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• Forest degradation typically depletes evapotranspiration and productivity and in-31

creases flammability32

• Extreme droughts reduce functional differences between degraded and intact trop-33

ical forests34
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Abstract35

Selective logging, fragmentation, and understory fires directly degrade forest structure36

and composition. However, studies addressing the effects of forest degradation on car-37

bon, water, and energy cycles are scarce. Here, we integrate field observations and high-38

resolution remote sensing from airborne lidar to provide realistic initial conditions to the39

Ecosystem Demography Model (ED–2.2) and investigate how disturbances from forest40

degradation affect gross primary production (GPP), evapotranspiration (ET), and sen-41

sible heat flux (H). We used forest demography information retrieved from airborne li-42

dar samples (13, 500 ha) and calibrated with 817 inventory plots (0.25 ha) across precip-43

itation and degradation gradients in the Eastern Amazon as initial conditions to ED-44

2.2 model. Our results show that the magnitude and seasonality of fluxes were modu-45

lated by changes in forest structure caused by degradation. During the dry season and46

under typical conditions, severely degraded forests (biomass loss ≥ 66%) experienced47

water-stress with declines in ET (up to 34%) and GPP (up to 35%), and increases of H48

(up to 43%) and daily mean ground temperatures (up to 6.5◦C) relative to intact forests.49

In contrast, the relative impact of forest degradation on energy, water, and carbon cy-50

cles markedly diminishes under extreme, multi-year droughts, as a consequence of severe51

stress experienced by intact forests. Our results highlight that the water and energy cy-52

cles in the Amazon are not only driven by climate and deforestation, but also the past53

disturbance and changes of forest structure from degradation, suggesting a much broader54

influence of human land use activities on the tropical ecosystems.55

Plain Language Summary56

In the Amazon, timber extraction and forest fires that are ignited by people are57

the chief causes of damages that we call forest degradation. Degradation is as widespread58

as deforestation, and change the way forests behave. Degraded forests may pump less59

water to the atmosphere and absorb less carbon dioxide from the atmosphere. To un-60

derstand the differences in behavior between degraded and intact forests, we used high-61

resolution scanning laser data collected from aircraft flights over regions in the Amazon62

where we knew if and when the forest was degraded. Then, we provided these data to63

a computer program that calculates the exchange of water and carbon between the for-64

est and the atmosphere. We found that, during the dry season, degraded forests are 6.5◦C65

warmer, pump 1/3 less water, absorb 1/3 less carbon, and show higher fire risk than in-66
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tact forests. To our surprise, when the Amazon is hit by severe droughts, intact forests67

start to behave like degraded forests, because all forests run out of water and become68

hot. Our results are important because they show that forest degradation caused by peo-69

ple can have large impacts on dry-season climate and favor more fire, especially during70

typical, non-drought years.71

1 Introduction72

Tropical forests account for 25–40% of total carbon stocks in terrestrial ecosystems73

(Sabine et al., 2004; Meister et al., 2012), but their maintenance and functioning have74

been weakened by climate and land-use change. As a result, tropical forests may shift75

to net sources of carbon to the atmosphere, with residence time of carbon in forests de-76

clining by 50% (Davidson et al., 2012; Grace et al., 2014; Lewis et al., 2015; Erb et al.,77

2016). Land use and land cover changes contribute to nearly 15% of total annual car-78

bon emissions (Harris et al., 2012; Friedlingstein et al., 2019). However, most studies as-79

sessing the effects of land use change on tropical forest stocks and fluxes have focused80

on the effects of deforestation (e.g., Harris et al., 2012; Achard et al., 2014). The effects81

of logging, understory fires and forest fragmentation — collectively known as forest degra-82

dation (Hosonuma et al., 2012) — could play a comparable role in the forest’s energy,83

water, and carbon cycle, but they remain poorly quantified.84

Significant fractions of the remaining tropical forests are located within 1 km to the85

forest’s edge (Haddad et al., 2015; Lewis et al., 2015) and thus are probably degraded86

(Asner et al., 2006; Morton et al., 2013; Pütz et al., 2014; Tyukavina et al., 2016; Potapov87

et al., 2017). The area impacted by forest degradation in the Amazon each year is highly88

uncertain, but likely comparable to deforestation (Asner et al., 2006; Morton et al., 2013;89

Tyukavina et al., 2017). Total carbon losses attributable to degradation may be simi-90

lar or exceed deforestation-related losses in tropical forests (Berenguer et al., 2014; Pear-91

son et al., 2017; Baccini et al., 2017; Aragão et al., 2018; Erb et al., 2018), and degra-92

dation may even dominate the carbon losses in indigenous lands and protected areas (Walker93

et al., 2020). At the local scale, carbon stocks in degraded forests are extremely variable.94

Lightly disturbed forests (e.g., reduced-impact logging) store as much carbon as intact95

forests, while forests impacted by severe or multiple disturbances may lose 65–95% of96

their original carbon stocks (Berenguer et al., 2014; Alamgir et al., 2016; Longo et al.,97

2016; Rappaport et al., 2018; Ferraz et al., 2018). Unquestionably, estimates of fluxes98
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from forest degradation and regeneration are more uncertain than emissions from de-99

forestation (Aragão et al., 2014; Morton, 2016; Bustamante et al., 2016), because their100

impacts on forests are more subtle than deforestation and thus more difficult to detect101

and quantify with traditional remote sensing techniques.102

Selective logging and fires also modify the forest structure, composition and func-103

tioning. For example, selective logging in the tropics generally targets large trees (diam-104

eter at breast height, DBH ≥ 40–60 cm) from a few marketable species (e.g., Feldpausch105

et al., 2005; Blanc et al., 2009; Pinagé et al., 2019), but the other logging structures such106

as skid trails and log decks kill or damage mostly small trees (DBH < 20 cm) (Feldpausch107

et al., 2005). Likewise, fire mortality decreases with tree size and the bark thickness (e.g.,108

Brando et al., 2012; Pellegrini et al., 2016), although areas disturbed by recurrent fires109

also show significant losses of large trees (Martins et al., 2012). Consequently, degrada-110

tion creates more open canopies and thinner understory (e.g., d’Oliveira et al., 2012; Pinagé111

et al., 2019; Silvério et al., 2019) and increased abundance of fast-growing, low wood-112

density species (Barlow et al., 2016; Both et al., 2019; Brando, Silvério, et al., 2019).113

Previous studies indicate an increase in dry-season length in parts of the Amazon114

where both deforestation and forest degradation are pervasive (e.g., Fu et al., 2013; Sena115

et al., 2018), and that the onset of the wet season is modulated by forest transpiration116

(J. S. Wright et al., 2017). Temperature and vapor pressure deficit (VPD), important117

drivers of evapotranspiration (ET), were found by Kapos (1989) to be significantly higher118

near forest edges. Likewise, Jucker et al. (2018) installed a network of micrometeorolog-119

ical measurements across a study area in Sabah, Malaysia, that included intact forests,120

a broad range of degraded forests and oil-palm plantations, and found that forest struc-121

ture, along with topographic features, explained most of the variance in understory tem-122

perature. Yet, only a few studies on experimental sites quantified the magnitude, sea-123

sonality, and interannual variability of water, and energy cycles in degraded forests. For124

example, S. D. Miller et al. (2011) analyzed the impact of reduced-impact, low-intensity125

selective logging in the Amazon using eddy covariance towers and found only minor im-126

pacts of logging on sensible and latent heat fluxes. Recently, Brando, Silvério, et al. (2019)127

compared eddy covariance data from two towers at an experimental fire site in the Ama-128

zon forest, and found declining differences in gross primary productivity and small dif-129

ferences in evapotranspiration between the control and burned area between 4 and 8 years130

after the last burn.131
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Field inventory plots are fundamental to sample the structure and species compo-132

sition of tropical forests, but they also have important limitations to characterize the het-133

erogeneity of degraded landscapes. First, the number of plots required to characterize134

stands increase with heterogeneity, often reaching impractical numbers (Marvin et al.,135

