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Abstract13

Geomagnetic storms, which are governed by the plasma magnetohydrodynamics of the14

solar-interplanetary-magnetosphere system, entail a formidable challenge for physical for-15

ward modeling. Yet, the abundance of high quality observational data has been amenable16

for the application of data-hungry neural networks to geomagnetic storm forecasting. Al-17

most all applications of neural networks to storm forecasting have utilized solar wind ob-18

servations from the Earth-Sun first Lagrangian point (L1) or closer and generated de-19

terministic output without uncertainty estimates. Furthermore, forecasting work has fo-20

cused on indices that are also sensitive to induced internal magnetic fields, complicat-21

ing the forecasting problem with another layer of non-linearity. We address these points,22

presenting neural networks trained on observations from both the solar disk and the L123

point. Our architecture generates reliable probabilistic forecasts over Est, the external24

component of the disturbance storm time index, showing that neural networks can gauge25

confidence in their output.26

Plain Language Summary27

Geomagnetic storms are capable of damaging infrastructure like power grids and28

communication lines, motivating our need to forecast them. Solar phenomena produce29

geomagnetic storms, which occur when these phenomena reach Earth as bursts of the30

solar wind. Decades of satellite observations of both the solar wind near the Earth and31

of the Sun itself are promising for forecasting geomagnetic storms with algorithms known32

as neural networks. Several neural network architectures have been applied to geomag-33

netic storm forecasting, but their full potential remains unexplored. First, all existing34

neural networks have used measurements of the solar wind one hour upstream of the Earth35

or closer. While these observations are critical for understanding geomagnetic storm pro-36

gression, from them it is nearly impossible to forecast more than an hour in advance. We37

include observations of the Sun itself, which reach Earth much faster than the solar wind,38

thereby including information for forecasting further in advance. Second, all existing neu-39

ral networks have generated forecasts without uncertainty estimates, meaning that end-40

users (such as utilities or telecommunications companies) know little about forecast con-41

fidence. We present an architecture that generates estimates of uncertainty, and our re-42

sults demonstrate that neural networks learn how confident to be in their forecasts.43
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1 Introduction44

Mankind has experienced a number of blackouts caused by geomagnetically induced45

currents (GICs), which can result in millions of dollars of damages and leave millions with-46

out electricity (Bolduc, 2002; Love et al., 2018). The possibility of such disruptions has47

motivated the goal of forecasting GICs. All GICs in turn result from geomagnetic storms,48

which generate the variation in Earth’s external field that induces GICs. The problem49

of forecasting GICs then amounts to forecasting geomagnetic storms. These storms re-50

sult from the propagation of solar activity via the solar wind and its coupling to Earth’s51

magnetosphere. Given abundant observational data of the solar wind and disk as well52

as of Earth’s magnetic field, the application of data-hungry deep learning algorithms is53

suitable for the forecasting problem.54

1.1 Geomagnetic storms55

Geomagnetic storms have traditionally been quantified by indices such as the dis-56

turbance storm time (Dst in nT) or Kp (unitless) indices (e.g. Bartels et al. (1939)), both57

of which register deviations from the quiet time horizontal component of Earth’s mag-58

netic field. The basic mechanism of geomagnetic storm formation is the strengthening59

of Earth’s ring current in response to changing solar wind conditions, and this strength-60

ened current system generates a magnetic field that counters Earth’s dipole, weakening61

it relative to quiet conditions (Daglis et al., 1999). The solar wind parameters most im-62

portant for strengthening the ring current are its southward component of the inter-planetary63

magnetic field (IMF), velocity, and plasma density, which all positively impact storm am-64

plitude (Daglis et al., 1999; Gonzalez et al., 1999; Wolf et al., 1997). All solar wind ac-65

tivity that generates significant, rapid fluctuation in Earth’s external magnetic field poses66

a threat to ground-based conducting systems, such as power and communication lines,67

during geomagnetic storms.68

1.2 Why deep learning?69

Given the complexity of the underlying physics, which involves the magnetohydro-70

