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Abstract18

We develop a new method to analyze the total electron content (TEC) depression in the19

ionosphere after a tsunami occurrence. We employ Gaussian process regression to ac-20

curately estimate the TEC disturbance every 30 s using satellite observations from the21

GNSS network, even over regions without measurements. We face multiple challenges.22

First, the impact of the acoustic wave generated by a tsunami onto TEC levels is non-23

linear and anisotropic. Second, observation points are moving. Nevertheless, our method24

always computes these volumes, along with estimated uncertainties, when applied to the25

2011 Tohoku-Oki Earthquake, even with random selections of only 5% of the 1,000 GPS26

Earth Observation Network System receivers considered here over Japan. The method27

can warn of a tsunami event within 15 minutes of the earthquake, at high levels of con-28

fidence, even with a sparse receiver network. Hence, it is potentially applicable world-29

wide using the existing GNSS network.30

Plain Language Summary31

The air above the tsunami source is compressed by the locally raised sea surface.32

That increase in air pressure propagates upwards and causes a depression in the elec-33

tron density in the upper atmosphere, which is related to the size of the initial tsunami.34

The physical mechanisms involved are complex. Variations in electron density in the up-35

per atmosphere are detected from GPS satellite timing data but the interpretation is a36

challenge because the locations of the measurements from the satellites are moving. Nev-37

ertheless, our statistical method has made it possible to properly assess the volume (with38

uncertainties) of the electron density depression. An advantage of our technique is that39

it can estimate values even for regions where no measurement exist. Also, even when only40

5% of the observed data were used, the phenomenon can be measured very accurately.41

When applied to the 2011 Tohoku-Oki Earthquake in Japan, our method makes it pos-42

sible to warn of a tsunami event within 15 minutes of the earthquake. It is hoped, in the43

future, that this method will be embedded in early warning systems for tsunamis world-44

wide.45

1 Introduction46

The damage caused by tsunamis can be devastating. For example, more than 20,00047

people died in the tsunami following the 2011 Tohoku tsunami in Japan. One reason for48
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such levels of casualties is that current tsunami height predictions are relatively unre-49

liable, even following an identified earthquake event, and so early warning systems are50

not as effective as required. Initial sea surface deformations are typically indirectly de-51

termined from seismological inversions of the earthquake source. However, some of these52

early estimates are sometimes much lower than expected: for instance the 2011 Tohoku-53

oki earthquake initial estimated value of Mw7.9 was used for warnings but the actual mag-54

nitude was Mw9.1.55

Furthermore, the initial tsunami wave cannot be precisely inferred from seismic in-56

formation alone due to the complexity of the relationship between the earthquake source57

and the initial wave. For example so-called tsunami earthquakes generate much larger58

tsunamis than expected from the seismic source, e.g. the Mentawai 2010 tsunami (Lay59

et al., 2011; Satake et al., 2013), whereas some powerful earthquakes sometimes produce60

tsunamis much smaller than expected e.g. for the 2005 Mw8.6 Nias earthquake. These61

deficiencies in the seismic approach become even greater when considering additional con-62

tributions to the tsunami wave such as splay faults and submarine landslides not well63

picked up by seismic monitoring. One could account for the uncertainties in the earth-64

quake source estimates and propagate these to the initial tsunami height in real-time (Giles65

et al., 2021), but these approaches cannot realistically model in 3-D and in real-time the66

seabed deformation arising from the earthquake source due to epistemic, computational67

and observational inadequacies. Hence, observations closely related to the actual gen-68

erated tsunami wave are more likely to provide more precise warnings. One example is69

the successful data assimilation of tsunami wave from buoys, with either dense or pos-70

sibly sparse networks (Tanioka & Gusman, 2018; Wang et al., 2019). We explore here71

the use of real-time satellite data due to its global coverage, low expense, low mainte-72

nance, and rapid access.73

A path towards accurate warnings is to estimate the Tsunami Ionospheric Holes74

(TIHs) generated in the ionosphere after the initial tsunami occurrence (Kamogawa et75

al., 2016). The formation of a TIH, which is a decrease in total electron content (TEC)76

in the ionosphere, can be explained by the following physical mechanisms (Kamogawa77

et al., 2016; Shinagawa et al., 2013). First, a displacement of sea surface caused by a tsunami78

generates acoustic waves that propagate vertically upward and reach the ionosphere. Then,79

the plasma is moved along the magnetic field by the sound waves and the downward flow80

is larger than the upward flow partly because the gravity force causes downward motion.81