2014). In addition, most tropical forest degradation occurs in private landholdings and136

privately managed logging concessions, where limited access by researchers may create137

sampling bias towards well-managed areas, which generally experience less intensive degra-138

dation. However, airborne laser scanning (airborne lidar) can circumvent these limita-139

tions over large areas with sub-meter resolution. Airborne lidar data have been used suc-140

cessfully to quantify structural characteristics of the canopy such as height and leaf area141

distribution (Hunter et al., 2013; Shao et al., 2019). Moreover, these data have also been142

used to quantify changes in canopy structure and carbon stocks at local to regional scale143

that experienced multiple levels of degradation (e.g., Asner et al., 2010; Longo et al., 2016;144

Ferraz et al., 2018; Meyer et al., 2019).145

Numerical models can be used to understand the links between changes in forest146

structure, light and water availability for different local plant communities, and the over-147

all impact on energy, water, and carbon fluxes between forests and the atmosphere. In148

the past, big-leaf models have been modified to account for the long-term impacts of se-149

lectively logged tropical forests on the carbon cycle of tropical forests (e.g., Huang et al.,150

2008; Huang & Asner, 2010). However, big-leaf models cannot represent the mechanisms151

that control access and availability of light and water in complex and heterogeneous for-152

est structures (Purves & Pacala, 2008; Fisher et al., 2018). Individual-based models can153

represent the changes in the population structure and micro-environments due to degra-154

dation (R. Fischer et al., 2016; Maréchaux & Chave, 2017), but the complexity and com-155

putational burden of these simulations often limit their application to single sites. Cohort-156

based models, such as the Ecosystem Demography (ED-2.2) model (Medvigy et al., 2009;157

Longo, Knox, Medvigy, et al., 2019), strike a balance between these end-members be-158

cause they can efficiently represent the horizontal and vertical heterogeneity of forests,159

provided that they are informed with initial conditions and accurate parameterizations160

that can capture the landscape variability.161

In this study, we use airborne lidar data to quantify forest structure variability across162

the Amazon in order to provide critical initial conditions for ecosystem demography mod-163

els. We also investigate the role of forest degradation on the Amazon forest productiv-164
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ity, flammability, as well as the degradation impacts on the water and energy cycles. Specif-165

ically, we seek to answer the following questions:166

1. What are the relationships between degradation metrics (e.g. biomass loss) and167

changes in carbon, water, and energy fluxes, and how does it vary across seasons168

and regions with different rainfall regimes?169

2. How do droughts affect the relationships between degradation and ecosystem func-170

tioning?171

3. Does forest degradation make Amazon forests more susceptible to fires? If so, which172

parts of the Amazon experience the largest flammability response to degradation?173

To this end, we integrate field inventory plots with high-resolution airborne lidar data174

over five study regions in the Eastern Amazon along a precipitation gradient and with175

a broad range of anthropogenic disturbance histories, to provide initial conditions to ED-176

2.2 that realistically represent the structural diversity of degraded forests. While lim-177

ited to specific regions in the Amazon where detailed degradation information exists, our178

goal is to provide a framework that can be extended to larger scales, including biome-179

and pantropical scales.180

2 Materials and Methods181

2.1 Study regions182

We selected five study regions across a gradient of disturbance and climate con-183

ditions where ground and airborne lidar are available to study the forest function (Fig-184

ure 1; Table 1). Three of these sites include eddy covariance tower measurement of en-185

ergy, water, and carbon dioxide fluxes for comparison with the model simulations, and186

have been the focus of several ecological studies in the past.187

1. Paracou, French Guiana (GYF) is a field station where a logging experiment was188

conducted between 1987 and 1988 that includes intact forest controls and three189

selective logging treatments: timber extraction using conventional logging tech-190

niques, timber extraction and canopy thinning, and timber and fuelwood extrac-191

tion followed by canopy thinning (Gourlet-Fleury et al., 2004). The eddy covari-192

ance tower at the site is located in the undisturbed forest and has been operational193

since 2004 (Guyaflux; Bonal et al., 2008).194
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Table 1. Overview of the study regions, including mean annual precipitation (MAP) and

dry-season length (DSL).

Region (Code) Coordinates MAPa DSLb Lidar Inventory Disturbancesc

[mm] [mo] [ha] [ha]

Paracou (GYF) 5.28◦N; 52.91◦W 3040 2(0) 963 79.8 INT, CL1, LTH
Belterra (BTE) 3.09◦S; 54.95◦W 1890 5(1) 4057 16.7 INT, RIL, BN1, BN2, BN3
Paragominas (PRG) 3.15◦S; 47.61◦W 1850 6(2) 3217 35.6 INT, RIL, CL1, BN1, LB1, BN2, BN3
Feliz Natal (FZN) 12.14◦S; 54.68◦W 1940 5(4) 4210 14.0 INT, CL1, CL2, BN1, LB1, BN2, BN3
Tanguro (TAN) 13.08◦S; 52.41◦W 1800 5(4) 1006 22.9 INT, BN1, BN3, BN6

a Source for mean annual precipitation (MAP) data: GYF – Gourlet-Fleury et al. (2004); other regions – near-
est site available at INMET (2019).
b Dry-season length (DSL): number of months with precipitation below 100mm; numbers in parentheses indi-
cate number of severely dry months (precipitation below 30mm).
c Disturbance history classes: INT – intact; RIL – reduced-impact logging; CLx – conventional logging (x
times); LTH – conventional logging and thinning; LB1 – conventional logging and burned (once); BNx – burned
x times.

2. Belterra, Brazil (BTE). Over the past 100 years, this region experienced cycles195

of economic growth and recession that created a complex landscapes dominated196

by deforestation, degradation and second-growth (VanWey et al., 2007), with in-197

tact areas in the Tapajós National Forest. An eddy covariance tower known as Km198

67 overlaps with one of the surveyed sites and has data for 2001–2005, and 2008–199

2011 (Hayek et al., 2018).200

3. The Paragominas, Brazil (PRG) region used to be within the largest timber pro-201

duction area in Brazil and has undergone selective logging since the 1970s (Veŕıssimo202

et al., 1992). Since the 1990s, the economy has shifted towards agriculture, intro-203

ducing large-scale deforestation such that nearly half of the original forest cover204

has been lost, and most of the remaining areas have been logged (Pinto et al., 2009).205

4. Feliz Natal, Brazil (FZN) is located at the southern fringe of the Amazon in a mo-206

saic landscape of soybean fields, grazing lands, and logged forests. This region reg-207

ularly experiences severe dry seasons and frequent understory fires (Morton et al.,208

2013; Rappaport et al., 2018).209

5. Tanguro, Brazil (TAN) is located in an experimental fire study area within a larger210

landscape covered by intact forests and forests that were disturbed with low-intensity211

understory fires (one, three, and six times) between 2004 and 2010 (Brando et al.,212

2014). The surveyed region also includes two eddy covariance towers that have been213

operating since 2014 both at the intact and burned forests (Brando, Silvério, et214

al., 2019).215
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Figure 1. Location of the five study regions within the Amazon biome region, along with land

classification as of 2013. Intact forest and intact forest loss were obtained from Potapov et al.