dynamics (MHD) and plasma physics of propagating solar activity through the solar wind71

and its subsequent interaction with Earth’s magnetosphere, a fully physical forward model72

of the system would be both computationally expensive and poorly constrained. At the73
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same time, given that we are aware of the important physical quantities responsible for74

geomagnetic storms, such a physical model is overkill for the problem of forecasting the75

low-order response of Earth’s magnetic field to solar activity.76

For this reason, the first approach to geomagnetic storm modeling took the form77

of simple empirical models that related the time rate of change of Dst to solar wind pa-78

rameters. The pioneering work was a three-term deterministic model developed by Bur-79

ton et al. (1975), but its simplicity, while elegant, often generates inaccurate forecasts.80

Subsequent modeling has attempted to improve accuracy by adding more degrees of free-81

dom. For example, while obtaining more predictive power, Temerin & Li (2006) added82

almost a dozen more terms with significantly more complex functional forms, sacrific-83

ing the simplicity of the initial model. Neural networks (NNs), which form the backbone84

of deep learning, are the logical conclusion to the exercise of adding more and more heuris-85

tic functional forms, since the task of a NN is to learn the relevant functions rather than86

have them prescribed: even a single layer neural network with sufficient “neurons” is ca-87

pable of approximating any continuous function to arbitrary precision (Leshno et al., 1993;88

Pinkus, 1999). However, given that this sufficient number of neurons in a single layer net-89

work is typically unknown and potentially intractable, workers have found success by in-90

stead adding layers of neurons rather than neurons themselves. This composition of lay-91

ers, in which neurons in a given layer operate on the outputs of neurons from the pre-92

ceding one, is coined “deep learning”, and has met with unprecedented success in clas-93

sification and regression problems. While still poorly understood beyond a heuristic sense,94

some workers hypothesize that deep neural networks are successful because many learn-95

ing problems are outcomes of hierarchical and compositional processes, which deep net-96

works can efficiently reproduce (Brahma et al., 2016; Lin et al., 2017). Furthermore, Lin97

et al. (2017) demonstrate how the properties of symmetry, locality, and polynomial log-98

probability in many natural processes are efficiently learned by even relatively shallow99

(i.e., consisting of a handful of hidden layers) neural networks.100

1.3 Prior applications of deep learning to geomagnetic storm forecast-101

ing102

Previous work with NNs has focused almost entirely on prediction of Dst or other103

indices of geomagnetic activity, such as the Kp and the auroral electrojet (AE) indices.104

Supplemental Table S1 provides a succinct review of the application of NNs to the fore-105
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casting of Dst (Andriyas & Andriyas, 2015; Bala & Reiff, 2012; Gleisner et al., 1996; Jankovičová106

et al., 2002; Kugblenu et al., 1999; Lazzús et al., 2017; Munsami, 2000; Pallocchia et al.,107

2006; Revallo et al., 2014; Sharifie et al., 2006; Stepanova et al., 2005; Stepanova & Pérez,108

2000; Wei et al., 2007; Wu & Lundstedt, 1996, 1997). These studies have applied a va-109

riety of architectures and data sources, but in generating forecasts for Dst, most have110

used the basic solar wind parameter measurements as well as prior values of Dst. All pre-111

vious studies applying NNs to Dst forecasting to our knowledge have utilized observa-112

tions made at the Earth-Sun L1 point or closer, with the exception of Chakraborty &113

Morley (2020), who include solar x-ray fluxes. Furthermore, almost all studies to date114

using NNs to forecast Dst (or any other geomagnetic storm index) have been determin-115

istic, generating predictions without any measure of uncertainty. Gruet et al. (2018) as-116

sess uncertainty in their forecasts via a Gaussian process model with fixed kernel param-117

eters, and this process takes as input their deterministic NN forecasts. Chakraborty &118

Morley (2020) on the other hand use a deep long short term memory (LSTM) network119

to learn how to dynamically update the kernel parameters for a Gaussian process rep-120

resentation of the Kp index, which is how they generate probabilistic forecasts. Finally,121

while not utilizing neural networks, Gu et al. (2019) generate probabilistic forecasts of122

the auroral electrojet (AE) index by considering output from an ensemble of 100 non-123

linear autoregressive models trained on independently resampled subsets of their data.124