–3–



manuscript submitted to Geophysical Research Letters

The downward plasma causes recombination and ion production is suppressed, result-82

ing in a decrease in TECs, and the depression in TECs is called a TIH. The TIH observed83

in the ionosphere at the time of the 2011 Tohoku tsunami has been reproduced by per-84

forming numerical simulations of this physical phenomenon (Shinagawa et al., 2013; Zetter-85

gren et al., 2017; Zettergren & Snively, 2019).86

In Japan, the GPS Earth Observation Network System (GEONET), which is a net-87

work of more than 1,200 receivers, enables us to observe the behavior of the TEC in the88

ionosphere with a large number of data points. The most prominent case of the TEC89

changes in the ionosphere observed by GEONET is the tsunami following the 2011 Earth-90

quake, off of the Pacific coast of Tohoku. By focusing on the changes in the ionosphere91

after the earthquake and observing the high-frequency component of the TEC fluctu-92

ations, Tsugawa et al. (2011) observed a rapid decrease in TEC near the epicenter ap-93

proximately 7 minutes after the earthquake : the rapid fluctuation of the high-frequency94

component of TEC was detected as concentric waves that radiated outward, and these95

concentric waves were confirmed to have had a central point source. A. Saito et al. (2011)96

analyzed the unfiltered TEC fluctuations in which, a significant decrease in TEC was ob-97

served, with an amplitude of up to 5 TECu and an area of 500 km. Similarly, Kakinami98

et al. (2012) showed that the amplitude of the decrease in TEC exceeds 5 TECu, ana-99

lyzing the TEC without frequency filtering.100

Furthermore, Kamogawa et al. (2016) examined the behavior of the TEC depres-101

sion in the ionosphere after the tsunami, examining the low-frequency component of TEC102

in a variety of tsunami cases including the 2011 Tohoku tsunami. They discovered a pos-103

itive correlation between the initial tsunami height and the rate of TEC depression. It104

is thus likely possible to detect an initial tsunami by evaluating the magnitude of TIH,105

which is the reduction of the TEC in the ionosphere. However, it is still challenging to106

define the scale of TIH, because even if a dense network of GNSS receivers is maintained,107

such as in Japan, there are areas where the TEC cannot be measured by the network.108

Moreover, the TEC measurement locations move in the same way as the satellite moves,109

and those locations are not uniformly distributed within the target range. The shape of110

the TIH cannot be completely captured from the measurement points alone. In addi-111

tion, in regions where GNSS observation networks are less dense, the number of avail-112

able data is even smaller, making it very difficult to detect the TIH confidently.113
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To overcome these problems, we implement below a statistical method for the anal-114

ysis of TEC using satellite data, which allows us to estimate TEC values even over ar-115

eas with no measurements and even to evaluate the whole TIH even without a dense mea-116

surement network such as GEONET in Japan. Our approach does not make any assump-117

tion on the nature of the source of the tsunami. This method enables us to calculate the118

volume (with uncertainty) of the hole as an assessment of the scale of the TIH, and we119

propose to use its volume as a measure of the TIH. We believe that estimating the TIH120

provides a new and important tool for early tsunami warning systems that is indepen-121

dent of seismology.122

In section 2, the pre-processing and characteristics of the data are described in de-123

tail to ensure that this study is reproducible. In addition, we describe our surface fit-124

