
manuscript submitted to AGU Advances

Slow-down of the greening trend in natural vegetation with further
rise in atmospheric CO2

Alexander J. Winkler1,2, Ranga B. Myneni3, Alexis Hannart4, Stephen Sitch5, Vanessa
Haverd6, Danica Lombardozzi7, Vivek K. Arora8, Julia Pongratz9,1, Julia E. M. S. Nabel1,
Daniel S. Goll10, Etsushi Kato11, Hanqin Tian12, Almut Arneth13, Pierre Friedlingstein14,

Atul K. Jain15, Sönke Zaehle16, and Victor Brovkin1

1Max-Planck-Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany

2International Max-Planck Research School for Earth System Modeling, Bundesstrasse 53, 20146 Hamburg, Germany

3Department of Earth and Environment, Boston University, Boston MA 02215, USA

4Ouranos, Montreal QC H2L 1K1, Quebec, Canada

5College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK

6CSIRO Oceans and Atmosphere, Canberra, 2601, Australia

7Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80302, USA

8Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria,
Victoria, British Columbia, Canada V8W2Y2

9Department of Geography, Ludwig Maximilians University Munich, Luisenstr. 37, Munich D-80333, Germany

10Lehrstuhl fur Physische Geographie mit Schwerpunkt Klimaforschung, Universität Augsburg, Augsburg, Germany

11Institute of Applied Energy (IAE), Minato, Tokyo 105-0003, Japan

12International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University,
602 Duncan Drive, Auburn, AL 36849, USA

13Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research,
Garmisch-Partenkirchen, Germany

14College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK

15Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA

16Max Planck Institute for Biogeochemistry, 07745 Jena, Germany

Key Points:

• Satellite observations since the early 1980s show that Earth’s greening trend is slowing
down and that browning clusters are emerging.

• A collection of model simulations in conjunction with causal theory points at climatic
changes as principal driver of vegetation changes.

• Most models underestimate the observed vegetation browning, which could be due to an
excessive CO2 fertilization effect in the models.

Corresponding author: Alexander J. Winkler (alexander.winkler@mpimet.mpg.de)

1



manuscript submitted to AGU Advances

Abstract1

Satellite data reveal widespread changes of Earth’s vegetation cover. Regions2

intensively attended to by humans are mostly greening due to land management.3

Natural vegetation, on the other hand, is exhibiting patterns of both greening4

and browning in all continents. Factors linked to anthropogenic carbon emissions,5

such as CO2 fertilization, climate change and consequent disturbances, such as6

fires and droughts, are hypothesized to be key drivers of changes in natural7

vegetation. A rigorous regional attribution at biome-level that can be scaled into a8

global picture of what is behind the observed changes is currently lacking. Here9

we analyze the longest available satellite record of global leaf area index (LAI,10

1981-2017) and identify several clusters of significant long-term changes. Using11

process-based model simulations (Earth system and land surface models), we12

disentangle the effects of anthropogenic carbon emissions on LAI in a probabilistic13

setting applying Causal Counterfactual Theory. The analysis prominently indicates14

the effects of climate change on many biomes – warming in northern ecosystems15

(greening) and rainfall anomalies in tropical biomes (browning). Our results do16

not support previously published accounts of dominant global-scale effects of CO217

fertilization. Altogether, our analysis reveals a slowing down of greening and18

strengthening of browning trends, particularly in the last two decades. Most models19

substantially underestimate the emerging vegetation browning, especially in the20

tropical rainforests. Leaf area loss in these productive ecosystems could be an early21

indicator of a slow-down in the terrestrial carbon sink. Models need to account for22

this effect to realize plausible climate projections of the 21
st century.23

plain language summary24

The satellite-observed greening trend of Earth’s land surface is a well documented phenomenon.25

Our analysis of almost four decades of global leaf area observations reveal a weakening of the26

greening trend and an expansion of browning regions. Leaf area gain is seen mostly in low27
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density vegetation and the loss in high density tropical forests. These opposing trends imbue28

a distinct signature of texture loss in green coverage of natural vegetation. A collection of29

factorial model simulations and causal theory identify biome-unique drivers of change linked30

to anthropogenic carbon emissions. The effects of climate change are prominently seen in31

many biomes, for example, warming in northern ecosystems and rainfall decline/anomalies in32

tropical biomes. However, most models do not reproduce the observed vegetation browning,33

especially in tropical rainforests. The leaf area loss in these highly productive ecosystems could34

be an early indicator of a slow-down in the terrestrial carbon sink.35
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1 introduction36