This work improves on previous advances by presenting the first application of prob-125

abilistic neural networks that explicitly generate measures of uncertainty in their out-126

put. Our networks are capable of learning how confident to be in their predictions, and127

in doing so improve forecast reliability. These networks take as input not just observa-128

tions from the L1 point but also observations of radiative phenomena on the solar disk.129

Finally, instead of forecasting Dst, we focus on its external component, Est, which does130

not incorporate the effects of Earth’s subsurface conductivity structure.131

2 Data and Methods132

2.1 Probabilistic Neural Network Architecture133

Recently, recurrent architectures for time series regression have emerged that com-134

bine ridge functions with state vectors to create units with “memory”. The most suc-135

cessful of these has been the long short-term memory architecture (LSTM), introduced136
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by Hochreiter & Schmidhuber (1997). The LSTM cell, as its name implies, uses new in-137

put data with both the previous output and previous internal state to update its inter-138

nal state and generate new output (Supplement, Text S6). This architecture has been139

applied to Dst forecasting by Gruet et al. (2018), but, like all previous applications of140

neural networks to storm forecasting (summarized in the Supplement, Table S1), the net-141

work generated deterministic output with no prediction of forecast uncertainty.142

ct

xt

zt

ct+1

xt+1

zt+1

γ(Wzt+b) γ(Wzt+1+b)

ct-1

zt-1

pEst(μ, σ)t+k pEst(μ, σ)t+k+1

LSTM

Figure 1. Schematic architecture for the deterministic network that learns parameters over

an output distribution for Est. Our output distribution is a Gaussian. Two full time steps of

network iteration are shown, with the portion of the network enclosing the LSTM cell labeled

“LSTM”.

143

144

145

146

We present an architecture (Figure 1) in which the NN learns to assess uncertainty147

in its own forecast, thereby generating probabilistic forecasts. The two basic layers uti-148

lized within this architecture are LSTM and dense layers. The former is described above,149

and the latter is an implementation of the so-called “fully connected hidden layer”, which150

references the fact that each entry in z depends on all of the outputs from the preced-151

ing layer via W . That is, a dense layer that receives inputs x ∈ Rn from a preceding152

network layer in turn generates an output vector z ∈ Rm via the operation z = γ(W x+153

b) with W ∈ Rmxn and b ∈ Rm, where n is the dimensionality of the preceding hid-154
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den layer, m is the dimensionality of the current hidden layer, and γ(.) is a nonlinear ac-155

tivation function that acts element-wise.156

Inputs into our NN architecture are fed directly to an LSTM cell, and outputs from157

the LSTM cell are fed through a series of fully-connected hidden layers. The outputs from158

the last hidden layer are parameters for an output distribution over Est. We choose to159

use a Gaussian output distribution and compare other alternatives in the Supplement160

(Text S3).161

The simplest cost function in this probabilistic framework is precisely the output

distribution itself evaluated as a likelihood of observed data y (i.e., Est at some time t+

k) with respect to the distribution parameters generated from the given input:

C(x, y) = − log p (y|µ(W,b,x), σ(W,b,x)) (1)

where the distribution parameters µ and σ depend on the network weights and biases162

and can thus be differentiated against them. However, when learning two-parameter dis-163

tributions, the parameter for scale often introduces leniency in the output distribution,164

allowing the network to expand uncertainty in its forecast rather than move its estimate165

for the center (see supplement Text S3).166

We found that utilizing a Gaussian output distribution with a regularized Gaus-

sian likelihood as the cost function performed well for geomagnetic storm forecasting.

Equation 2 shows the form for this modified log-likelihood in which α (y − µ)2 + β 1
σ2

are the terms that we have added, introducing α and β as additional hyper-parameters.

This regularization encourages the network to learn more reasonable estimates for µ, off-

setting the normalization by σ2, while also allowing the user to further incentivize (β >

0) or penalize (β < 0) expanding forecast uncertainty.