ting method. In section 3, we present the results of fitting surfaces computed by our new125

method and the time series analysis of the TIH volume. In section 4, we conclude and126

mention future possibilities offered by this method.127

2 Data and Method128

2.1 Data129

In this study, TEC is calculated using GEONET data operated by the Geospatial130

Information Authority of Japan, and the following assumptions are made in processing131

the data. First, we approximate the F region, which contains many more electrons than132

other regions in the ionosphere, as a thin layer at an altitude of 300 km because the two133

effects of the chemical reactions and diffusion are balanced and the electron density is134

maximized at an altitude of 300 km. The point where the line connecting a GNSS satel-135

lite and a receiver intersects with this approximated thin layer is called the ionospheric136

point (IP). The footprint of the IP to the surface is called the Sub-Ionospheric Point (SIP).137

Two radio signals from the GNSS satellites, 1575.42 MHz and 1222.60 MHz, are138

transmitted to the GNSS receivers, and the propagation time of the radio signals depends139

on the electron density in the atmosphere. Therefore, the TEC between the GNSS satel-140

lites and the GNSS receivers can be estimated from the phase delay of these two types141

of radio signals. This TEC, which is in the pathway between a satellite and a receiver,142

is called the slant TEC, noting that in general the line of sight to the satellite is not ver-143

tical. The slant TEC at the time of the earthquake is used as the reference value for the144
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time-series slant TEC data. The time-series slant TEC is defined as the difference be-145

tween the slant TEC and the reference TEC value for each satellite receiver pair.146

For each time-series slant TEC data, a quadratic fitting is performed by the ordi-147

nary least-squares method for data points from 30 minutes before to 7 minutes after the148

time of the earthquake to be consistent with the previous study (Kamogawa et al., 2016).149

These fitting curves are assumed to represent the time series slant TEC data as it would150

have been in the absence of the effect of TEC depression caused by acoustic waves in-151

duced by the tsunami because it takes almost 7 minutes for acoustic waves to reach the152

ionosphere.153

Then, we calculate the difference between the fitting curves and the time-series slant154

TECs for each case. By multiplying the time series differences by the cosine of the an-155

gle θ between the vertical upward direction and the straight line between the satellite156

and the receiver, we obtain ∆vTEC, which is the variation of the vertical component of157

the slant TEC time series data. The conceptual diagram of the description of the data158

processing so far is drawn in Figure 1.159

Figure 1. The schematic image of TEC depression detected by a satellite and a receiver.

–6–



manuscript submitted to Geophysical Research Letters

To apply a low-pass filter to this ∆vTEC, we take a 300 seconds backward mov-160

ing average to obtain the low-frequency components of ∆vTEC. Since TIH is a hole formed161

by the decrease of TEC, we want to focus on the decrease of TEC in our analysis. For162

this reason, in the following sections, we use the data of which the low-frequency ∆vTEC163

is less than 1. The low-frequency ∆vTEC is hereinafter referred as TEC for sake of sim-164

plicity.165

The unit of TEC is TECu, which is 1.0×1016electron m−2. Since the time reso-166

lution of the available data is the 30-second interval, we set the time of the 2011 off the167

Pacific coast of Tohoku Earthquake occurrence as 6:46:30 UTC even though the exact168

occurrence time is 6:46:18 UTC according to the Japan Meteorological Agency. In ad-169

dition, the data include outliers due to broken receivers, so we detected them using a method170

based on K-nearest neighbor algorithm (Cover & Hart, 1967), and removed these out-171

liers from the data to be analyzed.172

2.2 Robust Fitting Method with Gaussian Process Regression173

We analyse data over the area of 10 degrees of latitude and 10 degrees of longitude174

centered at 38.297◦N and 142.373◦E, the location of the epicenter of the 2011 Tohoku175

Earthquake as reported by the USGS, see Figure 2. Gaussian process (GP) regression176