Satellite observations reveal widespread changes in terrestrial vegetation across the entire37

globe. The greening and browning trends reflect changes in the abundance of green leaves,38

and thus, the rate and amount of photosynthesis. Plants modulate pivotal land-atmosphere39

interactions through the process of photosynthesis. Hence, changes in photosynthetic activity40

have immediate effects on the land-atmosphere exchange of energy (Forzieri et al., 2017), water41

(McPherson, 2007; Ukkola et al., 2016) and carbon (Poulter et al., 2014; Thomas et al., 2016;42

Winkler et al., 2019). Several studies have reported that many biomes are largely greening,43

from Arctic tundra to subtropical drylands (Myneni et al., 1997; Nemani et al., 2003; Mao et al.,44

2016; Zhu et al., 2016; Chen et al., 2019; Winkler et al., 2019). Others have identified regions of45

declining trends in leaf area (Goetz et al., 2005; Verbyla, 2011). The drivers underlying these46

long-term vegetation changes, however, remain under debate. In the light of nearly forty years47

of continuous satellite observations, we reassess the driver attribution of natural vegetation48

changes in a new framework of cause-and-effect and challenge previous findings (Zhu et al.,49

2016).50

Anthropogenic vegetation, i.e. actively cultivated vegetation, and natural vegetation should51

be considered separately due to their distinct origins and properties. A recent study by Chen52

et al. (2019) reported that anthropogenic vegetation (35% of the global vegetated area) is53

greening due to human land management. The authors identified irrigation, multiple cropping,54

and the application of fertilizers and pesticides as the main drivers of leaf area enhancement55

(direct drivers). These results challenge the conclusions of a previous study by Zhu et al. (2016)56

that attributed the global greening trend mostly to indirect drivers induced by CO2 emissions,57

in particular, the CO2 fertilization effect (70%).58

Indirect drivers of vegetation changes usually include CO2 fertilization and climate change59

in the literature, both of which are consequences of rising atmospheric CO2 concentration.60

The term "CO2 fertilization" includes two effects of increased ambient CO2 on the physiology61

of plants. First, elevated CO2 in the interior of leaves stimulates carbon assimilation, which62

enhances plant productivity and biomass (Leakey et al., 2009; Fatichi et al., 2016). Second,63
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in time leaves adapt to CO2-enriched atmosphere by lowering their stomatal conductance.64

As a consequence, water loss through transpiration decreases, resulting in increased water-65

use efficiency (ratio of carbon assimilation to transpiration rate; Ukkola et al., 2016; Fatichi66

et al., 2016). In theory, both effects should result in an expansion of leaf area, especially in67

environments where plant growth is constrained by water availability (Ukkola et al., 2016;68

Donohue et al., 2009; Donohue et al., 2013).69

The radiative effect of CO2 induces climatic changes that can have both harmful or beneficial70

effects on the functioning of ecosystems. Temperature-limited biomes are expected to green due71

to warming and associated prolongation of the growing season (Park et al., 2016; Winkler et al.,72

2019). But long-term drying (Zhou et al., 2014), as well as increased intensity and frequency of73

disturbances (Seidl et al., 2017) such as droughts (Bonal et al., 2016) and wildfires (Goetz et al.,74

2005; Verbyla, 2011), can induce regional vegetation browning trends. Regional greening and75

browning patterns can also be associated with insect outbreaks, local deforestation practices,76

regrowing or degrading forests, or nitrogen deposition; however, these drivers are considered77

to be of minor importance at the global scale (Zhu et al., 2016).78

Indirect drivers affect both natural and anthropogenic vegetation unlike direct drivers which79

affect anthropogenic vegetation only. Chen et al. (2019) demonstrated that indirect drivers have80

either opposing or minor enhancing effects on the leaf area of anthropogenic vegetation. In81

general, the greening of anthropogenic vegetation has a negligible effect on the carbon cycle,82

because carbon absorbed by agricultural plants almost immediately reenters the atmosphere83

due to harvest and consumption. Natural terrestrial ecosystems, however, act as a strong84

carbon sink by absorbing about 30% of the anthropogenic CO2 emissions (3.8±0.8 Pg C yr−1;85