CGaussian, regularized(y, µ, σ) = log
(√

2π σ
)

+
(y − µ)

2

2σ2
+ α (y − µ)

2
+ β

1

σ2
(2)

Other approaches have been formulated for learning uncertainty via neural networks, such167

as Bayes-by-Backprop (Blundell et al., 2015), which represents uncertainty in the net-168

work weights rather than in its output. Our implementation of this approach was not169

useful for storm forecasting (Supplement Text S2).170

For all implementations, training, and testing of neural networks, we use Python171

wrappers for the learning framework TensorFlow (Abadi et al., 2015). This framework172

is capable of representing neurons and the functional operations relating them as well173
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as numerically computing the relevant gradients to train the network. TensorFlow pro-174

vides an implementation of the high level deep learning Keras API (https://keras.io/),175

which allows for modular construction of networks from the layers described above. We176

also make use of the recently introduced TensorFlow Probability library, which provides177

a straightforward means of adding probability distributions as layers, allowing outputs178

from previous layers to be used as parameters for the distribution layers. These layers179

are compiled into a model that contains all the operations of the entire network as well180

as the particular cost functions and optimizers that dictate the learning process for given181

training inputs and outputs. We use the Adam optimizer for gradient update steps (Kingma182

& Ba, 2014). All neural network configuration and training parameters are listed in Sup-183

plement Text S4.184

2.2 Output Data185

Most geomagnetic storm forecasting thus far has emphasized prediction of Dst. How-186

ever, Dst is actually a sum of internal and external components (Equation 3), and the187

internal component, Ist, is generated by currents induced in Earth’s subsurface by vari-188

ation in the external component, Est (Maus & Weidelt, 2004) ,189

Dst(t) = Ist(t) + Est(t) (3)

and

Ist(t) =

∫ t

−∞
Q(t− τ)Est(τ)dτ, (4)

where Q(t − τ) is the impulse response that depends on subsurface electrical conduc-190

tivity σ, assuming that σ ≡ σ(r) varies only along radial direction. This decomposi-191

tion is easier to express in frequency domain, in which Q(t) becomes the transfer func-192

tion that relates internal and external components such that ˜Ist(ω) = Q̃(ω)Ẽst(ω). Sub-193

sequently, Est and Ist can be computed as (Maus & Weidelt, 2004):194

Ẽst(ω) =
1

1 + Q̃(ω)
D̃st(ω) (5)

˜Ist(ω) =
Q̃(ω)

1 + Q̃(ω)
D̃st(ω) (6)

with knowledge of Q̃(ω) and observations of Dst. For more details about this decompo-195

sition and the induction transfer functions, including generalization to three-dimensional196

conductivity models, the reader is referred to Grayver et al. (2020); Maus & Weidelt (2004);197

Olsen et al. (2005).198
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The problem of forecasting Dst is then actually two separate problems: the first199

is forecasting Est, and the second is learning Earth’s induction response, Ist. With a suit-200

able model of Earth’s subsurface conductivity structure, however, knowledge of Est is201

sufficient to reconstruct Ist and thereby Dst. Furthermore, because the external field is202

what responds to magnetospheric activity anyway, it is more natural to forecast Est than203

Dst. Therefore, we generate forecasts of Est, and the data accessed from NOAA were204

generated following the methodology of Maus & Weidelt (2004) .205

This approach will be increasingly important as we attempt to forecast higher or-206

der structure in Earth’s external field. Est captures only the first zonal (dipole) com-207

ponent of external magnetic field variability, but significant variation exists on shorter208

spatial scales, where the interaction with local conductivity structures becomes more im-209

portant and complicated (Kelbert, 2020). Given that the ultimate goal of geomagnetic210

storm forecasting is to forecast GICs, it is important to note that GICs themselves de-211

pend strongly on local conductivity structures and local external magnetic field variabil-212

ity (Olsen & Kuvshinov, 2004; Püthe et al., 2014). The first step to forecasting these higher213

order external field coefficients is forecasting a single external field coefficient, Est, which214