(2017); open and deforested areas were obtained from PRODES-INPE (2018) (Brazil) and areas

with tree cover below 20% according to Hansen et al. (2013) (other countries); wetlands and wa-

ter bodies in the Amazon River Basin were from Hess et al. (2015) and savannas and mangroves

were obtained from Olson et al. (2001).

These five study regions were sampled at multiple sites by small-footprint, multiple-216

return airborne lidar. The lidar data provided both the terrain elevation at high spatial217

resolution (1-m) and detailed information about the vertical structure of forests from a218

uniform point cloud density to meet a minimum return density of 4 returns per m2 over219

99.5% of the area (Leitold et al., 2015). Living trees of diameter at breast height DBH ≥220

10 cm were either botanically identified (experimental plots in GYF) or identified from221

field characteristics by local parataxonomists. To characterize the disturbance history,222

we used either published information from the experimental regions GYF (Gourlet-Fleury223

et al., 2004; Bonal et al., 2008; Wagner et al., 2013) and TAN (Brando et al., 2012, 2014),224

or the disturbance history analysis from (Longo et al., 2016), which was based on a vi-225

sual interpretation of the Normalized Burn Ratio (NBR) of cloud-free Landsat images226

since 1984, and complemented with information from logging companies for the reduced-227

impact logging sites (e.g., Pinagé et al., 2019). Details on site-specific data used in this228
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study are available in Text 1 and previous work (Longo et al., 2016; Vincent et al., 2017;229

Brando, Silvério, et al., 2019), and were obtained through the Paracou Experimental Sta-230

tion and the Sustainable Landscapes Brazil data servers (Paracou Portal, 2016; Sustain-231

able Landscapes Brazil, 2019; dos-Santos et al., 2019).232

2.2 Overview of the modeling framework233

In this study, we used the Ecosystem Demography model, version 2.2 (ED-2.2) (Moorcroft234

et al., 2001; Medvigy et al., 2009; Longo, Knox, Medvigy, et al., 2019) to simulate the235

impacts of forest structure on energy, water, and carbon cycles. For any point of inter-236

est, the ED-2.2 model simulates the forest structure and functional diversity across a land-237

scape, and simulates the energy, water, and carbon budgets for multiple canopy envi-238

ronments, which represent the forest heterogeneity (Longo, Knox, Medvigy, et al., 2019).239

ED-2.2 has been successfully evaluated and used in both short-term and long-term stud-240

ies in the Amazon forest (Powell et al., 2013; Zhang et al., 2015; Levine et al., 2016; Longo,241

Knox, Levine, et al., 2019). In ED-2.2, the horizontal and vertical heterogeneities of forests242

are represented through a hierarchical structure. Each area with the same climate (e.g.,243

footprint of an eddy covariance tower or a grid cell in a gridded meteorological driver)244

is called a polygon. Each polygon is subdivided into patches, which represent collections245

of forest gaps within a polygon that share a similar age since last disturbance and same246

disturbance type (although not necessarily contiguous in space). Patches are further sub-247

divided into cohorts, which are collections of individual plants that have similar size and248

similar functional group. Importantly, because ED-2.2 incorporates the horizontal het-249

erogeneity of the plant community structure and composition, the model can efficiently250

incorporate and simulate the dynamics of degraded forests.251

Most of the ED-2.2 modules used in this study have been previously described in252

Longo, Knox, Medvigy, et al. (2019). The main changes used in this study include (1)253

a modified height-diameter allometry based on the Jucker et al. (2017) approach and lo-254

cally collected field data that can be used consistently by the initialization and model;255

(2) an improved allocation to living and structural tissues, which is now based on more256

recent allometric equations (Chave et al., 2014; Falster et al., 2016) and datasets (Falster257

et al., 2015); (3) a revised photosynthesis solver, which now accounts for the maximum258

electron transport ratio and the maximum triose-phosphate utilization (von Caemmerer,259

2000; Oleson et al., 2013; Lombardozzi et al., 2018); (4) updated values of traits and trade-260
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offs, using multiple studies and trait databases, including GLOPNET, TRY, and NGEE-261

Tropics (I. J. Wright et al., 2004; Santiago & Wright, 2007; Chave et al., 2009; Kattge262

et al., 2009, 2011, 2020; Baraloto et al., 2010; Powers & Tiffin, 2010; Gu et al., 2016; Ba-263

har et al., 2017; Norby et al., 2017). These changes are described in Text 2. Moreover,264

we used an approach developed by X. Xu (unpublished) and based on Lloyd et al. (2010)265

to account for light-dependent plasticity of three leaf traits (specific leaf area, leaf turnover266

rate, and carboxylation capacity), and calibrated using existing data (Lloyd et al., 2010;267

Russo & Kitajima, 2016; Keenan & Niinemets, 2016).268

To obtain initial conditions for ED-2.2 from airborne lidar, we devised a multi-step269

approach that links airborne lidar data with ecosystem properties (Figure 2). Here we270

provide a summary of the initialization procedure; the technical details of this approach271

are described in Text 3. For step 1, we split all collected point cloud data into 50×50m272

columns, simulated waveforms from the discrete returns (Blair & Hofton, 1999; Popescu273

et al., 2011; Hancock et al., 2019) to obtain unscaled leaf area density profiles based on274

the vertical distribution of returns (e.g., MacArthur & Horn, 1969; Ni-Meister et al., 2001;275

Stark et al., 2012; Antonarakis et al., 2014; Tang & Dubayah, 2017), and assigned the276

relative proportion of each plant functional type provided by one of the 769 training plots277

that had the most similar vertical structure; the similarity was based on the profile com-278

parison that yielded the smallest Kolmogorov-Smirnov statistic. The vertical profile was279

split into cohort layers centered around local maxima or saddle points, using a modified280

procedure based on function peaks (package RSEIS, Lees, 2017) of the R statistical soft-281

ware (R Core Team, 2019). For step 2, we used a collection of 817 forest inventory plots282

(0.16–0.26 ha) that were also surveyed by airborne lidar, which included plots from all283

study regions as well additional sites available from Sustainable Landscapes Brazil (SLB)284

and used in a previous study (ancillary SLB sites, Figure 1; Longo et al., 2016); we de-285

veloped statistical models based on subset selection of regression (A. J. Miller, 1984) and286

heteroskedastic distribution of residuals (Mascaro et al., 2011) to estimate plot-level prop-287

erties (aboveground biomass, basal area, stem number density, leaf area index) from point288

cloud metrics and field estimates, following the approach by Longo et al. (2016). For step289

3, we sought to obtain a plot-specific scaling factor to the leaf area density profile that290

produced the best agreement between the four estimated plot-level properties from step291

1 and the plot-level properties obtained by integrating the vertical distribution from step292

2, by minimizing the sum of relative square differences of the four properties. For step293
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2.3 Assessment of the modeling framework306