Quéré et al., 2018) and mitigate man-made climate change (Bonan, 2008; Sitch et al., 2015;86

Winkler et al., 2019). Thus, a mechanistic understanding of natural vegetation dynamics under87

rising CO2 is critical and helps to answer one of the key question in current climate research:88

Where does the anthropogenic carbon go (Marotzke et al., 2017)?89

This study focuses on the response of natural vegetation under the influence of the two key90

indirect drivers, the physiological and radiative effect of rising CO2. Throughout this paper91

and in accordance with literature, the terms "CO2 fertilization" and "physiological effect of92
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CO2" are used interchangeably, as are "climate change" and "radiative effect of CO2". To assess93

observed changes in vegetation over climatic time scales, we make use of a 37-year record of94

leaf area index (LAI) satellite observations (1982–2017, LAI3g, Section 2.1). The LAI3g product95

is based on the Advanced Very High Resolution Radiometer (AVHRR) sensors, for which there96

are a number of shortcomings (no on-board calibration, no correction of orbit loss, minimal97

correction for atmospheric contamination and limited cloud screening; Section 2.1; Zhu et al.,98

2013; Chen et al., 2019). Despite these limitations, the AVHRR record is unique in terms of its99

temporal coverage and offers an opportunity to study the evolution of Earth’s vegetation while100

atmospheric CO2 concentration increased by 65 ppm (341 to 406 ppm). We define greening101

and browning as statistically significant increasing and decreasing trends in LAI, respectively102

(Section 2.6). Based on a detailed biome map (Figure S1, Table S1, Section 2.2), we identify103

spatial clusters of significant vegetation greening and browning in different natural vegetation104

types.105

We make use of the latest version of the fully-coupled Max Planck Institute Earth system106

model in ensemble-mode (MPI-ESM, Section 2.3) and a collection of 13 land surface models107

(LSMs) driven with observed climatic conditions (TRENDYv7 ensemble; Section 2.4; Quéré108

et al., 2018). As a first step, we analyze historical simulations to examine whether these models109

capture the observed behavior of natural vegetation under rising CO2. Next, we analyze110

factorial simulations to disentangle and quantify the effects of rising CO2 on LAI changes.111

Each factorial experiment consists of all historical forcings except one, which is set to its112

pre-industrial level (similar approach in TRENDYv7 simulations, Section 2.4 and 2.6).113

The conventional approach to detection and attribution in climate science is the method of114

optimal fingerprinting, for example as in Zhu et al. (2016). This framework which considers the115

observed change to be a linear combination of individual forced signals, is prone to overfitting,116

and assumes that linear correlation reflects causation (Hannart and Naveau, 2018). To overcome117

these limitations, we propose to use the Causal Counterfactual Theory which has recently been118

introduced to climate science (Pearl, 2009; Hannart et al., 2016; Hannart and Naveau, 2018).119

The method allows us to test if long-term greening/browning trends can be attributed to the120

effects of rising CO2 in a probabilistic setting combining necessary and sufficient causation121

(Section 2.7).122
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This is the first study that addresses vegetation browning as well as greening patterns123

across all major biomes, integrated into a global picture. Greening is dominant in terms of124

areal fraction, but browning clusters are intensifying, primarily in the tropical forests that are125

biodiversity-rich and highly productive. We find that CO2 fertilization is an important driver126

of greening in some biomes, but not dominant globally as suggested previously (Zhu et al.,127

2016). The strengthening browning trend identified in our study is most likely linked to the128

long-term drying and recurring droughts. Overall, our findings suggest that the emerging129

browning clusters in the highly productive ecosystems might be a precursor of a weakening130

land carbon sink, which is not yet captured by the current land components of Earth system131

models.132
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2 materials and methods133

2.1 Satellite observations of LAI: AVHRR LAI3g product134

We used an updated version (V1) of the leaf area index dataset (LAI3g; Chen et al., 2019) based135

on the methodology developed by Zhu et al. (2013). The data provides global year-round LAI136

observations at 15-day (bi-monthly) temporal resolution and 1/12 degree spatial resolution.137