is the focus of this work.215

2.3 Input Data216

Two basic observation types relevant to geomagnetic storm forecasting have been217

made for the past few decades: the first includes measurements of the solar wind made218

in situ around the L1 point in the Earth-Sun system, and the second are measurements219

made directly of the solar disk and corona. These two data streams provide related but220

temporally disjoint information. Radiative phenomena on the solar disk take under nine221

minutes to be observed at Earth, while the solar wind requires two to five days to prop-222

agate from the solar disk to the L1 point. The L1 point is only 1.5×106 km from Earth,223

however, which is approximately one hour travel time at typical solar wind speeds (mean224

solar wind speed is roughly 440 km s−1 from the OMNI dataset).225

Thus, while solar wind measurements near Earth’s magnetosphere are ultimately226

the most relevant quantities for accurate geomagnetic storm forecasting, using only ob-227

servations from the L1 point limits the forecast time to roughly an hour (Shprits et al.,228

2019). On the other hand, solar activity is ultimately responsible for all geomagnetic storms,229
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but identifying which phenomena on the solar disk have the potential to cause geomag-230

netic storms and predicting the storm lag times and amplitudes resulting from those phe-231

nomena are not trivial tasks. Observations from the solar disk include measurements of232

coronal mass ejections (CMEs) around the perimeter of the disk, images of the solar sur-233

face at various wavelengths, and surface radiative fluxes.234

Input data come from three sources: the OMNI, GOES, and SOHO LASCO CME235

datasets. All details on data preprocessing are briefly discussed in the supplement (Text236

S2).237

The low (hourly) resolution OMNI data include several solar wind and solar ob-238

servations, which we extracted for the years 1995-2018. During this time interval, mea-239

surements of the solar wind (SW) come from the WIND, IMP8, Geotail, and ACE satel-240

lite missions . The quantities that we use as input data from this dataset are the three241

components of the interplanetary magnetic field in geocentric solar magnetospheric (GSM)242

coordinates, SW velocity, SW particle density, SW temperature, and SW longitude and243

latitude incident on Earth’s magnetosphere. Because the OMNI dataset contains obser-244

vations from near-Earth (e.g., IMP8) and L1 (e.g., WIND, ACE) spacecraft, observa-245

tions are propagated to the bow shock by adding time shifts that account for the space-246

craft location and solar wind flow. These time shifts are included in the publicly avail-247

able dataset, and we utilize the observation time stamps as they are reported.248

The GOES mission provided two time series of x-ray fluxes integrated over the so-249

lar disk. One series covered the wavelengths from 0.5-4 Å, and the other series covered250

wavelengths 1-8 Å. Given that these measurements vary over orders of magnitude, we251

take their logarithm as input. These data were reliably available from 1986 onwards.252

The LASCO SOHO CME database provides a catalogue of CMEs observed around253

the perimeter of the solar disk, with five basic quantities estimated for each event: cen-254

tral position angle, angular width, speed, mass, and kinetic energy. Three estimates of255

speed are reported in the catalogue, all of which we include as training input. We only256

consider CMEs for which all data fields are reported, and during hours with multiple events,257

we take only the event with the largest estimated kinetic energy. The estimates of mass258

and kinetic energy varied over orders of magnitude, so we instead take their logarithms259

as input. The database contains measurements from 1996-2018.260

–10–



manuscript submitted to JGR-Space Physics

We did not attempt to time shift observations of the solar disk to the bow shock261

as is done for satellite observations at the L1 point in the OMNI dataset. This time lag262

between the solar disk and Earth’s magnetosphere is precisely a learning problem of great263

interest that NN’s may be able to help solve.264

Finally, previous observations of Est were included as input while forecasting fu-265

ture values. In total then data is available roughly from 1996 through 2018. Of these 22266

years, we take 18 years (approximately 158,000 hours) as training data, and 4 years for267

testing data (approximately 35,000 hours).268

2.4 Evaluating network performance269

In most geomagnetic storm forecasting to date, forecast accuracy is assessed by met-270

