informatics Innovations Needed for Mineralogy.

The previous sections of this paper (and many other informatics
papers focusing on various domains) have clearly emphasized the
value that informatics methods provide to their respective domains
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(Lord et al. 2004; Goble & Stevens 2008; Heberling et al. 2021;
Collen 1986; Gauthier et al. 2019). However, a point often missed
or overlooked in scientific literature discussions is that innovations in
data science and informatics are usually driven by diverse datasets
available in various domains and the needs of the use-cases utilizing
those datasets. In this section we discuss some of the interesting data
science challenges we observed while working with mineral data to
try to answer some of the unanswered questions in geoscience.

Mineral data provide interesting and unique problems that limit
the usability of existing machine learning methods meant to extract
meaningful information from data.

Small and Sparse Data Framework:

It has been widely publicized that we live in the “Age of Big Data”
(Lohr 2012; Wise & Shaffer 2015; Yu 2016; Wachter 2019; Borgman
et al. 2008), and understandably there has been a lot of research
done into scaling-up algorithms, methods, software, and hardware
needed to enable the exploration and use of very large datasets to
gain valuable information. This focus has led to the creation and
constant improvement of “big data frameworks”, which provide a
roadmap on how to work with large datasets. However, mineralogy,
along with many other fields in Earth and planetary sciences, provide
a plethora of small and sparse datasets that do not fall into the
realm of big data. These datasets therefore require the application
of methodologies that lie outside the focus of traditional big data
researchers. The next major hurdle for mineral informatics (and
geoinformatics in general) is to work towards creating a framework
for small and sparse data.

For example, mineral data collected by the CheMin X-ray diffrac-
tometer onboard the Mars Science Laboratory (Morrison et al.
2018a; Rampe et al. 2018) has few data points, having analyzed ~40
samples, each with around a dozen mineral species (as of January
2022). The CheMin team used small (on the order of dozens
to a few hundred data points) datasets of mineral composition
and associated unit-cell parameters to build models capable of
predicting the basic chemical composition of major mineral phases
observed on Mars, based solely on their unit-cell parameters
(Morrison et al. 2018a-b). However, the team wished to push their
chemical prediction further - to predict complex, multi-element
mineral compositions for the martian crystallographic data. In
order to do so, Morrison et al. (2018c) assembled datasets of
laboratory-analyzed complex, multi-element mineral compositions
and unit-cell parameters, which contained only a few hundred data
points for each of the major mineral groups identified by CheMin.
Morrison et al. (2018c) used the small data Label Distribution
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Learning approach to predict complex chemical compositions (up to
12 elements, in some mineral systems) of mineral samples collected
by the CheMin instrument based on the unit-cell parameters of
these samples (See section 3b for more details). Significantly more
work can be done here to increase the accuracy and performance
of these models and such complex datasets with small sample sizes
provide an interesting and rare challenge to data scientists.

Mineral geochemistry often contains information related to the geo-
logic, chemical, and/or biological processes and materials that went
into their formation and any subsequent weathering and alteration.
However, geochemical data are inherently sparse due to chemical
variability in geologic deposits and materials, different elemental
affinities amongst different mineral species, and analytical bias in-
troduced by research aims or instrument limitations. The resulting
frequency of “missing values” makes many geochemical datasets un-
suitable for use with existing algorithms designed for complete or
near-complete datasets. A prime example of the sparseness of geo-
chemical data is the garnet dataset compiled by Chiama et al. (2020,
2022b(in prep)), which contains over 95,000 geochemical analyses of
garnet group mineral samples collected from a variety of sources,
ranging from large repositories (EarthChem, RRUFF, MetPetDB)
to individual peer-reviewed literature. Even a compiled and curated
dataset such as this is considered sparse, largely due to the chem-
ical variability amongst the various garnet mineral species, result-
ing in missing values in the chemical compositions of these samples
(Chiama et al. 2022a). For example, of the 95,000 analyses compiled,
only 5 major elements (Mg, Fe, Ca, Al, and Si) are present and/or re-
ported in most samples, while other elements, including Mn, Cr, and
Ti, are much less common throughout the dataset. An additional
contribution to this sparseness is that studies may not analyze for all
elements in a sample (e.g., limited to elements of interest, difficulty
measuring light elements), resulting in missing values for which it is
not known whether that element is present. Thus, while analyzing
these data (using descriptive, prescriptive, or predictive methods)
we need to take into account these missing values and their effect on
the results. Sparse data is not a problem new or unique to mineral
data (Greenland et al. 2000; Greenland et al. 2016; Sweeting et al.
2004; Rogers et al. 2018), but, as is the theme for the rest of this pa-
per, we must learn from the successes and failures of other domains
in addressing sparse data (Shepperd & Cartwright 2001; Katz 1987;
Uzuner 2009; Derczynski et al. 2013).

