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OVERVIEW

« Assessment of performance of ensembles of precipitation forecast obtained from Global Ensemble Forecast System
(Reforecast Version -2) and assessing statistical downscaling technique to improve forecasting system.
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3. STUDY AREA & 4. DATA COLLECTION
3. Study Area:

« Catchment: Elkhorn river basin

o Sub-catchments: Upper Elkhorn, North Fork Elkhorn, Logan, and Lower Elkhorn.
o Location: Northeast and north-central Nebraska

o Area of catchment: 17,871 km?

o Length of Elkhorn river: 466.71 km

Figure: Elkhorn River Basin
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4. Data Collection:

1. Climatological Data:

« For Land-Based Station: National Water Information System: USGS Water Resources (NWIS, 2020)

Figure: Meteorological stations in Elkhorn river basin
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o For Ensemble Data: Earth System Research Laboratories (ESRL): Global Ensemble Forecast System (GEFS-Reforecast-
V2) (GEFS,2020)
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5. METHODOLOGY

Statistical Downscaling:
« Establishing linear/non-linear relationships between predictor and predictand

Figure: Statistical Downscaling Technique:
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Artificial Neural Network:

Figure: Neural Network diagram
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» Feed-forward backpropagation neural network trained with Levenberg-Marquardt algorithm.
« Input variables: 9 precipitation grid, minimum and maximum temperature using 11 ensembles of GEFS.
o Output variable: observed precipitation from land-based station.

« The sigmoid transfer function was used between the input and hidden layers, whereas the linear transfer function was
used between the hidden and output layers.

o Number of iterations: 500; number of neurons: 11; number of hidden layer: 1

o The available data was divided into calibration (2009 to 2016) and validation (2017 to 2019). In the calibration data set,
the training was carried out with 70%, validation with 15%, and testing with 15% of the data.
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6. RESULTS AND DISCUSSION

Result 1:

figure: Station 1: Correlation coefficient between land-based precipitation target variable and GEFS precipii
variables for all leads (Day 0 to 15)

and temperature input
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Table: range of correlation matrix for all ensembles, forecast, and stations
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o Input variable from GEFS correlated with land-based station.

» Analysis suggest correlation are within the mean range of [0.4, 0.6].

 The range of minima and maxima varies highly for each day forecast.

o The analysis also suggests that input variables derived from the low-resolution grid (Day +8 to +15) is poorly correlated

in comparison with a high-resolution grid (Day 0 to +7).

Result 2:

figure: Station 1: Performance of calibrated and validated results of the trained neural network
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o Approximately for any given day 0 to +3 showed higher regression coefficient but the performance dropped with

increase in forecast time.
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« Ifthere was an extreme precipitation event or if the correlation between the variables and the observed precipitation was

not good, that would also negatively impact the model performance.

« Interpretation of the result could be highly advantageous in order to assign the confidence interval for a forecast.
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1. OBJECTIVE & 2. RESEARCH QUESTION

1. Objective:

Statistical downscaling of the GEFS forecasts using Artificial Neural Networks.

2. Research question:

How does the predictability of the ensemble precipitation forecasts change along with the lead time within the context of
statistical downscaling?
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7. CONCLUSION

« Statistical downscaling technique using artificial neural network showed good performance for first few days forecast.
« Further analysis of optimum network architecture can be a good alternative.

« Results of the correlation plot could be used to study how predictability varies along with the forecast lead time. More
in-depth analysis is needed to understand the efficacy of different bias correction schemes.

o An assessment with all 32 variables in GEFS would be interesting.
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Start | Latitude | Longitude
Station Iy Station Number Station Elevation (m)
Date (ma) (m)
1 ATMEWORTH
T2555604975 171006 41.58 -100.00 TET.60
MUNMICIFAL ARPT
ALBION MUNMICIPAL
72344154021 2 171706 41.73 -88.05 548.34
AIRPORT
ELAIR. MUMICIPAL
2040300438 3 17109 4141 -06.11 395.94
AIRPORT
CHAN GURMEY
72452504911 4 171706 4188 -87.58 357.23
MUNMICIFAL ARPT
COLUMBUS
72556504951 5 171706 41.43 &7.35 441.05
WMUMICIFAL ATRPORT
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72556404924 ] 171706 41.45 -86.52 356.67
WMULICIFAL AIRPOET
EARL STEFAN
72556014941 7 1:1/73 4129 0744 472,74
MEMOBIAL ATRPORT
SIOLT
72557014943 2 GATEWAYCOLBUD | L/10/42 4139 0638 333.74
DAY FIELD AP
TEEAMAH
71551704978 o 171706 41.76 0618 313.33
KMUMICIFAL ATRPORT
THE O'MEILL MUMI-
2556604957 10 JOHM L BAEEFR FIELD 171706 41.47 -0E.49 G19.05
AIRPORT
WAYNE MUNICIPAL
72224154923 11 171706 4124 -06.98 434.04
AIRPORT
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ABSTRACT

The NOAA Physical Sciences Laboratory produces the Global Ensemble Forecasting System (GEFS) which comprises 11
ensemble members (1 control and 10 perturbation runs) for over a 36-year period (December 1984 to present), with forecasts
initialized every day for the next 16 days (first 8-day forecasts obtained from a high-resolution grid and the next 8-day forecasts
from a low-resolution grid). The system provides 36 variables related to a wide range of hydrometeorological processes. In this
study, we assess the predictability of precipitation within the context of statistical downscaling using a minimum set of predictor
variables (precipitation and temperature). We use feedforward backpropagation neural networks with a suite of training
algorithms to determine which variables (features) are of most relevance at different forecast lead times. The outcome of this
study will significantly benefit short-term flood forecasting using GEFS data.
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