rics such as the root mean square error and the Pearson correlation coefficient between271

forecasted and observed data. However, these statistics are generally not compared to272

those of a null hypothesis, for example persistence forecasting in which the best estimate273

for any time in the future is simply the last observed value. Due to the auto-correlative274

nature of the Est time series, persistence forecasting actually generates deceptively high275

correlations and low errors (Figure 3, Supplement Figure S9) (Shprits et al., 2019). In276

fact, all the networks in Supplement Table S1 either underperform or barely outperform277

persistence forecasting as quantified by these two metrics. Furthermore, these metrics278

are computed over both quiet and disturbed times, while the ability to predict storms279

is the task of interest. Other than refining consideration of these metrics to only storm280

main phases, it is not obvious what metric best evaluates forecasting performance for281

models with deterministic output.282

With probabilistic networks, however, reliability curves provide a useful and eas-283

ily interpretable metric to evaluate forecast performance. Each curve corresponds to a284

threshold in Est, and the axes compare the observed probability of exceeding that thresh-285

old compared to the predicted probability. A perfectly reliable forecast would generate286

curves that fall on the 1:1 line through the origin for all thresholds. If the observed re-287

liability curve plots over the 1:1 line, then the forecast underestimates the occurrence288

of events exceeding that threshold, while if the reliability curve plots under the 1:1 line,289

the forecast is conservative and overestimates the occurrence of events exceeding the given290

threshold. Because these statistics are computed for thresholds in Est, the reliability as-291
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sessment method by construction evaluates storm time forecasting separately from quiet292

time forecasting. We utilize reliability curves to assess forecast performance.293

Computing reliability curves requires binning data by intervals of predicted exceedance294

probabilities, which means that empirical statistics for infrequent, large storms will be295

less well constrained than smaller storms, particularly at large forecast probabilities. To296

assess uncertainty in the reliability curve computation, we use bootstrap resampling of297

forecasted and observed threshold exceedances to compute confidence intervals over ob-298

served threshold exceedances for a given bin of predicted threshold exceedance. Further-299

more, we compute consistency intervals that indicate for the amount of data in each bin300

the spread in forecasting skill that one might anticipate from a perfectly reliable fore-301

cast (Bröcker & Smith, 2007).302

3 Results and Discussion303

In general, our architecture is capable of learning meaningful and reliable measures304

of uncertainty in its forecasts, and our forecasts outperform the basic benchmark of per-305

sistence forecasting. We focus in our discussion on the performance of the six-hour ahead306

probabilistic forecasts because this forecast window is long enough that information from307

the L1 point is insufficient to forecast storm arrivals, allowing us to evaluate whether our308

network is able to leverage information from the solar disk.309

3.1 Storm Case Studies310

We present and discuss in this section six hour ahead forecasts for three different311

storms: two caused by CMEs (Figure 2A & B) and one resulting from a co-rotating in-312

teraction region (CIR) (Figure 2C). One to six hour ahead forecasts, as well as detailed313

comparison of the networks trained with only L1 data and both L1 and solar disk in-314

puts, can be found in the Supplement.315

The first storm, in March of 2015, provides a prototypical example of a geomag-324

netic storm caused by a magnetic cloud emitted by the mass ejection visible as the spike325

in CME energy at the beginning of March 15 (Figure 2A, note that the axis is orders326

of magnitude) (Patel et al., 2019). The energetic mass ejection is associated with a peak327

in integrated x-ray fluxes, followed two days later by a relatively large geomagnetic storm328

beginning on March 17. The storm main phase is associated with a sustained southward329
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IMF of roughly -20 nT and roughly doubled solar wind speeds. In this situation, given330

the clear connection between the mass ejection and the ensuing storm, we would expect331

a successfully trained network to be able to expand uncertainty in its forecast as con-332

ceivable storm arrival times approach, reflecting an understanding of the causal associ-333

ation between activity on the solar disk and geomagnetic storms. Yet, forecast uncer-334

tainties only expand when disturbed solar wind reaches the L1 point. At that time, the335

network becomes aware of the storm arrival and adjusts its output by dropping Est fore-336

casts and increasing forecast uncertainty (Figure 2A). The same is true for the smaller337

amplitude CME storm of October 13, 2016 in Figure 2B, where forecast uncertainty only338

grows as soon as the storm arrives at the L1 point. This storm is associated with the CME339

visible on October 10 (Patel et al., 2019), so the occurrence of other CMEs of similar mag-340

nitude (e.g. on October 9 and 11) demonstrates non-uniqueness that illustrates why the341

network struggles to identify geoeffective solar activity from the provided inputs.342