We evaluated three characteristics to assess the ability of model framework to rep-307

resent the forest structure heterogeneity caused by degradation, and to represent com-308

ponents of the energy, water, and carbon cycle. First, we quantified the ability of the air-309

borne lidar initialization to capture the differences in forest structure caused by degra-310

dation. Second, we assessed whether the model can realistically represent fluxes and stor-311

age of water, energy and carbon across different regions. Third, we compared the model312

sensitivity to degradation-driven effects on fluxes and storage with independent obser-313

vations.314

To evaluate the airborne lidar initialization, we used a cross-validation approach315

in which we replicated the procedure described above (Section 2.2) 2000 times, using a316

hierarchical bootstrap approach. We first sampled regions (with replacement), to ensure317

that some regions would be entirely excluded from the replicate, then we sampled plots318

(also with replacement), to ensure that the replicate had the same number of plots as319

the original training data set. We then predicted the structure of all plots in the excluded320

regions, using iterations that did not have any plot in the training data set; to make this321

number consistent across regions, we used the smallest number of iterations that met this322

criterion across all regions (n=612). Finally, for each region, we compared the average323

forest structure from all cross-validation replicates that excluded the region from the train-324

ing stage. Because estimates of forest properties have larger uncertainties in smaller plots325

(Chave et al., 2004; Meyer et al., 2013; Mauya et al., 2015), we only evaluated the method326

when a disturbance class within a region had at least 20 plots.327

To verify the model’s ability to realistically represent the regional variability of fluxes328

and storage, we carried out ED-2.2 simulations initialized with airborne lidar for the in-329

tact forests regions where eddy covariance tower and forest inventory plots co-located330

with airborne lidar were available (GYF and BTE). Region TAN had two eddy-covariance331

towers, one within the footprint of the burned forests and a second in intact forest (Brando,332

Silvério, et al., 2019), which allowed us to contrast the model’s predicted impacts of degra-333

dation on fluxes and biophysical properties with the pair of tower measurements.334
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2.4 Model configuration and analyses335

Our main focus is to understand the role of degradation-driven changes in forest336

structure in altering both the state and the fluxes of energy, water, and carbon, both un-337

der typical and extreme climate. To account for regional differences in climate and to338

sample a broad range of interannual variability, we used time series of meteorological drivers339

pooled from gridded reanalyses (one set of time series per region). For most meteoro-340

logical variables required by ED-2.2 (pressure, temperature, humidity, incoming short-341

wave and longwave radiation, and winds), we used 0.625◦×0.5◦, hourly averages (1980–342

2016) from the version 2 of the Modern-Era Retrospective Analysis for Research and Ap-343

plications (MERRA-2, Gelaro et al., 2017). MERRA-2 precipitation is known to have344

significant negative biases in the tropics (Beck et al., 2019); therefore we used the 0.1◦×0.1◦,345

3-hourly precipitation rates from the version 2 of the Multi-Source Weighted Ensemble346

Precipitation product (MSWEP-2, Beck et al., 2019). To ensure that the only difference347

between simulations in the same study region was the distribution of forest structures,348

we imposed the same edaphic conditions: free-drainage soils with 8 m deep, and nearly349

equal fractions of sand (32%), silt (34%), and clay (34%). To avoid confounding effects350

from post-disturbance mortality and recovery, all simulations were carried out without351

enabling dynamic vegetation, such that the differences in forest structure would remain352

the same for the entire time series, and all differences between simulations in the same353

region could be attributable to well-characterized differences in forest structure.354

To investigate the role of degradation on fire risk, we built on the original fire model355

from ED-1 (Moorcroft et al., 2001) to determine when fire-prone conditions would oc-356

cur in each patch. The flammable area αF (%yr−1) is calculated from the fire distur-357

bance rate λF (yr−1):358

αF = 100 [1− exp (−λF ∆t)] , (1)

λF =











I CFuel , if

[

1

|zF |

∫ 0

zF

ϑ (z) dz

]

< (1− f) ϑWp + f ϑFc

0 , otherwise

. (2)

where ∆t = 1yr; I = 0.5m2 kgCyr−1 is a fire intensity parameter; zF = 30 cm is the359

depth of the soil layer used to estimate dryness; ϑ (m3 m−3) is the soil moisture; ϑWp360

is the permanent wilting point and ϑFc is the field capacity, both defined as in Longo,361

Knox, Medvigy, et al. (2019); and f = 0.02 is a phenomenological parameter that de-362

fines dry conditions. Because understory fires are the dominant type of fire in the Ama-363
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zon (A. Alencar et al., 2006; Morton et al., 2013), we considered fuels to be comprised364

by above-ground litter, above-ground coarse woody debris, and above-ground biomass365

from grasses and seedlings (trees with height < 2m); canopy trees were not considered366

to be fuels. The fire parameterization, although simple, has been previously demonstrated367

to capture the general features of fire regime across tropical South America (Longo, Knox,368

Levine, et al., 2019).369

3 Results370

3.1 Evaluation of the model initialization and simulated dynamics371

The ED-2.2 model initialization approach from airborne lidar (Figure 3) captured372

the main differences in forest structure and composition, both across study regions and373

along degradation gradients. To illustrate the initialization, we focus on the basal area374

distribution obtained from cross-validation at disturbance histories within study regions375

that had at least 20 plots (Figure 3). At sites GYF, PRG, and TAN, the airborne lidar376

initialization predicted the total basal area with absolute biases ranging from 3% (GYF)377

to 13% (TAN), and root mean square error of the order of 18–27% (Figures 3c, 3f and378

3i). The largest absolute discrepancies occurred for intermediate-sized trees (20 ≤ DBH379

< 40 cm) at GYF and PRG, where the airborne lidar initialization underestimated basal380

area by 2.9 and 4.3 cm2 m−2, respectively (Figures 3c and 2f). The largest overestima-381

tion of airborne lidar was observed among larger trees (60 ≤ DBH < 100 cm) in intact382

forests at GYF (2.4 cm2 m−2; Figure 3c). The size distribution of most degraded forests383

were well characterized (Figures 3a-b, 3d-e and 3g); the largest deviations from inven-384

tory were observed in logged and burned forests in PRG, where airborne lidar underes-385

timated total basal area by 3.0 cm2 m−2 (Figure 3d). Likewise, the initialization algo-386

rithm represented the higher relative abundance of early successional plants in the most387

degraded sites, and the dominance of mid- and late-successional plants at intact forests388

at GYF and PRG (Figure S1), and realistically represented the leaf area distribution across389

regions and degradation levels (Figure S2).390

ED-2.2 simulations using forest inventory and airborne lidar as initial conditions391

were compared with eddy covariance tower estimates of all sites (Figures 4 and S4-S9,392

and Table S1). Gross primary productivity (GPP) generally showed small biases rela-393

tive to tower estimates (−0.046 to +0.394 kgCm−2 yr−1), and relatively small errors (less394
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than observed variability) at all sites, regardless of the initial conditions (Figure 4; Ta-395

ble S1). While the GPP seasonality was correctly represented at GYF, the model did396

not capture the late wet-season decrease and early dry-season increase of GPP at BTE,397

and it showed a delayed dry-season decline GPP at TAN compared to tower estimates398