Other examples of small and sparse data challenges can
be encountered in efforts to understand other planets and
moons including Venus and Titan through their mineral-
ogy and geochemistry. Frigid Titan’s exotic mineralogy,
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with water ice as a principal rock-forming mineral, oceans
of liquid hydrocarbons, and varied postulated organic min-
erals, is mostly understood through laboratory analogs (e.g.,
Fegley et al. 1992; Gilmore et al. 2017; Bullock & Grinspoon 1996;
Hashimoto & Abe 2005; Treiman & Bullock 2012; Zolotov 2018;
Hazen 2018; Maynard-Casely et al. 2018; Cable et al. 2021).

Small and sparse datasets are a common occurrence in Earth and
planetary science. Despite the limitations of the available informa-
tion, the answers to key scientific questions are tied to these datasets.
Therefore, an effort to create a framework to handle small and/or
sparse data will be highly beneficial to scientific research in Earth
and planetary science. Many researchers are working on “High-
Dimensional, Small Sample Size” (HDSSS) or “High-Dimensional,
Low Sample Size” (HDLSS) and its use in data analytics (Liu et al.
2017; Golugula et al. 2011; Shen et al. 2016; Yata and Aoshima
2012; Hall et al. 2005). However, this area of research has received
much less attention compared to its big data counterpart, and hence
has lacked the synthesis and generalization that comes with the pop-
ularity and maturity of well-established fields. The aforementioned
examples (including section 3 and 5), clearly demonstrate how such a
framework would open paths for exploring very important scientific
questions within and beyond mineralogy.

Data Discovery

An increasing trend of data science in recent years is doing research
with open data shared by others (Fox and Hendler, 2014). Several re-
cent scientific advances in mineral informatics also reflect that trend
(e.g., Hazen et al., 2019). From the point of view of data users, an
ideal situation is that they can efficiently find data portals on the
Internet, datasets on the portals, or subsets of the data. In compar-
ison, from the point of view of data providers and data managers,
they need to organize the data with shared community standards,
detailed metadata, and persistent and stable facilities to increase
the reusability. As illustrated in the FAIR data principles for open
data (Wilkinson et al., 2016), the first two key points to consider are
the findability and accessibility of data. Correspondingly, three key
technical items arise here. The first item is the metadata schema
for describing the datasets. While there are many common-purpose
metadata schemas, such as the Dublin Core, for describing datasets,
for domain-specific data such as those in mineralogy there can also
be specific metadata elements. The second item is the identifier for
the datasets. Similar to the Digital Object Identifier (DOI) for pub-
lications, datasets shared on the Internet should also have specific
identifiers to enable persistent and stable discoverability. The third
item with respect to findability and accessibility is the protocol for
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retrieving metadata through the identifier of datasets. Community
efforts such as DataCite (Brase, 2009) have made solid progress to-
ward that goal. Nevertheless, the wide implementation of those best
practices for open data in geosciences, including mineralogy, still
need more time. It is also important to remember that appropriate
scientific credit must be given at every stage of informatics method-
ology, from the acquisition of data, to data analytics, and finally
the dissemination of the research products produced by the data
analysis.

A very recent technical development regarding data discovery is the
Dataset Search Engine released by Google (Noy et al., 2019), which
is able to index millions of datasets on thousands of data portals,
including their identifiers or Web links. End users of the dataset
search engine (https://datasetsearch.research.google.com) have in-
tegrated access to thousands of data portals. When a dataset is
found on the engine, users can go to its original data portal page
through the identifier or Web link and then download. The Google
Dataset Search Engine is built on the top of Schema.org, which is
designed as a comprehensive metadata schema for annotating digital
objects on the Web. The annotated objects, such as datasets, will
then be indexed by the search engines. As its usage is expanding,
Schema.org also provides space for extending the metadata elements
of certain objects. A potential here is to have specific metadata ele-
ments designed for datasets of mineralogy, and this should be based
on community collaboration. In the past few years, the EarthCube
community has leveraged a list of open geoscience data portals to
develop the GeoCODES search engine (McHenry et al., 2021). It
is also based on Schema.org but has made extensions specifically
for the registration and discovery of geoscience data. Any future
efforts on the findability and accessibility of open mineralogy data
can absolutely benefit from the technical structure and experience of
GeoCODES. Community agreements and standards, such as those
developed by IMA, MSA, and IUGS-CGI, as well as best practices
in existing data portals, such as those in RRUFF and mindat.org,
will also be helpful to enrich the metadata of open mineralogy data.