The final storm on July 4, 2015 was chosen because it corresponds to a CIR (Shen343

et al., 2017), as evidenced by a lack of sustained, southward IMF, a step increase in so-344

lar wind velocity, and relatively low amplitude storm-time Est (Figure 2C). The nature345

of CIR storms differs from those originating from CMEs (Zhang et al., 2007), so we sought346

to investigate if the forecast for CIR storms differs from that for CME storms. Again,347

for the storm on July 4, the network is unable to preemptively expand forecast uncer-348

tainties in response to information from solar disk, demonstrating that inputs from the349

L1 point dominate the forecast. On July 11, the network mistakenly forecasts a storm350

main phase, likely in response to the increased solar wind speed that did not actually351

generate a substantial main phase.352

In all cases, the six hour ahead forecast fails to capture storm onset, during which353

the network’s forecasts tend to lag observations by the forecast length (thereby more closely354

tracking the persistence curve) until the storm arrives at the L1 point. At that point,355

the forecast begins to deviate from persistence as the network knows that a storm is oc-356

curring. This inability to predict storm onset indicates that the network is unable to uti-357

lize observations from the solar disk for storm arrival, which remains an open challenge.358

Recovery is generally well-predicted, and forecasts deviate from persistence, mean-359

ing that the network is not just taking the last observed Est value for its next forecast.360

Unlike previous results, our network is capable of generating meaningful estimates of un-361
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certainty in its forecasts. In all cases, once the network detects the possible onset of a362

geomagnetic storm, it expands its forecast uncertainty, generally maintaining observed363

Est values within the 95% forecast confidence interval and providing reliable multiple364

hour ahead forecasts (see Supplement Text S5 for one to six hour ahead forecasts). Af-365

ter storm main phases, forecast uncertainties decrease during the generally well-predicted366

recovery phase. Given that the recovery phase is dictated by the internal dynamics of367

the ring current decay (and thereby independent of the solar wind state) (Daglis, 2007),368

its predictability is reasonable. Thus, our network exhibits forecast uncertainties that369

are consistent with where one would anticipate the greatest uncertainty in geomagnetic370

storm development with information from the L1 point, namely, the storm onset and main371

phase.372

3.2 Conventional Metrics of Forecast Skill373

In terms of the conventional forecasting skill assessments (i.e., forecast-observation374

Pearson correlation coefficients and root-mean-square errors, RMSE’s) for one to six hour375

ahead forecasts, our networks outperform all previous neural network forecasts for all376

forecasts lengths (Figure 3). However, given that persistence forecasting for Est results377

in higher correlation coefficients and lower RMSE’s than for persistence forecasting of378

Dst, our improvements should not be compared with previous results for forecasting Dst379

but with persistence forecasting of Est. When considering all observations, we slightly380

underperform persistence forecasting of Est in terms of the correlation coefficient, while381

outperforming in terms of RMSE, which is consistently lower. During storm times, how-382

ever, our forecasting skill is much better than persistence forecasting in both metrics at383

all forecasting windows. The networks with both L1 and solar disk inputs always out-384

perform networks with only L1 inputs when evaluated over both quiet and storm times385

(Figure S9). However, the difference in skill is small, and when considering only storm386

times, the five to six hour ahead forecasts of networks with only L1 inputs achieve lower387

RMSE’s. These results again indicate that information from the solar disk does not sig-388

nificantly improve storm forecast skill. Finally, for particularly large storms exceeding389