(Figure S4). Net ecosystem productivity (NEP), on the other hand, showed significant399

biases, large errors, and relatively small correlation with tower estimates (Figure 4; Ta-400

ble S1), which were driven by excessive seasonality of heterotrophic respiration (Figure S5).401

Because the initial carbon stocks in necromass pools are uncertain, and the results on402

magnitude and seasonality of ecosystem respiration (and consequently NEP) are incon-403

sistent with tower estimates, we will not discuss the simulation results in terms of res-404

piration and NEP.405

Water fluxes also showed small biases relative to the observed variability at GYF,406

TNF and TAN (Burned), regardless of the initialization (−0.01 to +0.54mmday−1; Fig-407

ures 4a and 4c; Table S1); biases at TAN (Intact) were larger (0.69−0.82mmday−1).408

With the exception of TAN (Burned), the correlation between ED-2.2 and tower was high409

at daily averages (Figures 4b and 4d; Table S1). At TAN (Burned), the poorer agree-410

ment with tower estimates was caused by the model predicting a similar seasonality of411

water flux at both control and burned forests, whereas towers suggest an increase in wa-412

ter flux during the earlier part of the dry season (Figure S6). ED-2.2 predictions of sen-413

sible heat flux had high correlation with observations at all sites (Figures 4b and 4d; Ta-414

ble S1), although sensible heat flux shows significant biases at BTE, and dampened sea-415

sonality at GYF and TAN (Burned) (Figures 4a and 4c; Table S1; Figure S6). Outgo-416

ing shortwave radiation correctly captured the seasonality at the wettest sites, but it did417

not capture the sharp dry-season increase at TAN (Figure S8), which may be associated418

with dry-season leaf senescence and shedding that was likely underestimated by ED-2.2.419

In addition, ED-2.2 simulations overestimated outgoing longwave radiation at all sites420

except at TAN (Burned) using inventory initialization (Figure S9). Nonetheless, the sea-421

sonality and the intra-seasonal variation of outgoing longwave radiation were correctly422

captured by ED-2.2, resulting in generally high correlation and small standard devia-423

tion of residuals at most sites (Figure 4; Table S1).424
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Figure 4. Summary of ED-2.2 model assessment using eddy covariance towers as benchmarks,

using simulations initialized with forest inventory and airborne lidar. (a,c) Bias-variance diagram

and (b,d) Taylor diagram of multiple daily-averaged fluxes of carbon, energy, and water for Para-

cou (GYF), Belterra (BTE) and Tanguro (TAN, control and burned), for simulations initialized

with (a,b) forest inventory plots and (c,d) airborne lidar. In the bias-variance diagram, bias (x

axis), standard deviation of residuals (y axis) and root mean square error (concentric arcs) are

normalized by the standard deviation of observations, as is the standard deviation of models in

the Taylor diagram. In both diagrams, ⊙ corresponds to the perfect model prediction. In all

plots, we only compare daily averages of days with no measurement gaps. Comparisons of the

seasonal cycle for all variables included in the diagrams are available at Figures S4-S9.
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3.2 Degradation effects on seasonality of fluxes425

From ED-2.2, we found that forest degradation can have substantial impacts on426

the ecosystem function such as evapotranspiration (ET) or ground temperature in severely427

or recently degraded forests, and in parts of the Amazon with a longer dry season. At428

GYF, the airborne lidar survey sampled only intact forests and areas that were logged429

25 years prior to the data acquisition: consequently, the average water vapor flux and430

ground temperature were nearly indistinguishable across degraded and intact forests (Fig-431

ures 5a,S10a). At the equatorial sites, degradation effects were small during the wet sea-432

son but showed marked reduction in ET (2.1–6.7% in BTE and 4.3–31.8% in PRG) and433

increase in daytime temperature (0.4–0.9◦C in BTE and 1.0–6.0◦C in PRG) during the434

dry season, with the largest changes relative to intact forests found at burned areas (Fig-435

ures 5b, 5c, S10b,c). At the southern (driest) sites, the seasonal changes were even more436

pronounced: at both FZN and TAN, ET decreased by 21–25% early in the dry season437

(Jun) at the most severely burned forests, whereas ET in intact forests peaked in the mid-438

dle of the dry season (Jul–Aug; Figures 5d and 5e). Similarly, burned forests were warmer439

year-round than intact forests at the southern sites (FZN and TAN), with minimum warm-440

ing during the wet season (Dec–Mar; 0.5–0.8◦C), and maximum warming occurring at441

the peak of the dry season (Jul–Aug; 1.0–6.5◦C; Figures S10d and S10e).442

Importantly, the ED-2.2 results in Figures 5 and S10 emerge from the different dis-443

tribution of forest structures associated with degradation histories. ED-2.2 accounts for444

the diversity of forest structures within each disturbance history by means of patches;445

each patch represents a different forest structure found within any disturbance regime,446

and patch area is proportional to the probability of finding such forest structure (Longo,447

Knox, Medvigy, et al., 2019). For example, the ground temperature is consistently warmer448

at the low biomass patches, but the differences between the lowest and highest patch tem-449

peratures are as low as 1◦C at GYF (Figure 6a) and less than 4◦C during the wet sea-450

son even at the southern regions (Figures 6d and 6e). In contrast, differences along biomass451

gradients exceed 9◦C during the dry season at all regions except GYF (Figure 6).452

Likewise, when all simulated patches are considered, we observe strong coherence453

between biomass and gross primary productivity (GPP) across all regions and through-454

out the year (Figures 7 and S11). However, the effect of local communities on GPP is455

seasonal: differences in typical GPP between low-biomass and high-biomass patches do456
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Figure 5. Monthly mean evapotranspiration (ET) as a function of region and degradation.

Monthly averages correspond to the 1980–2016 period, simulated by ED-2.2 for (a) Paracou

(GYF), (b) Belterra (BTE), (c) Paragominas (PRG), (d) Feliz Natal (FZN), and (e) Tanguro

(TAN), aggregated by degradation history within each region (lines). Grey rectangles in the

background correspond to the average dry season.

not exceed 1.1 kgCm−2 yr−1 during the wettest months (Figures 7a–7c), whereas the range457

of GPP reaches 0.7 kgCm−2 yr−1 at the short dry-season at GYF and exceeds 2.0 kgCm−2 yr−1
458

during the dry season at the most degraded and driest sites (Figures 7e and 7f). Sim-459
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Figure 7. Variability of gross primary productivity (GPP) as a function of local (patch)

aboveground biomass (AGB). Scatter plot of AGB (x axis) and GPP (y axis) at sites (a,d) Para-

cou (GYF), (b,e) Paragominas (PRG), (c,f) Feliz Natal (FZN), for (a-c) the peak of wet season

— May (GYF), March (PRG), and February (FZN) — and (d-f) peak of dry season — October

(GYF and PRG), and August (FZN). Each point represents the 1980–2016 average GPP of each

patch solved by ED-2.2; point shapes correspond to the disturbance history, and point colors

represent the time between the last disturbance (undetermined for intact forests) and lidar data

acquisition. Curves correspond to non-linear least squares fits of the most parsimonious function,

defined from Bayesian Information Criterion (Schwarz, 1978), between shifted exponential or

shifted Weibull functions. Only fits that produced R2

adj > 0.5 were included.

