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Text S1: Data continuity and gap handling

OMNI data

We accessed the low-resolution OMNI dataset via the OMNIWeb interface. Within
the OMNI data, all gaps of 72 hours or less were filled via linear interpolation.

CME data

The CME data were taken from the SOHO LASCO CME catalog.

Given that this project works with hourly data and multiple CMEs can occur
within the same hour, the CME with the largest energy was taken in the cases when
multiple CMEs did occur within an hour. Additionally, many events in the catalogue
did not have all data fields filled, hence we used only the events for which all data were
reported.

GOES data

The GOES x-ray flux data are provided by NOAA with one minute averaging.
All the available files were downloaded for which primary and secondary satellites were
specified and data from the satellite recommended by this relevant NOAA document
was taken. These minute data were averaged in hourly bins to generate time series
consistent with the other data sources. No gap exceeded 72 hours, and all gaps were
interpolated linearly.

Text S2: Uncertainty in model parameters

One major paradigm of learning uncertainty in neural networks is to represent
the network weights, or some internal aspect of the network, probabilistically. One
of the first implementations was proposed by Blundell et al. (2015), who describe an
architecture in which all of the network weights and biases are represented as distri-
butions, and the problem becomes learning the parameters of those distributions. To
achieve this, Blundell et al. (2015) outline a variational Bayesian framework. Varia-
tional refers to the fact that the true distribution over network weights is approximated
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by some simpler distribution, and Bayesian refers to the representation of this condi-
tional distribution via Bayes’ rule.

The cost function in this framework (Equation 1 depends only on the varia-
tional posterior, a prior over the weights (which we must specify), and a likelihood
term dependent on the data. Blundell et al. (2015) propose a Gaussian mixture
p(w) =

∏
i πN (wi|0, σ2

1) + (1 − π)N (wi|0, σ2
2) for the prior, which we also utilize.

This likelihood term is captured by a NN. Because the expectations are taken over the
variational posterior, we can approximate them simply by sampling weights from their
variational posteriors for given θ, and then we can update θ by differentiating the total
loss against θ. This approach requires us to specify a functional form for p(x,y|w),
which effectively captures the level of anticipated noise in the training data.

min
θ

Eq [log q(w|θ)]− Eq [log p(w)]− Eq [log p(x,y|w)] (1)

This approach hinges on the choice of a simple variational posterior, and Blundell
et al. (2015) suggest a Gaussian posterior over the weights. Since the Gaussian is a two-
parameter model, this sort of architecture effectively double the number of parameters
per weight, since the network learns a mean and a variance for each weight.

Given that the numerical differentiation can easily be done by TensorFlow, what
remains is only to add the so-called“KL-losses” Eq [log q(w|θ)] − Eq [log p(w)] to the
negative log-likelihood loss of the data given weights sampled from the variational
posterior while ensuring that the learnable parameters in the network are the θ pa-
rameterizing the variational posterior distributions over the weights. With a trained
the network, arbitrarily many outputs can be sampled for a given input by sampling
from the variational posterior over the weights, effectively simulating output from an
ensemble of models. Then, statistics such as confidence intervals can be computed
from this output.

This approach to probabilistic neural networks did not result in meaningful prob-
abilistic forecasts for Est (Figure S1). Instead, the variational approach ended up
learning a well-constrained posterior over the network weights, indicating that the
network was quite confident that it had learned the optimal model. The confidence
interval constructed from a Monte Carlo suite of models drawn from the variational
posterior over the weights is barely visible around the mean posterior forecast, even
though this confidence interval almost never contains the observed Est values. This
approach simply demonstrates that the optimal model is confidently known by the
network.

Text S3: Output distribution selection

Basic statistics of Est observations can inform the choice of output distribution.
For instance, the empirical histogram of Est shows an asymmetry defined by a large
tail at negative values (Figure S2B). Symmetric two-parameter distributions like the
Gaussian and Laplace distributions fail to capture this asymmetry, and the Gaussian
distribution furthermore fails to capture the heavy negative tail. These results are
demonstrated by the quantile-quantile plots, which show that the Gumbel distribu-
tion is most appropriate for modeling the empirical distribution of Est (Figure S2A).
The Gumbel distribution is from the family of generalized extreme value distribu-
tions often used to model phenomena with heavy tails such as earthquakes or flooding
events. In this sense, the distribution of Est captures the extreme value nature of
geomagnetic storms and motivates the utilization of the Gumbel distribution as an
output distribution for probabilistic forecasting of Est.
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Figure S1. Model output for at 6 hour ahead forecast from the probabilistic network model-

ing uncertainty over network weights. The confidence interval was computed by sampling several

thousand weights from the trained network and taking the 2.5-97.5% interval of output values.
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Figure S2. (A) Quantile-quantile plots for Est for three two-parameter distributions. The