Est ≤ -200 nT, a forecast saturation effect is observed (Figure S9), similar to that that390

occurs at smaller values with different cost functions (Supplement Text S3). This effect391

can be partially mitigated by fine-tuning of the cost function to further facilitate the fore-392
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casting of rare storms. However, since there is only a handful of such events in the data,393

this behaviour of the network is natural.394

3.3 Forecast Reliability403

Reliabilities for four different storm thresholds generally overlap with the consis-404

tency intervals for each bin, demonstrating that our network generates reliable forecasts405

(Figure 4). For threshold of -75 and -100 nT, forecasted exceedance probabilities in the406

range of 0.7-0.9 tended to slightly underestimate observed exceedance rates, which is con-407

sistent with the observation that storm onsets remain difficult to predict exactly.408

Notably, the regularization of the cost function for a Gaussian output distribution409

significantly improves forecast reliability. Networks trained with unregularized Gaussian410

and Gumbel output distributions (Supplement Text S3) are unable move the location411

parameters of their forecasts during large amplitude storms, preferring instead to expand412

forecast uncertainty, meaning that peak storm times, while often within the 95% con-413

fidence interval, are only predicted at extremely low exceedance probabilities. This be-414

havior explains why the reliability curves lack data to bin at high forecast probabilities415

and furthermore why storms are underestimated for lower exceedance probabilities (Fig-416

ure 4).417

While some improvement in forecast reliability for smaller magnitude storms (Est429

thresholds of -50 and -75 nT) does seem to result from the incorporation of data from430

the solar disk (Supplement Figure S7), the preceding discussion and the result that fore-431

cast behavior does not qualitatively change by adding solar disk inputs (Supplement Text432

S5) indicates that we are unable to successfully utilize observations from the solar disk433

to forecast storm arrival and amplitude. This shortcoming suggests that the informa-434

tion necessary for identifying geoeffective solar activity is lacking in the training data,435

and/or that the network architecture is inadequate for utilizing these data. For instance,436

the x-ray fluxes are integrated over the entire solar disk, but peaks in these fluxes can437

often be associated with flare events, which themselves often occur simultaneously with438

geoeffective mass ejections (Tobiska et al., 2013). Larger, more central flares are asso-439

ciated with larger geomagnetic storms, so adding time series of flare occurrences with440

locations on the solar disk would complement the input series of x-ray fluxes and CMEs441

(Tobiska et al., 2013). Futhermore, the CME dataset only includes ejections visible around442
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the rim of the solar disk, while geoeffective ejections occur towards the center. Thus, only443

centralized ejections that also emit an observable lobe beyond the rim of the solar disk444

could be reliably associated with geomagnetic storms, potentially rendering the CME445

database largely irrelevant for the problem of geomagnetic storm forecasting. Finally,446

integrated solar x-ray flux peaks from flares have been empirically related to solar wind447

speeds and geomagnetic storm amplitudes, thereby providing a means of learning lag times448

between solar activity and storm arrivals (Tobiska et al., 2013). However, LSTM net-449

works struggle with learning lag times (Gers et al., 2002), so the network architecture450

we have utilized is not amenable to this task.451

4 Conclusions452

This work has demonstrated a NN architecture capable of learning reliable mea-453

sures of uncertainty in its forecasts of geomagnetic storms. Learning uncertainty in NN454

output results in more useful probabilistic forecasts than learning uncertainty in the NN455

parameters, and the choice of output distribution and cost function has a large impact456

on the resulting reliability of the trained network. Specifically, adding regularizing terms457

in the likelihood cost function improves the forecast reliability by incentivizing networks458

to forecast more reasonable mean values rather than simply increasing forecast uncer-459

tainty.460

These neural networks utilize as inputs observations from both the solar disk and461

L1 point, slightly improving forecast reliability and skill with respect to networks trained462

only with L1 inputs. However, storm arrival and amplitude forecasting did not substan-463

tially improve from the inclusion of these data. Thus, leveraging time series of observa-464

tions of the solar disk, which are often sparse, remains an open problem, and future net-465

work architectures must be carefully designed to utilize these data sources.466
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