(Williams & Rasmussen, 2006) is a method of regressing a function Y (here the TEC177

as a function of horizontal coordinates) using a flexible nonlinear model based on a set178

of observed data. A GP is in fact a generalization of the multivariate normal distribu-179

tion to infinite dimensions: any marginal distribution projected to finite dimensions is180

multivariate normal. The fitted GP here probabilistically represents all possible TEC181

surfaces that interpolate (up to a so-called nugget noise level) the observations. We em-182

ploy here the Matérn kernel with an additional nugget that accounts for some noise about183

the observations:184

kν(xp,xq) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
, where r = |xp − xq| (1)

cov(yp, yq) = kν(xp,xq) + σ2δp,q (2)

Here, Kν is a modified Bessel function of the second kind, Γ is the Gamma function, ν185

and l are positive parameters, σ2 is the variance of the noise (i.e. the nugget), and δp,q =186

1 if p = q and zero otherwise. The Matérn Kernel’s smoothness ν generates a GP whose187

smoothness relates to ν, and should thus be carefully chosen to match the smoothness188
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of the function Y . By setting ν = 5/2, we use a kernel function that is twice differen-189

tiable, which, in our analysis, conforms very well to the physical phenomena of TEC re-190

duction.191

After fitting our GP, the joint distribution of the estimates at any new locations192

are estimated (with uncertainty) even in areas where there is no measurement data. Here193

we predict the TEC surface over the area in increments of 0.01 degrees in both latitude194

and longitude. However, using 1,200 receivers, it takes more than 10 minutes to fit the195

full data due to costs of O(n3) where n is the number of data points.196

A stochastic partial differential equation (SPDE) approach using the integrated nested197

Laplace approximation (INLA) (Lindgren et al., 2011; Rue et al., 2009) can reduce the198

cost of fitting the GP. Such an approach not only is faster but has demonstrated that199

spatial predictions are more accurate, less uncertain and more robust than the standard200

covariance-based fitting of a GP e.g. when mapping stratospheric ozone (Chang et al.,201

2015). Exploiting Gaussian Markov random fields (GMRF), INLA-SPDE reduces costs202

to O(n
3
2 ) for two dimensions. The crucial point is that a Gaussian spatial process with203

a Matérn covariance function is the stationary solution to a certain SPDE that can be204

solved using finite element approaches and approximated using the INLA in the GMRF205

setting. Nevertheless, some effort must be put into creating a reasonable mesh that solves206

the SPDE using finite elements, shown in Figure S1 in the supporting information for207

our region. The number of elements in the mesh cannot be too large as the computa-208

tional burden would become too high, and not too small, as the surface would not be209

a good approximation of the actual surface.210

Using this INLA-SPDE method with about 5,200 mesh elements, the average com-211

putational time to fit the full data and predict the surface in 30-second increments from212

5:30:00 to 6:30:00 becomes less than 1 minute, with a standard deviation of less than 5213

seconds, whereas the average computational time based on the standard GP regression214

method is more than 10 minutes, with a standard deviation of more than 2 minutes.215

3 Results216

The absolute values of the outliers can reach over 50 TECu, which can distort the217

fitting surface considerably. Therefore, all the analysis in this study are implemented af-218

ter removing the outliers.219
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Figure 2 shows that measured TEC data, its surface fitting, and 2D mapping for220

both full data and sparse data. Although Figure 2 panel (a) shows that the observed TEC221

decreases near the epicenter, the position where it decreases the most and the range of222

depression cannot be described in detail due to the limited number of data points.223

However, panels (c), (e), and (g) show that the surface fitting enables us to esti-224

mate the TEC values with uncertainty even over the region where the data is not de-225

tected by the GNSS satellites and receivers. The estimated values are displayed in in-226

crements of 0.01 degrees in latitude and longitude.227

The panel (b) shows the TEC data measured by only 5% of the receivers chosen228

at random. The surface fitting method works effectively and succeeds in capturing the229