Gumbel distribution is closest to linear. (B) Empirical histogram of Est and a well-fitting Gum-

bel probability density showing how the asymmetry of the Gumbel distribution is capable of

capturing the long tail of negative Est values.
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However, while the marginal distribution of Est might be well-approximated by
a Gumbel distribution, the forecast itself is a much more complicated distribution
conditioned on the time history of the input data, neural network weights and biases,
and the internal memory of the LSTM cell. The nature of this conditional output
distribution is unknown. While it could be framed in a Bayesian sense, where the prior
could be specified as a Gumbel distribution, the evidence and likelihood terms in this
framework are not at all obvious to construct. Instead, we argue for regularization
of the cost function, which can be heuristically motivated. This regularization is
necessary because the choice of output distribution and cost function strongly impact
the qualitative nature of network output (Figure S3) and forecast reliability (Figure 3
in manuscript).

We considered three cases:

1. Gumbel output distribution with Gumbel as likelihood cost function.

2. Gaussian output distribution with Gaussian as likelihood cost function.

3. Gaussian output with regularized Gaussian as likelihood cost function.

The first two cases follow the paradigm that the output distribution simultaneously
serves as the likelihood distribution that is the cost function in this probabilistic frame-
work. Output from each of these is shown for a storm in Figure S3, and the overall
reliability of these networks demonstrates that the third, regularized architecture is
most reliable (Figure 3 in main manuscript).

Figure S3. Network output for a 6 hour ahead Est forecast for three different cost func-

tions. Left: output over Gumbel distributions with the Gumbel likelihood cost (Equation 2).

Middle/Right: both networks learned Gaussian outputs, but the right plot shows output for the

network that utilized the regularized Gaussian cost function (Equation 4), while the middle one

utilized the basic Gaussian likelihood function (Equation 3). All networks were trained on data

from both the solar disk (x-ray fluxes, CMEs) as well as solar wind observations from the L1

point.

The cost functions corresponding to these cases are negative log-likelihoods,
whose expressions are

CGumbel(y, µ, σ) = log σ − y−µ
σ + e

y−µ
σ (2)

CGaussian(y, µ, σ) = log
(√

2π σ
)
+ (y−µ)2

2σ2 (3)

CGaussian, regularized(y, µ, σ) = log
(√

2π σ
)
+ (y−µ)2

2σ2 + α (y − µ)
2
+ β 1

σ2 (4)
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The cost functions in Equations 2 and 3, which are both negative log-likelihoods,
produced networks that would not forecast mean values less than -100 nT. This effect
is quite apparent in the first panel of Figure S3, where the Gumbel network forecasts
storm main phase values at most -75 nT despite observed values exceeding -150 nT.
Given that this network is generating a 6 hour ahead forecast, observations of Est from
6 hours ago should contribute information about reasonable magnitudes for the current
forecast, meaning that once observed values decreased beyond -75 nT, one might expect
the network to forecast more negative values if it perceives the storm to be continuing.
However, this is not the case for the storm shown, during which Est exceeded -75 nT for
roughly 20 hours. What is apparent is that instead of moving the output distribution
location, the network favored increasing the output uncertainty, in general capturing
the observed range of variability within the 95% confidence interval. While this result
demonstrates that the network is aware of its forecast uncertainty during the main
phase of the storm, the inability of the network to move its maximum likelihood
estimate to forecast large storm magnitudes diminishes its operational reliability. The
corresponding reliabilities demonstrate the reduced utility of the probabilistic forecasts
for large storm amplitudes from the Gaussian and Gumbel networks: while they are
quite reliable at smaller Est thresholds, forecasting Est beyond -75 nT becomes less
reliable.

The structure of the cost functions for a given true Est value of -150 nT (Fig-
ure S4) shows why the unregularized networks favor expanding uncertainty rather than
shifting the central value for the forecast: the cost functions are much less sensitive to
forecasted µ if the forecasted σ is large, meaning that the network will tend to learn
to increase σ without having a strong incentive to learn a reasonable µ. Thus, the
idea to regularize is motivated by the desire to incentivize the network to learn more
reasonable estimates for µ. A simple way to include this incentive is to add another
least squares cost that is not normalized by the forecasted uncertainty, as shown in
Equation 4, where the quantity α is a new hyper-parameter that dictates the strength
of this regularization.

This additional cost forces the network to learn more reasonable forecasts for µ
while still allowing it to change σ quite freely for a given µ. As can be seen in Figures S3
and 3 (in manuscript), this regularization term significantly improves the forecast.
The maximum likelihood forecast more closely overlaps the observed Est values, and
the forecast uncertainty still exhibits meaningful behavior, with large uncertainties
associated with storm arrivals and smaller uncertainties during storm recovery and
quiet times.