Data Processing

Dozens of data repositories contain a wealth of mineralogical in-
formation (see section 5a) from which large data resources can be
extracted. Web-scraping algorithms allow for the retrieval and stor-
age of large amounts of data from web sources (Glez-Pena et al.
2014; Zhao 2017). Scraping algorithms in scripting languages such
as Python or R allow users to extract and compile large amounts of
data from web sources or journal articles in minutes or seconds, but
the structure (or lack thereof) of web pages can slow the production
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of new data resources. Open-access mineral databases tend to be
very contributor friendly; thus, users can pick and choose which data
to include for a particular entry. Recognizing the inconsistencies in
the storage and representation of mineral attribute data within and
across different mineralogical databases is essential when compiling
large mineral datasets from open data sources.

Webpages associated with Webmineral and Mindat have hierarchical
structures made up of Hypertext Markup Language (HTML), Exten-
sible Markup Language (XML), or Cascading Style Sheet (CSS) ele-
ments that allow for the selection of nodes that can contain specific
data a user is interested in (Gunawan et al., 2019). The ubiquitous
occurrence or rarity of mineral, relative interest among the scien-
tific community in a mineral, as well as the age of discovery cause
significant differences in the amount of information available for a
mineral, driving the differences in the structure of these webpages.
Webpages and digital PDFs associated with the Handbook of Min-
eralogy have very little structure, which places more importance on
the use of keywords (e.g., space group or crystal system) or separa-
tors (e.g., each mineral attribute or property introduced may have a
semicolon preceding the associated description) in the compilation of
data. Nested conditional statements (i.e., if-else statements) are use-
ful for compiling data from web databases that have variable or no
structure, but this approach can be more time-consuming and prone
to error. Some headers may be reused such as “beta (8)” which is
used as a descriptor of the refractive indices in biaxial minerals (e.g.,
Frazier et al., 1963; Gunter, 1992) and it can also refer to the ge-
ometry of the unit-cell of dimensions (e.g., Grove and Hazen, 1974;
Nesse, 1991).

Quantifying and Correcting Bias

Critical to all of these aspects of data resource development and use
is an understanding of and, where possible, modeling of the biases
that exist in each of these systems. For example, significant biases
occur in mineral sampling based on the physical appearance of the
phase (e.g., large, brightly colored, euhedral crystals), the economic
value, the scientific interest, proximity to major universities or re-
search centers, and analytical technology. Such biases can be cor-
rected with models of each of these parameters (Hystad et al. 2019;
Hazen et al. 2016; Grew et al. 2017). Natural preservational biases
is more complex, as it involves geologic history and mineral prop-
erties (e.g., chemistry, solubility, hardness), but work is underway
to begin unraveling the history of preservational biases in mineral
systems on Earth and other planetary bodies (Liu et al. 2019).

Informatics research as a socio-technical system
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Research in the field of informatics is heavily dependent on the in-
teractions between the data scientists and domain scientists (e.g.,
mineralogists, planetary scientists) (Ma et al. 2017). Conducting
and applying informatics research is very much a socio-technical sys-
tem (Herrmann 2011). It is as much about the researchers, their
interactions, the hypotheses generated, and interpreting of results
from visualizations or models as it is about the data, the algorithms,
and the models. Collaborations in informatics include many itera-
tions between data and domains scientists starting from data explo-
rations and the problem formulation to interpreting the results and
documenting the scientific insights learnt from the data.

We recommend starting an informatics exploration with an in-person
or virtual “datathon” (Anslow et al. 2016; Fritz et al. 2020). During
this datathon, which usually lasts a day or two, collaborators mainly
focus on:

Interactions and discussions between data scientists and domain
scientists to frame their goals and expectations.

Documenting the research questions to be explored.

Collating the data resources required to explore the documented
research questions.

Exploring the methods needed to examine the data (both ana-
lytically and visually).

Constructing a roadmap for dividing the research question and
tasks into smaller, more tractable parts.

Leveraging descriptive, prescriptive, and predictive methods to
gain preliminary insights from the data.

Forming short term and long-term goals based on the prelimi-
nary results.

Documenting the shortcomings of the methods explored and
why these roadblocks hamper scientific exploration.

Documenting the innovation needs of both data science and do-
main science methods to overcome the previously documented
hurdles.