It spans from July 1981 to December 2017 and is currently the only available record of such138

length. The full time series of LAI3gV1 was generated using an artificial neural network and139

the latest version (third generation) of the Global Inventory Modeling and Mapping Studies140

group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference141

vegetation index (NDVI) data (NDVI3g). The latter have been corrected for sensor degradation,142

inter-sensor differences, cloud cover, observational geometry effects due to satellite drift,143

Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and Tucker, 2014).144

The LAI3g datasets prior to 2000 were not evaluated due to a lack of required field data145

(Zhu et al., 2013; Chen et al., 2019). After 2000, the quality of the LAI3g dataset was assessed146

through direct comparisons with ground measurements of LAI and indirectly with other147

satellite-data based LAI products, and also through statistical analysis with climatic variables148

such as temperature and precipitation variability (Zhu et al., 2013). Various studies used149

the predecessor LAI3gV0 and the related dataset of fraction of absorbed photosynthetically150

active radiation (fapar; Anav et al., 2013; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016;151

Mahowald et al., 2016; Piao et al., 2014; Poulter et al., 2014; Keenan et al., 2016) and its successor152

LAI3gV1 (Winkler et al., 2019; Chen et al., 2019).153

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf154

canopies and as one-half the green needle surface area in needleleaf canopies in both satellite155

observations and models (ESMs and LSMs). It is expressed in units of m2 green leaf area per156

m2 ground area. Missing values in the LAI3gV1 dataset are filled using the climatology of157

each 16-day composite during 1982-2017. We use the annual averaged LAI of each pixel in this158

study.159
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2.2 Characterization of biomes & clusters of significant change160

The land cover product of the MODIS sensors (MCD12C1; MODIS/Terra and Aqua Com-161

bined Land Cover Type Climate Modeling Grid (CMG) Yearly Global 0.05 Deg V006, https:162

//lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12c1_v006) is the163

primary source underlying the land cover map used in this study (hereafter MODIS land164

cover). The classes from the International Geosphere–Biosphere Programme (IGBP) in the165

MODIS land cover product are aggregated as follows: Tropical Forests include Evergreen166

Broadleaf Forest (EBF), Temperate Forests include Deciduous Broadleaf Forest (DBF) and167

Mixed Forest, and Boreal Forests include Evergreen Needleleaf Forest (ENF) and Deciduous168

Needleleaf Forest (DNF). Savannas include Woody Savannas and Savannas. Shrublands include169

Closed Shrublands and Open Shrublands. Croplands include Croplands and Croplands /170

Natural Vegetation Mosaic. The class Others includes Permanent Wetlands, Urban and Built-up171

Lands, Permanent Snow and Ice, and Barren. The classes Grasslands and Water Bodies remain172

unchanged. The MODIS land cover product provides estimates for the time period from 2001173

to 2017 for each pixel. In this study we define a representative biome map based on the most174

frequently occurring land cover type throughout the period of 17 years.175

The MODIS land cover classification does not contain the biome tundra, which is why we176

use in addition the land cover product GLDAS2 / Noah version 3.3 that uses a modified IGBP177

classification scheme providing the classes Wooded, Mixed or Bare Ground Tundra (https:178

//ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php, hereafter GLDAS land cover) (Rodell et179

al., 2004). Accordingly, pixels originally of the classes Shrublands, Grasslands, Permanent180

Wetlands, or Barren, are converted to Tundra, if classified as Wooded, Mixed or Bare Ground181

Tundra in the GLDAS land cover product. The classes Woody Savannas and Savannas span vast182

areas across the globe in the MODIS land cover product. We use the GLDAS classification for183

these pixels, but only for regions where the MODIS and GLDAS land cover products disagree.184

In doing so, we obtain a more accurate global land cover classification. Table S1 describes in185

detail how the fusion of the MODIS and GLDAS land cover products is realized.186

As a last step, we integrate the MODIS tree cover product MOD44B (MODIS/Terra Vegetation187

Continuous Fields Yearly L3 Global 250 m SIN Grid V006, https://lpdaac.usgs.gov/dataset_188