We also add a second regularizing term, β 1
σ2 , which permits adjustment of the

forecasted uncertainty. Positive values of β penalize smaller forecast uncertainties,
whereas negative values of β encourage smaller forecast uncertainties.

Text S4: Learning parameters

This section briefly lists all other learning parameters used during training of
the neural networks. The optimizer of choice is the so-called “adam” optimizer, which
uses both momentum (i.e., memory of the previous update direction), and scaling by
the inverse of the second moment of the gradient to generate first order updates in
stochastic gradient descent optimization (Kingma & Ba, 2014). This optimizer has
three hyperparameters, and the only one that was changed is the step-size multiplier.
The value of this parameter was varied between 0.001 and 0.005. All networks were
trained with batch sizes of 1000 hours, meaning that the trained LSTM cells developed
memories relevant to processes operating on the timescale of months, which is more
than enough for learning storm-scale dynamics on the timescales of days to weeks.
Networks were trained over 1000-2000 epochs, where an epoch reflects one entire pass
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Figure S4. Cost functions for an observed output of y = −150 nT, with each panel corre-

sponding to the cost functions used to train the networks whose output is shown in Figures S3.

Note that the contours show the logarithm of the cost functions.

through the training dataset. We selected α = 0.1 and β = 1 for the regularizing
coefficient values in Equation 4.

Text S5: Forecast accuracy sensitivity to input data

In order to assess the benefit of incorporating observations from the solar disk, we
trained two separate networks to generate probabilistic forecasts for Est: one network
was trained on both data from the solar disk and solar wind observations from the
L1 point (i.e., utilizing the GOES, CME, and OMNI data), and the second network
was trained only on the solar wind observations from the L1 point (i.e., utilizing only
the OMNI data). Both networks had identical architectures that differed only by
the dimensionalities of the weights and biases necessary to accommodate the differing
input dimensionalities.

This section demonstrates that utilizing observations of the solar disk in addition
to observations from the L1 point as input data, forecasting of storm main phase
timing and amplitude does not significantly improve, although the estimated of the
uncertainty envelope becomes more reliable (Figures S5-S6), especially for multiple
hours ahead forecast. Nevertheless, more opportunities remain for developing neural
network architectures capable of utilizing sparse, impulse-like solar disk observations.

For both networks, storm onset remains difficult to predict, with the network
not recognizing that a storm has begun until it receives as input the storm onset
from the L1 point (Figures S5 & S6). Once the networks have felt the storm onset,
however, they both dramatically expand uncertainty in their forecasts. The networks
with only L1 inputs expand uncertainty more during the storm main phase and less
during recovery and quiet times compared to the networks with both L1 and solar disk
inputs, resulting in the observed reliability curves that demonstrate reduced reliability
for low amplitude storms but slightly higher reliability for larger amplitude storms
(Figure S7). For probable, high amplitude storms, then, the networks with only L1
inputs are slightly more reliable, while for smaller amplitude storms the networks with
both L1 and solar disk inputs are more reliable.
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Figure S5. 1-6 hour ahead forecasts for the 2016 CME storm for the networks with observa-

tions from both the solar disk and L1 point as input.

Figure S6. 1-6 hour ahead forecasts for the 2016 CME storm for the networks with only

observations from the L1 point as input.
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Figure S7. Reliability of 6 hour ahead forecast for network trained on L1 data only compared

with the network trained on both L1 and solar disk inputs.

Text S6: Long Short-Term Memory

The complete set of equations for the LSTM is as follows

ft = σg(Wf xt + Uf yt−1 + bf )

it = σg(Wi xt + Ui yt−1 + bi)

ot = σg(Wo xt + Uo yt−1 + bo)

ct = ft � ct−1 + it � σh(Wc xt +Uc yt−1 + bc)

zt = ot � σh(ct)

which is then again combined with the input to generate a new output. for input xt ∈
Rd at time t and z, c ∈ Rm where m is a hyperparameter defining the dimensionality
of the cell memory c and output z. The functions σg(.) and σh(.) are the sigmoid
and hyperbolic tangent functions, respectively. The weights then have the following
dimensions W ∈ Rm×d and U ∈ Rm×m and the biases are all in Rm. The � operator
signifies an elementwise product. Thus, for given dimensionsm and d, the total number
of parameters to be learned within an LSTM cell is 4md+ 4m2 + 4m.