TIH using the sparse data as shown in the panel (d) and (f). It can also be seen that230

the uncertainty increases with a smaller number of data points. The panel (h) shows that231

even with sparse data, the location and range of the TIH is adequately estimated and232

consistent with the case of full data shown in the panel (g). For more details, the time233

series movies of each panel in Figure 2 in the supporting information.234

Figure 3 shows the measured TEC data at different times and the time series of235

the TIH volume, which is calculated by trapezoidal quadrature method for the region236

where the TEC estimated by the surface fitting has a negative value. In other words, the237

volume between the flat surface, that is the TEC values are equal to 0, and the fitting238

surface is calculated. In panels (a), (b), (c), and (d), the red star is the location of the239

epicenter of the 2011 Tohoku Earthquake and the two large black circles with slanting240

lines are outliers, which are excluded using our method.241

The main effect by acoustic waves induced by the initial tsunami is that the reduc-242

tion of TEC by moving the plasma along the magnetic field and causing recombination.243

More specifically, although there are regions where the TEC increases due to complex244

physical mechanisms, the magnitude of the initial tsunami can be assessed by focusing245

on the decrease in the TEC. Therefore, the volume of the region with negative TEC value246

is considered to be related to the magnitude of the initial tsunami.247

The solid lines in the panel (e) and (f) in Figure 3 display the TIH volumes com-248

puted for the full data and the dashed lines are for the sparse data. In the case of the249

sparse data, we repeat 10 times the randomly selection of 5% of the receivers and the250

Gaussian process regression to fit the surfaces, and then calculate the average value of251

the resulting volume. This iterative process excludes a possible influence of the random252
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Figure 2. Left-hand side is for the full data and right-hand side is for the sparse data using

only 5% of the GEONET receivers. (a) and (b) are measured TEC data. (c) and (d) are mea-

sured TEC data (blue dots) and the fitting surface (red surface). (e) and (f) are measured TEC

data (blue dots) and 99% one-sided confidence interval of the fitting surface (green surface). (g)

and (h) are 2D projection of the fitting surface. All plots are for data at 6:08:30 (UCT). The

fitting surface is computed using the INLA-SPDE method.
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seed used in the sparse data selection on the results. As shown in the panel (a), (b), (c),253

and(d), the measurement points are moving and not uniformly distributed in the tar-254

geting range. Still, the time series of the computed TIH volumes looks continuous, as255

shown in the panel (e) and (f).256

The warning system based on this method is highly feasible because the surface257

fitting and the estimation of the TEC values for the full data can be processed in less258

than a minute based on the INLA-SPDE method. However, in the case of the sparse data259

fitting, our implementation of the INLA-SPDE method sometimes fails due to the ge-260

ometric meshing optimised for larger data sets, naturally where the benefit of this method261

is. Nevertheless, the robustness and feasibility of this method never deteriorate because262

it is possible to compute the surface and estimated values in less than 10 seconds for the263

sparse data case based on the standard GP regression method.264

Our method is the first to demonstrate that we can calculate the volume of TIHs265

accurately in real-time and use it as a measure of TIHs even when only a limited num-266

ber of measurement points are available. In addition, the time series of the volumes ob-267

tained from the surface by points on the 80% and 99% one-sided confidence intervals (CIs)268

of the TEC values are also plotted in Figure 3.269

The volume of the TIH begins to increase almost 10 minutes after the earthquake270

occurrence and continues to increase until about 28 minutes after the earthquake in Fig-271

ure 3 (e) and (f). In this analysis, a provisional threshold is set at 200,000 TECu×km2.272

In the case of the full data, both panels show that the volumes calculated from the fit-273

ting surface (but not accounting for uncertainties in the approximation) reach the thresh-274

old 1 and 2 minutes earlier respectively than the volumes of 80% and 99% CI. Similarly,275

in the case of the sparse data, the time difference is about 2 and 4 minutes respectively276

to reach the threshold for the volumes computed from the fitting surface and both CIs.277