9
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discovery/modis/modis_products_table/mod44b_v006) to account for the underestimation of189

forested area in the MODIS land cover product. Areas with tree cover exceeding 10% are190

formally defined as forests (MacDicken et al., 2015). Thus, we set non-forest pixels in the191

MODIS land cover product above 10% tree cover to Boreal Forest in the high latitudes 50
◦

192

N/S. For tropical forest (25
◦ S – 25

◦ N), we increase the threshold to 20% tree cover to allow193

for a realistic areal extent of savannas. The pixels in the bands 25
◦ N/S – 50

◦ N/S remain194

unchanged, because the MODIS land cover product already realistically represents the forested195

area in these latitudes.196

Table S1 provides a detailed overview on the conflation of MODIS land cover product,197

GLDAS land cover product and the MODIS Tree cover product. The final biome map (originally198

resolved at 0.05
◦) is regridded to the different resolutions of the AVHRR sensor and the models199

simulations (MPI-ESM and TRENDYv7) applying a largest area fraction remapping scheme.200

Based on the observational LAI dataset we define various clusters for greening or browning201

in most biomes: North American Tundra (NAm Tundra), Eurasian Tundra (EA Tundra), North202

American Boreal Forests (NAm Brl F), Eurasian Boreal Forests (EA Brl F), Temperate Forests203

(Tmp F), Tropical Forests (Trp F), Central African Tropical Forests (CAf Trp F), Northern African204

Savannas and Grasslands (NAf Sv Gl), Southern African Savannas and Grasslands (SAf Sv205

Gl), Cool Grasslands (Cool Gl), and Australian Shrublands (Aus Sl). Some clusters require a206

more detailed definition of their geographical location and extent: Southern (Northern) African207

Savannas and Grasslands represent these vegetation type south (north) of the equator including208

Madagascar. Central African Tropical Forests represent all tropical forests in Africa. Cool209

Grasslands refer to grasslands above 30
◦ N.210

2.3 Max-Planck-Institute Earth System Model211

MPI-ESM1.2 is the latest version of the state-of-the-art Max Planck Institute Earth System212

Model, which participates in the upcoming sixth phase of the Coupled Model Intercomparison213

Project (CMIP6; Eyring et al., 2016). Mauritsen et al. (2019) describes thoroughly the model214

developments and advancements with respect to its predecessor, the CMIP5 version (Giorgetta215

et al., 2013). Here, we use the low resolution (LR) fully coupled carbon/climate configuration216
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(MPI-ESM1.2-LR), which consists of the atmospheric component ECHAM6.3 with 47 vertical217

levels and a horizontal resolution of 200 km grid spacing (spectral truncation at T63). The218

ocean dynamical model MPIOM is set up on a bi-polar grid with an approximate grid-spacing219

of 150 km (GR1.5) and 40 vertical levels. MPI- ESM1.2-LR includes the latest versions of the land220

and ocean carbon cycle modules, comprising the ocean biogeochemistry model HAMOCC6221

and the land surface scheme JSBACH3.2 (Mauritsen et al., 2019).222

As opposed to the high-resolution configuration, the LR variant of the MPI-ESM includes all223

the important processes relevant for longer time-scale changes of the land surface, such as a224

thoroughly equilibrated global carbon cycle, dynamical vegetation changes, interactive nitrogen225

cycle, land-use transitions, a process-based fire model (SPITFIRE), and an interactive coupling226

of all sub-models. Furthermore, it is possible to run this model configuration to generate 45-85227

model years per real-time day with a modern supercomputer (Mauritsen et al., 2019). This228

opens up the possibility of conducting a larger number of realizations for each experiment.229

Specifically, we used the initial CMIP6 release of the MPI-ESM version 1.2.01 (mpiesm-230

1.2.01-release, revision number 9234). The final CMIP6 version will include further bug fixes,231

which are expected to only slightly influence long-term sensitivities of simulated land surface232

processes.233

We conducted historical simulations (all forcings) and three factorial experiments (all forcings234

except one): (a) all historical forcings except the physiological effect of CO2 (No PE; increasing235