Other Supplementary Information
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Ahead Architecture R RMSE (nT) Inputs Database Reference

t + 1 MLP, BP 0.92 15 n, v, Bz 1963–
1983

Gleisner et al. (1996)

t + 1 Elman Recurrent,
BP

0.91 16 n, v, Bz 1963–
1987

Wu & Lundstedt (1996)

t + 1

Elman Recurrent,
BP

0.91 14.5

n, v, Bx, By, Bz
1963–
1992

Wu & Lundstedt (1997)

t + 2 0.89 16.3
t + 3 0.86 18.2
t + 4 0.83 19.9
t + 5 0.82 20
t + 6 0.82 20.8
t + 7 0.80 21.8
t + 8 0.77 23.1

t + 1 MLP, BP 0.95 11 n, v, Bx, By, Bz 1972–
1982

Kugblenu et al. (1999)

t + 1 Elman Recurrent,
BP

0.88 n, v, B, Bs 1968–
1987

Munsami (2000)

t + 1

MLP, BP

0.95

previous Dst 1983 Stepanova & Pérez (2000)

t + 2 0.93
t + 3 0.88
t + 4 0.85
t + 5 0.82
t + 6 0.78
t + 7 0.75
t + 8 0.72

t + 1

MLP, BP

0.93 Bx, By, Bz, B, n, v,
dBx/dt, dBy/dt,
dBz/dt, dv/dt,
dn/dt

1998–
1999

Jankovičová et al. (2002)
t + 6 0.73
t + 12 0.69
t + 18 0.66

t + 1 MLP, BP 0.70 polar cap index,
previous Dst

1997 Stepanova et al. (2005)

t + 1 Elman Recurrent,
BP

0.83 13.9 By, Bz, B 1995–
2005

Pallocchia et al. (2006)

t + 1
Locally Linear
Neuro-Fuzzy Model

0.983 4.38
n, v, Bs, Dst,
dDst/dt

1995–
1999

Sharifie et al. (2006)
t + 2 0.951 7.43
t + 3 0.909 10
t + 4 0.870 11.83

t + 1 Radial Basis Func-
tion Network

18.45 n, v, Bs 1998 Wei et al. (2007)

t + 1
MLP, BP

0.86 8.84
Boyle index, Dp

1998–
2009

Bala & Reiff (2012)t + 3 0.84 9.40
t + 6 0.80 10.34

t + 1 MLP, BP 0.77 Bz, n, v, T 1998–
2005

Revallo et al. (2014)

t + 1 Relevance Vector
Machine

0.96 10 By, Bz, v, n, a:p, T,
f10.7

1996–
2007

Andriyas & Andriyas (2015)

t + 1

MLP, Particle
Swarm

0.978 3.57

previous Dst
1990–
2016

Lazzús et al. (2017)

t + 2 0.936 5.97
t + 3 0.895 7.54
t + 4 0.857 8.82
t + 5 0.825 9.75
t + 6 0.788 10.89

t + 1

LSTM, BP

0.966 5.25

n, v, B, Bz, B-GPS,
previous Dst

2001–
2016

Gruet et al. (2018)

t + 2 0.946 6.55
t + 3 0.928 7.59
t + 4 0.910 8.53
t + 5 0.892 9.18
t + 6 0.873 9.86

t + 1

LSTM

0.986 2.64
Bx, By, Bz, n, v, T,
lat, lon, CME
(width, speed,
accel, mass,
energy), x-ray flux

1996–
2018

this study

t + 2 0.963 4.19
t + 3 0.939 5.34
t + 4 0.918 6.22
t + 5 0.900 7.01
t + 6 0.883 7.54

Table S1. Results of previous applications of neural networks to Dst forecasting, after Lazzús

et al. (2017). MLP: multilayered perceptron. BP: backpropagation. LSTM: long short-term

memory. n: solar wind density. v: solar wind velocity. a:p: alpha-to-proton ratio. Bs: southward-

only component of interplanetary magnetic field. Dp: dynamic pressure = nv2. Compare the

values for R and RMSE with those resulting from a simple persistence forecast shown in Fig-

ure S8.
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Figure S8. Pearson correlation coefficients and root mean squared errors of persistence fore-

casting of Est and Dst with lags up to 6 hours, demonstrating how persistence forecasting results

in deceptively correlative and precise forecasts. On the left, forecasting is shown for all Est and

Dst observations from 1996-2018, while on the right, storm-time observations have been isolated

for persistence forecasting.
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Figure S9. Conventional forecast-observation scatter plots for both networks (in columns)

and forecasts from one to six hours ahead (in rows). Points shown are for all storms from 1996-

2018, including 5 hours before and after each storm. Contours, which are logarithmically spaced,

show the Gaussian kernel density estimate for the point cloud to aid in visualizing data density.

Also listed are typical skill values, namely the Pearson correlation coefficient and root mean

square error (RMSE), which are computed separately for storm times and for all training and

testing data.
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