It means that thanks to our uncertainty computations, making sure that a warning is278

at a high level of confidence, based on data, of either 80% or 99% results in delays for279

advisories of only respectively 1-2 or 2-4 minutes.280

4 Conclusion and Discussion281

In this paper, we compute the volume of the ionospheric disturbance generated by282

a tsunami, in real time, and with enough confidence to issue warnings. The surface fits283

the TEC data using a Gaussian process regression after removing outliers. It enables us284
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Figure 3. The top four panels are the observed data. The red star is the epicenter and the

two large black circles are the outliers. The panel (a), (b), (c), and (d) are the TEC data mea-

sured at 5:46:30, 6:00:00, 6:08:00, and 6:16:00 UTC respectively. 5:46:30 was the time of the

earthquake occurrence. The bottom two panels are the time series of TIH volume for full data

and sparse data with one-sided confidence intervals. The red solid line is the volume calculated

fitting surface with full data. The solid yellow line and the solid blue line are one-sided 80% CI

and 99% CI respectively. The dashed lines are for sparse data with only 5% of receivers. The

horizontal black line is a provisional threshold. Panel (e) is the TEC surface computed based on

standard GP regression. Panel (f) is the TEC surface computed based on GP regression using

the INLA-SPDE method.
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to estimate the estimated TEC values over the entire target area. Furthermore, uncer-285

tainty can be properly evaluated for the estimated value of TEC according to the den-286

sity of observations.287

The TIH captured by our method is located east of the epicenter. This is consis-288

tent with the initial tsunami estimated by the inversion analysis of the waveforms be-289

ing east of the epicenter (T. Saito et al., 2011). Also, the estimated TIH almost over-290

laps with the estimated initial tsunami area. In the ionosphere, the anisotropic conduc-291

tance and geomagnetic field directions theoretically cause ionospheric currents to have292

complex shapes (Zettergren & Snively, 2019). We concretely show here that the estimated293

TIH can be anisotropic using observed TEC data and a statistical approach.294

As shown in our results, this new method is robust as it works in situations where295

measurements are not uniformly distributed and moving, TIHs display anisotropy, and296

even if the number of observed data points is sparse. Since our estimates of the shape297

of the anisotropic TIHs reflect the signature of the initial tsunami wave, we demonstrate298

that using one specific data point such as the minimum observed value as a scale of a299

TIH is insufficient to characterise the initial wave. Our computation of the volume of300

TIHs as a measure to assess the scale of TIHs takes fully into account the spatial vari-301

ations of the TEC depression generated by the tsunami over the domain, including any302

anisotropy.303

As larger initial tsunamis cause larger decreases in TEC (Astafyeva et al., 2013;304

Kamogawa et al., 2016), if a TIH volume reaches a certain threshold, then it indicates305

that a large-scale initial tsunami has occurred. Therefore, using our method, it is pos-306

sible to build an early warning system that issues a tsunami warning when the volume307

of the TIH exceeds a certain threshold, taking uncertainty into consideration. In our anal-308

ysis, we set a provisional threshold at 200,000 TECu×km2, and it is clear that the vol-309

umes calculated using both full data and sparse data exceed the threshold within 15 min-310

utes after the earthquake occurrence, or sooner with a lower threshold. Even carrying311

out the computations in the most exacting case, using 99% confidence intervals and sparse312

data (5% of the total observations) only delays the warning by around 4 minutes. We313

anticipate that more numerical work, more physical understanding of possible natural314

levels of TEC variations, and more data analysis will be required to establish more finely315

the thresholds at which advisories can be issued, and thus shorten the advisories to pos-316

sibly 10 minutes or so. Our implementation on the 2011 Tohoku Earthquake in Japan317
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demonstrates that our method works well there. Hence it is very likely that this method318

can be applied to tsunamis around the world, caused by any kind of sources. This may319

enable the construction of a robust worldwide tsunami early warning system using the320

volume of TIHs as an index.321
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