CO2 does not affect the biogeochemical processes), (b) all historical forcings except the radiative236

effect of CO2 (No RE; increasing CO2 does not affect climate), and (c) all historical forcings237

except anthropogenic forcings (No CO2). All experiments were preformed in ensemble-mode238

(6 realizations per experiment) using the latest CMIP6 forcing data (1850–2013). Individual239

realizations were initialized from different points in time of a prolongation run of the official240

MPI-ESM1.2-LR pre-industrial control simulation. In doing so, we account for the influence241

of climatic modes (e.g. El Niño Southern Oscillation) as a source of uncertainty in simulating242

long-term changes.243

The simulated time series were shifted by four years to maximize the overlap with the244

observational record of 1982–2017.245
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2.4 Land surface models: TRENDYv7246

Land-surface models (LSMs) or dynamic global vegetation models (DGVMs) simulate key247

physical and biological key processes of the land system in interaction with the atmosphere.248

LSMs provide a deeper insight into the mechanisms controlling terrestrial energy, hydrological249

and carbon cycles, as well as the drivers of phenomena ranging from short-term anomalies250

to long-term changes (Sitch et al., 2015; Bastos et al., 2018). Here, we analyze the most251

recent TRENDY ensemble (version 7) comprising 13 state-of-the-art LSMs which vary in252

their representation of ecosystem processes. All models simulate vegetation growth and253

mortality, deforestation and regrowth, vegetation and soil carbon responses to increasing254

atmospheric CO2 levels, climate change and natural variability (Quéré et al., 2018). Some255

models simulate an explicit nitrogen cycle (allowing for potential nitrogen limitation) and256

account for atmospheric N deposition (Table A1 in Quéré et al., 2018). Most LSMs include257

the most important components of land-use and land-use changes, but they are far from258

representing all processes resulting from direct human land management (Table A1 in Quéré259

et al., 2018). A more detailed description of the TRENDYv7 ensemble, model-specific simulation260

setups and references can be found in Quéré et al. (2018, Table A4).261

We use output from five simulations: all forcings (S3), physiological effect of CO2 only (S1),262

radiative plus physiological effect of CO2 (S2), land-use changes only (S4), and the control run263

(S0; no forcings: fixed CO2 concentration of 276.59 ppm and fixed land-use map, loop of mean264

climate and variability from 1901–1920). The forcing data consist of observed atmospheric265

CO2 concentrations, observed temporal patterns of temperature, precipitation, and incoming266

surface radiation from the CRU-JRA-55 reanalysis (Quéré et al., 2018; Harris et al., 2014), and267

human-induced land-cover changes and management from an extensions of the most recent268

Land-Use Harmonization (LUH2) dataset (Hurtt et al., 2011; Quéré et al., 2018).269

In this study, we only analyze output for the period 1982–2017 (matching the observational270

record) from models providing spatially gridded data for all five simulations. A few models271

provide LAI at the level of plant functional types (PFTs). We calculate the average value of272

all LAI values on PFT level multiplied by their land cover fraction for each grid cell. All273
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model outputs were spatially regridded to a common resolution of 1
◦ based on a first-order274

conservative remapping scheme (Jones, 1999).275

The design of factorial simulations in TRENDYv7 and by the MPI-ESM are conceptually276

different. The MPI-ESM simulations were conducted using the counterfactual approach, i.e.277

all forcings are present except the driver of interest. TRENDYv7 provides simulations with278

different combinations of drivers as described above. To obtain comparability, we have to make279

the assumption that the absence of a specific driver has the same effect, in absolute values, as280

its sole presence. Thus, we process the output of the simulations S1, S2, S3 and S4 to obtain the281

counterfactual setup as described above for MPI-ESM. This approach neglects possible synergy282

effects from simultaneously acting forcings. Also, it has to be noted that these simulations are283

only to some extent comparable between the two ensembles. For instance, in the MPI-ESM we284

can specifically determine the impact of the radiative effect of CO2, whereas TRENDYv7 uses285

observed atmospheric fields including changes induced from other drivers, such as non-CO2286

greenhouse gases.287

For certain clusters, some models show unreasonable LAI changes and/or extreme inter-288

annual variability. To reduce the influence of these extreme models on the overall analysis,289

we apply a two-step filtering method for each cluster beforehand. Models are excluded from290

the analysis, if they exceed three times the inter-annual variability of observations and/or291

show a drastic change (of either sign) of more than 250% between the start and end of the292

observational period. Further, we apply a weighting scheme based on the performance of the293

all-forcings run for each cluster. We calculate quartic weights based on the distance between294

the simulated and observational estimate. These weights are applied when calculating the295

multi-model average and standard deviations for the factual and counterfactual runs.296