3.3 Degradation impacts on forest flammability462

The impact of forest degradation on ecosystem functioning showed important year-463

to-year variability, and differences between intact and degraded forests were generally464

larger during typical years than during extreme droughts. For this section, we calculate465

the monthly water deficit based on the difference between potential evapotranspiration466

(calculated following Priestley & Taylor, 1972) and rainfall, and relate the 12-month run-467

ning averages of multiple response variables with the maximum cumulative water deficit468

over the previous 12 months, and define drought length as the number of consecutive months469

in water deficit exceeds 20mm. Using region PRG as an example, as the region has the470
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broadest range of recent disturbances and maximum cumulative water deficit, we found471

that, during typical rainfall periods, evapotranspiration in logged forests and burned forests472

were 3–6% and 11–22% lower than intact forests, respectively (Figure 8a); this differ-473

ence was significantly reduced or even reversed during severe droughts, when evapotran-474

spiration of degraded forests were up to 4% higher than in intact forests (Figure 8a). De-475

graded forests have a lower proportion of shade-tolerant, late-successional trees, and typ-476

ical stomatal conductance is higher by 19–34% in burned forests and by 5–13% in logged477

forests (Figure 8b). This result indicates that the reduced typical evapotranspiration re-478

sults from degraded forests having lower leaf area index relative to intact forests, as lo-479

cal leaf area index is related to local aboveground biomass (Figure S13). In addition, ex-480

treme droughts did not substantially reduce the differences in stomatal conductance be-481

tween degraded and intact forests (Figure 8b). While evapotranspiration was generally482

lower in degraded forests, total evaporation (from ground and canopy intercepted wa-483

ter) was higher in most degraded forests, with burned forests experiencing 3–26% more484

evaporation in typical years and 0–14% during severe droughts (Figure 8c). The com-485

bination of higher evaporation and relatively shorter canopy (shallower roots) in degraded486

forests were typically translated into slightly drier near-surface soils (Figure 8d): dur-487

ing typical years, soil water availability at the top 30 cm layers was 1.2–12% lower in burned488

forests than intact forests, whereas the differences were more modest in logged forests489

(0.2–3%) and even reversed during extreme droughts (Figure 8d). Carbon and energy490

fluxes showed similar behavior. Gross primary productivity in intact forests steadily de-491

creased with increased drought severity, and the depletion of productivity caused by degra-492

dation is most marked during typical years but is reduced during severe droughts (Fig-493

ure S14a). While ground temperature is always higher in degraded forests (Figure S14b),494

differences in sensible heat fluxes and outgoing longwave radiation also diminish during495

extreme drought conditions (Figure S14c,d).496

Degraded forests show drier near-surface soils (Figure 8d) and warmer surface tem-497

peratures (Figure S14) than intact forests for most years, yet the interannual variabil-498

ity of climate also modulates the differences in water, carbon, and energy cycles between499

degraded and intact forests (Figures 8 and S14). Therefore, both degradation and cli-500

mate may influence the flammability of forests. The average flammable area predicted501

by ED-2.2 (Section 2.4) shows large variation across regions, ranging from nearly zero502

at GYF forests (the wettest region) to over 25%yr−1 at some of the forests in TAN (the503
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driest region) (Figure 9a). Within each region (i.e. under the same prescribed climate),504

the model generally predicted higher flammability for the shortest forests (< 10m), al-505

though predictions also indicate large within-region variability of flammable area for forests506

with intermediate canopy height (10–25m) (Figure 9a). For most forests, flammable con-507

ditions were predicted mostly during moderate or severe droughts, regardless of the degra-508

dation history, as exemplified by region PRG (Figure 9b). While the time series of flammable509

area were synchronized across degradation types, ED-2.2 predictions of flammable area510

were generally higher for burned forests than intact or lightly logged forests (Figures 9b511

and S15). The one exception was the driest region (TAN), where forests that burned mul-512

tiple times experienced lower flammability than intact forests (Figure S15d); at TAN,513

even intact forests were relatively short (Figure 9a), which caused ED-2.2 to predict lim-514

ited access to deeper soils and increased desiccation.515

4 Discussion516

4.1 Initialization of forest structure from remote sensing517

Our method to derive the vertical structure of the canopy from high-resolution air-518

borne lidar successfully characterized the diversity of forest structures of the Amazon,519

captured differences in forest structure variability along a precipitation gradient, and de-520

scribed the within-region variability in forest structure caused by forest degradation (Fig-521

ures 3 and S2-S3). Previous studies have used forest structure derived from remote-sensing522

data to initialize vegetation demography models in tropical forests (e.g., Hurtt et al., 2004;523

Antonarakis et al., 2011; Rödig et al., 2018). However, these studies often assume a re-524

lationship between forest structure and canopy height with stand age. While this assump-525

tion has been successfully applied to intact and second-growth tropical forests (Hurtt526

et al., 2004; Antonarakis et al., 2011), the association between forest structure and suc-527

cession is unlikely to be preserved in degraded forests. For example, understory fires pro-528

portionally kill more smaller trees than large trees (Uhl & Kauffman, 1990; Brando et529

al., 2012; Silva et al., 2018), and selectively logging creates complex mosaics of forest struc-530

ture, with substantial losses of large trees from harvesting, and extensive damage to smaller531

trees in skid trails (Feldpausch et al., 2005). In contrast, our approach accounts for the532

entire vertical profile at local (50-m) scale, similarly to Antonarakis et al. (2014), which533

does not require any assumption on the successional stage of the forest. Importantly, our534

approach requires only the vertical distribution of returns, and could be adapted to large-535
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The use of allometric equations that account for regional variation (e.g., Feldpausch et543

al., 2011, 2012), and the expansion of open-source databases, such as the Biomass And544

Allometry Database (BAAD, Falster et al., 2015) used in our study, could further im-545

prove the characterization of the vertical structure. In addition, the increased availabil-546

ity of terrestrial laser scanning (TLS) and high-resolution, low-altitude unmanned aerial547

vehicle lidar could substantially increase the data availability and thus improve the over-548

all quality of allometric equations (Calders et al., 2015; Stovall et al., 2018; Schneider549

et al., 2019). Alternatively, techniques that extract individual tree crowns from lidar point550

clouds readily provide highly accurate local stem density and local size-frequency dis-551

tributions (e.g., tree height or crown size; Ferraz et al., 2016). These distributions can552

be used to attribute DBH to individuals and generate initial conditions akin to forest553

inventory to the ED-2.2 model, and data-model fusion techniques that leverage the grow-554

ing availability of data could reduce uncertainties on many model parameters, includ-555

ing allometry (F. J. Fischer et al., 2019). Finally, ED-2.2 overestimated the seasonality556

of gross primary productivity and evapotranspiration at the driest region (TAN) (Fig-557

ures S4 and S6). This result suggests that simulated rooting depth for TAN was under-558

estimated in the model. Rooting profiles in tropical forests remain largely uncertain: some559

site studies have sought to relate individual tree size with rooting depth using isotopic560

measurements (e.g., Stahl et al., 2013; Brum et al., 2019), whereas regional studies that561

provide spatial distribution of rooting depth still show important discrepancies in the562

tropics (e.g., Yang et al., 2016; Fan et al., 2017). Constraining the below-ground allo-563

cation of tropical ecosystems should be a priority in future studies.564

In our study we inferred the functional diversity from forest structure obtained from565

existing forest inventory plots. The functional group attribution captured the general566

characteristics of functional composition along degradation gradients (Figure S1), includ-567

ing the more frequent occurrence of early-successional individuals in degraded forests,568

consistent with field-based studies (Both et al., 2019); nonetheless, uncertainties in func-569

tional attribution from field measurements are high. The increased availability of coor-570

dinated airborne laser scanning (ALS) and airborne imaging spectroscopy (AIS) data571

in mid-latitudes has lead to opportunities to link structural variability with functional572

diversity (e.g., Antonarakis et al., 2014; Schneider et al., 2017), and previous studies have573

successfully integrated ALS and AIS data to attribute functional groups in the ED-2 model574