Not all of these steps need to be done during the two-day datathon;
steps 1 and 2 can be completed beforehand. The main goal of con-
ducting a datathon is to expedite and streamline the initial data
exploration to gain preliminary results that can be examined by the
domain scientist, while also allowing the data scientist to explore
and understand the intricacies of the data at hand. Additionally, all
collaborators gain an understanding of the shortcomings, needs, and
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opportunities of their data and of the current methods to address
the desired scientific questions. This inventory of needs and oppor-
tunities in both the data science and domain science can result in a
datathon output of a list of projects and publications spurred by the
creative and iterative processes of this closely collaborative effort.

After the initial datathon, each collaborator (or group of collabora-
tors) has a plan of action for the projects and subtasks within the
project they are leading. Subsequent communication and collabora-
tion usually follows the preferred working model of the team. For
example, weekly meetings between the group to discuss advances in
the project, or email communications between the team for the same
purpose. The steps taken after the datathon and methods to com-
municate and collaborate change depending on the work style and
comfort levels of the collaborators. General recommendations for
this step include “science of team science” best practices advocated
by many communities (NASEM 2015).

Vision for the future
(a) Implications

Durable and information-rich, minerals are the only ancient relics
that offer direct, solid glimpses of eons of planetary transformation
(Hazen 2021). It is important to extract the abundance of informa-
tion contained in these mineral samples to improve our understand-
ing of the evolution of our planet, our solar system, and the role our
planet’s evolving geosphere played in the origin and proliferation of
life. Key, synergistic aspects of the ongoing paradigm shift in miner-
alogy includes systematic efforts to collect and curate mineralogical
information in data resources that enable open and widespread dis-
semination, and the use of those data to make scientific discoveries.

Look around! (At other fields)

As mentioned earlier in this paper, informatics methods have been
followed, implemented, and improved upon in other fields over the
past decades. The concept of “X-informatics” has also been around
since its first conceptualization in 2007 (Gray and Szalay 2007; Hey
et al. 2009), and over the past decade there has been a steady decline
in researchers conducting informatics research in the silos of their
respective fields. When planning for a new paradigm like mineral
informatics, it is important to learn from successes and failures of
more mature fields of informatics (Lord et al. 2004; Goble & Stevens
2008; Heberling et al. 2021) and modify the methods developed by
past researchers to apply them to comprehensively address our needs
as a community.

Over the last decade, there have been some efforts at collating
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various data resources in the geosciences and providing these
data to researchers with minimal barriers and maximum inter-
operability.  These efforts include Onegeology (Jackson 2010),
Onegeochemistry (Wyborn et al. 2021; Chamberlain et al. 2021),
and Onestratigraphy (Wang et al. 2021). The Onegeochemistry
initiative also includes plans to develop best practices for FAIR
geochemical data, governance models to ensure participation and
trust, and a business model to ensure long-term sustainability
(https://www.earthchem.org/communities/onegeochemistry /). Ef-
forts to improve the access, usage, and impact of mineral data
resources can learn from the successes and challenges faced by
such global initiatives. Developing a set of best practices and
recommendations for creating, linking, and releasing mineral data
would improve the mineral data landscape and make it easier for
researchers to produce and use mineral data without too many
barriers.

Just as increasing the findability, accessibility, interoperability,
reusability, and other important aspects of mineral data manage-
ment and stewardship, obtaining scientific insights from mineral
data using data-driven methods are another key facet of mineral
informatics. For this, too, we can look to and learn from the success
and failures of other domains applying informatics methods to
answer their research questions. We hope the research directions for
informatics and other fields like mineralogy, planetary science, and
other related fields using mineral data that have been documented
in this paper act as an initial step towards the ultimate goal of
systematizing data driven scientific exploration using mineral data.

Conclusion

Mineralogy is facing new opportunities and challenges with the in-
creased interest in and applications of data-driven methods. We be-
lieve the next paradigm for the field of mineralogy is that of mineral
informatics. Mineral informatics focuses on deciphering the patterns
and trends hidden in mineralogical, geochemical, and related data
and using these patterns to answer scientific questions, thus making
important new discoveries. In this paper, we show how the study
of minerals is essential to improving our understanding of the evolu-
tion of our planet, our solar system, and more. We present a broad
methodology for the study and use of mineral informatics methods
(Figure 1) and document the needs of the field and important scien-
tific questions that may be answered using mineral informatics. We
reiterate the symbiotic relationship between data scientists and do-
main scientists (e.g., mineralogists, planetary scientists, biologists)
to make continuous and sustainable scientific progress.

In summary, our vision for the next decade of mineralogical research
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is built upon the systematic and coordinated study of mineral data
and of the data science methods used to gain scientific insights.
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