(e.g., Antonarakis et al., 2014; Bogan et al., 2019). Overlapping ALS and AIS data over575
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tropical forests are becoming increasingly common (Asner et al., 2014; de Almeida et al.,576

2019; Laybros et al., 2019) and could provide new opportunities to reduce uncertainties577

in functional attribution in future studies. Likewise, ongoing and upcoming spaceborne578

missions at the International Space Station such as GEDI (Hancock et al., 2019), and579

the Hyperspectral Imaging Suite (HISUI, Matsunaga et al., 2017) will allow for large-580

scale characterization of structure and function of ecosystems at global scale (Stavros581

et al., 2017; Schimel et al., 2019).582

4.2 Degradation impacts on ecosystem functioning583

In addition to carbon losses and structural changes, degradation has substantial584

impacts on energy and water cycles in Amazonian forests, especially in severely degraded585

forests with marked dry season. According to the ED-2.2 simulations, ground temper-586

ature of logged forests ranged from nearly-identical to intact forests (low-impact logging587

or old logging disturbances) to 0.7◦C warmer (recently logged forests), whereas severely588

burned forests experienced daytime near-surface temperatures increases of as much as589

4◦C (Figure S10), and differences between the lowest and highest biomass patches ex-590

ceeded 9◦C (Figure 6). Observed differences in understory temperatures show large vari-591

ability, but they generally agree with the ED-2.2 results. For example, results of tem-592

perature differences between logged and intact areas in the wet forests of Sabah, Malaysia,593

ranged from negligible to 1.2◦C for average maximum temperature (Senior et al., 2018;594

Jucker et al., 2018). The predicted warmer daytime understory temperatures at recur-595

rently burned forests also yielded drier near-surface conditions: daytime ground vapor596

pressure deficit was on average 15–25 hPa greater than in intact forests (equivalent to597

5–15% reduction in relative humidity), which is within the range observed after the most598

damaging experimental fire at TAN in 2007 (Brando et al., 2014), and similar to differ-599

ences in understory relative humidity reported in the dry season between open-canopy600

seasonally flooded forests and closed-canopy upland forests in the Central Amazon (de601

Resende et al., 2014).602

ED-2.2 showed various degrees of agreement with the few existing observational603

studies comparing changes in evapotranspiration due to degradation. Evapotranspira-604

tion response to reduced-impact logging was minor (−1.9% reduction relative to intact605

in BTE), consistent with eddy covariance tower estimates in a logging experiment in the606

same region (−3.7% reduction after accounting for site differences and interannual vari-607
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ability, S. D. Miller et al., 2011). The model results for the experimental fire at TAN,608

however, suggested similar wet-season ET between burned and intact forests (∆ET =609

ETBrn − ETInt = 0.002mmday−1), with stronger depletion of ET in burned forests610

during the dry season (∆ET = −0.31mmday−1) (Figures 5 and S6). In contrast, Brando,611

Silvério, et al. (2019) found higher ET in burned forests over a period of 4 years, albeit612

∆ET also showed significant interannual variability. A few other studies suggest that the613

significant decline in dry-season ET in burned forests may be expected in some areas:614

for example, Hirano et al. (2015) found that evapotranspiration of drained and burned615

peatlands with second-growth vegetation in Central Kalimantan (Indonesia) was 0.43mmday−1
616

lower than drained forests; Quesada et al. (2004) inferred ET changes from soil water617

budget in savannas and found significant reductions following fires in a savanna site in618

Central Brazil. The advent of high-resolution remote sensing products that quantify en-619

ergy, water, and carbon fluxes, such as the ECOsystem Spaceborne Thermal Radiome-620

ter Experiment on Space Station (ECOSTRESS) and the Orbiting Carbon Observatory621

3 (OCO-3), will provide new opportunities to quantify the role of tropical forest degra-622

dation on ecosystem functioning at regional scale (Schimel et al., 2019), as well as to pro-623

vide new benchmark data for ecosystem models.624

Our model results indicate that severe degradation substantially alters the mag-625

nitude and seasonality of energy, water, and carbon fluxes (Figures 5-7 and S10-S12).626

In our study, we disabled the vegetation dynamics in ED-2.2 to ensure that predicted627

differences in ecosystem functioning could be unequivocally attributed to structural di-628

versity, but the differences in ecosystem functioning between degraded and intact forests629

may diminish over time as the forest recovers from previous disturbance. This pathway630

is consistent with the relatively small differences in ET and surface temperature (Fig-631

ures 5-6) observed at logged forests at GYF (25 years since last disturbance) and burned632

forests at BTE (15 years since last disturbance). However, the recovery trajectory is one633

out of multiple possible pathways: degraded forests may be more prone to subsequent634

disturbances (Silvério et al., 2019; Hérault & Piponiot, 2018); the recovery dynamics can635

be long or not attainable if multiple stable states exist or if succession is arrested (Mesquita636

et al., 2015; Ghazoul & Chazdon, 2017), potentially prolonging the impacts of forest degra-637

dation on energy and water cycles; and feedbacks on precipitation caused by degrada-638

tion could affect the spatial distribution of rainfall similarly to the effect observed with639
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deforestation (Spracklen et al., 2018), although to our knowledge this impact has not yet640

been quantified for degraded forests.641

4.3 Interactions between forest degradation and climate variability642

The predicted reductions in evapotranspiration (ET) in the most degraded areas643

during the dry season suggest that land-use change impacts on the water cycle may be644

more widespread and pervasive than indicated by earlier studies. Previous model-based645

studies showed that biome-wide deforestation could cause ET to decrease by 25–40% rel-646

ative to intact forests in the Amazon during the dry season (e.g., von Randow et al., 2004;647

Zemp et al., 2017). These reductions are comparable to the ET reductions predicted by648

ED-2.2 at the most degraded forests (21–32%, Figure 5). Because tropical forest degra-649

dation affects an area comparable to deforestation in the Amazon (Tyukavina et al., 2017),650

it may further reduce the strength of the Amazon water vapor source to the atmosphere.651

In our study, we focused on understanding how climate and structure variability impacts652

the water and energy fluxes, but degradation-driven changes in these fluxes are likely to653

feed back into the atmosphere. For example, changes in evapotranspiration and sensi-654

ble heat flux associated with deforestation are known to either redistribute or reduce to-655

tal rainfall in tropical forests (Spracklen et al., 2018, and references therein), and a sub-656

stantial fraction of South American precipitation water comes from evapotranspiration657

from Amazonian forests (van der Ent et al., 2010). Recent estimates of ET for the Ama-658

zon Basin from the Gravity Recovery and Climate Experiment (GRACE) suggest that659

the basin-wide ET (including intact forests) has decreased by 1.7% between 2002 and660

2015 (Swann & Koven, 2017). In addition, several studies suggest that the dry season661

in the Amazon is becoming longer (Fu et al., 2013; Sena et al., 2018), and land use change662

is one of the main drivers of the drying trend (Barkhordarian et al., 2018). The role of663

forest degradation on ongoing and future changes in climate across the Amazon remains664

uncertain and deserves further investigation, potentially with coupled biosphere-atmosphere665

models that represent heterogeneity in forest structure and functioning (Swann et al.,666

2015; Knox et al., 2015; Wu et al., 2017).667

Our results show that structural changes resulting from forest degradation make668

the forest surface drier and warmer (Figures 5-8 and S10). Drier and warmer conditions669

near the surface increase flammability (Brando, Paolucci, et al., 2019, and references therein),670

and it has been long suggested that forest degradation and canopy opening make forests671
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more likely to burn (e.g., Uhl & Buschbacher, 1985; Cochrane et al., 1999; Ray et al.,672

2005; A. A. C. Alencar et al., 2015). The ED-2.2 simulations indeed predicted higher flamma-673

bility in degraded (more open-canopy) forests on any given year (Figures 9 and S15). How-674

ever, our results also suggest that climate strongly drives the variability of flammable675

area across most of our study regions (Figures 9b and S15), which is consistent with the676

significant increases in forest fires in the Amazon during extreme drought years (Morton677

et al., 2013; Aragão et al., 2018). Moreover, our results indicate that differences in flammable678

area between intact and degraded forests are reduced or even reversed during extreme679

droughts, which indicates that under extreme conditions, the level of degradation is less680

critical to create flammable conditions. This effect was predicted for most years at TAN,681

which typically experiences severe and longer dry seasons compared to the other study682

regions (Figure S15).683

Previous studies suggest that parts of the Eastern Amazon could become drier by684

the end of the century and experience more extreme events, including droughts (IPCC,685

2014; Duffy et al., 2015), and thus potentially more susceptible to future fires (De Faria686

et al., 2017; Brando et al., 2020). However, how tropical forest flammability will respond687

in the long-term to ongoing changes in climate and land use is still uncertain, and re-688

cent studies have shown that either climate (Le Page et al., 2017) or land use (Fonseca689

et al., 2019) could be dominant on predicted shifts in fire regime. Importantly, while our690

analysis focused on flammability, and ED-2.2 fire model captures the general patterns691

of fire disturbance across the Amazon (Longo, Knox, Levine, et al., 2019), it does not692

represent many mechanisms and processes that are critical to describe fire dynamics in693

tropical forests, such as anthropogenic ignitions, diurnal cycle of fire intensity, and fire694

termination, therefore we could not quantify the effects of fire on further forest degra-695

dation. The use of process-based fire disturbance models within the ED-2.2 (e.g., Thon-696

icke et al., 2010; Le Page et al., 2015) framework could contribute to further improve our697

understanding of interactions between forest degradation, climate, and flammability across698

the Amazon.699

5 Conclusion700

Our study showed that tropical forest degradation can markedly modify the ecosys-701

tem functioning in the Amazon, with substantial reductions in evapotranspiration (ET)702

and gross primary productivity (GPP), and increase in surface temperature (Figures 5-703
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8). Within the regions included in our study, the effects of degradation on energy, wa-704

ter, and carbon cycles were the strongest in the Eastern and Southern Amazon, where705

the dry season is more pronounced. Notably, in areas where severe forest degradation706

resulted in substantial changes in forest structure, reductions in dry-season evapotran-707

spiration are similar to those found in deforested areas (Figure 5; von Randow et al., 2004).708

The area of the Amazon forest impacted by degradation is comparable to the deforested709

area (Asner et al., 2005; Morton et al., 2013; Souza Jr. et al., 2013; Tyukavina et al., 2017),710

and thus degradation-driven changes in water, energy, and carbon cycles are potentially711

important. However, the extent to which degradation affects the biophysical and bio-712

geochemical cycles at regional scale ultimately depends on (1) annual degradation rates;713

(2) recovery time of degraded forests; and (3) the likelihood that degraded forests are714

cleared. For example, (Brando, Silvério, et al., 2019) found that ET in burned forests715

was indistinguishable from intact forests 7 years after the last fire. While their result sug-716

gests fast recovery of degraded forests, the impacts of degradation on ET can still be re-717

gionally relevant if degradation rates are sufficiently high to maintain low average age718

since last disturbance in degraded forests. Moreover, we found that the impacts of trop-719

ical forest degradation on energy, water, and carbon cycles and on flammability are more720

pronounced during typical years than during extreme droughts (when all forests become721

flammable), which highlights the complex interactions between climate and forest struc-722

ture. To understand and reduce uncertainties of climate-structure interactions, it would723

be valuable to leverage the recent advances in remote sensing of forest structure, includ-724

ing the recently launched GEDI mission (Hancock et al., 2019), and terrestrial biosphere725

models that can represent complex and heterogeneous ecosystems (Fisher et al., 2018).726

Our study, while focusing on airborne lidar data, has demonstrated the opportunities727

to integrate remote sensing and terrestrial biosphere models even in regions with com-728

plex forest structure such as degraded forests.729
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Mar). Forest degradation and biomass loss along the Chocó region of Colom-1195
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Schneider, F. D., Kükenbrink, D., Schaepman, M. E., Schimel, D. S., & Morsdorf,1312

F. (2019, Apr). Quantifying 3D structure and occlusion in dense tropical1313

and temperate forests using close-range LiDAR. Agric. For. Meteorol., 268 ,1314

249–257. doi: 10.1016/j.agrformet.2019.01.0331315

Schneider, F. D., Morsdorf, F., Schmid, B., Petchey, O. L., Hueni, A., Schimel,1316

D. S., & Schaepman, M. E. (2017, Nov). Mapping functional diversity from1317

remotely sensed morphological and physiological forest traits. Nat. Commun.,1318

8 (1), 1441. doi: 10.1038/s41467-017-01530-31319

Schwarz, G. (1978, Mar). Estimating the dimension of a model. Ann. Stat., 6 (2),1320

461–464. doi: 10.1214/aos/11763441361321

Sena, E. T., Silva Dias, M. A. F., Carvalho, L. M. V., & Silva Dias, P. L. (2018,1322

Dec). Reduced wet-season length detected by satellite retrievals of cloudiness1323

over Brazilian Amazonia: A new methodology. J. Climate, 31 (24), 9941–9964.1324

doi: 10.1175/JCLI-D-17-0702.11325

Senior, R. A., Hill, J. K., Benedick, S., & Edwards, D. P. (2018, Mar). Tropical1326

forests are thermally buffered despite intensive selective logging. Glob. Change1327

–50–



manuscript submitted to JGR: Biogeosciences

Biol., 24 (3), 1267–1278. doi: 10.1111/gcb.139141328

Shao, G., Stark, S. C., de Almeida, D. R., & Smith, M. N. (2019, Feb). Towards1329

high throughput assessment of canopy dynamics: The estimation of leaf area1330

structure in Amazonian forests with multitemporal multi-sensor airborne lidar.1331

Remote Sens. Environ., 221 (221), 1–13. doi: 10.1016/j.rse.2018.10.0351332

Silva, C. V. J., Aragão, L. E. O. C., Barlow, J., Esṕırito-Santo, F., Young, P. J.,1333
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