2.5 Atmospheric CO2 concentration297

Global monthly means of atmospheric CO2 concentration are taken from the GLOBALVIEW-298

CO2 product (for details see http://dx.doi.org/10.3334/OBSPACK/1002) provided by the Na-299

tional Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL).300
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2.6 Processing of the gridded data301

Areas of significant change in LAI are estimated using the non-parametric Mann-Kendall302

test, which detects monotonic trends in time series. In this study, we set the significance level303

to p ≤ 0.1. An alternative statistical test for trend detection (Cox-Stuart test; Sachs, 1997) yields304

approximately the same results. The trends are either calculated for time series on the pixel305

level or for area-weighted large-scale aggregated time series (e.g. biome level).306

We define greening (browning) either as a positive (negative) temporal trend, or for better307

comparison among models and observations as well as for a better global comparison across308

diverse biomes, we express these trends relative to the initial LAI level at the beginning of the309

observational record (average state from 1982-1984), denoted as Λ (% decade−1).310

The calculation of yearly net changes in leaf area balances the effects from both statistically311

significant browning and greening grid cells. For each cell, we multiply the estimated trends by312

the respective grid area. The net change is the sum of all grid cells, where areas of insignificant313

change are set to zero.314

Models fairly accurately reproduce global patterns of vegetation greening, however, the315

fraction of browning is considerably underrepresented. Yet, we can only consider pixels with316

significant negative trends in LAI, in observations and models alike, and test models with317

respect to driver attribution of browning trends. Thus, the attribution of browning trends in318

this paper exclusively refers to browning pixels only.319

Models reveal biases in comparison to observations. To obtain informative results in the320

attribution analysis, we process the simulations to match the mean and variance of the321

observational time-series. Assuming additive and multiplicative biases in simulations, we322

apply the following corrections:323

b =
σo

σaf
, (1)
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a = xo + b× xaf , and (2)

yi = a + b ∗ xi , (3)

324

where xo represents the mean value and σo the standard deviation of the observational times325

series. xaf and σaf are analogous to the all-forcings simulations. All simulated time series xi are326

scaled using equation 3, where i ∈ Ω = {factual runs, counterfactual runs}. This processing327

step does not affect the nature of simulated trends.328

2.7 Causal Counterfactual Theory329

The causal counterfactual approach is anchored in a formal theory of event causation330

developed in computer science (Pearl, 2009; Marotzke, 2019). Recently, a framework for driver331

attribution of long-term trends in the context of climate change has been introduced (Hannart332

et al., 2016; Hannart and Naveau, 2018), and increasingly gains popularity (Marotzke, 2019).333

Through the use of this method we can ascertain the likelihood that a certain external forcing334

has caused an observed change in the Earth system. More precisely, we address the question of335

interest in a probabilistic setting, i.e. what is the probability that a given forcing (e.g. radiative336

effect of CO2) has caused an observed long-term change in the system (e.g. greening of the337

Arctic).338

In the following, we highlight the key ideas and relevant concepts of causal theory. A detailed339

description and formal derivations can be found in (Pearl, 2009; Hannart et al., 2016; Hannart340

and Naveau, 2018). We define the cause event (C) as "presence of a given forcing" (i.e. the341

factual world that occurred) and the complementary event (C) as "absence of a given forcing"342

(i.e. the counterfactual world that would have existed in the absence of a given forcing; Hannart343

and Naveau, 2018). Further, we define the effect event (E) as the occurrence of a long-term344

change (here, greening or browning) and the complementary event (E) as the non-occurrence345

of a long-term change (i.e. no persistent vegetation changes). In making use of numerical346

15



manuscript submitted to AGU Advances

models, we can conduct factual runs comprising all forcings (i.e. historical simulations) as well347

as simulate counterfactual worlds by switching off a forcing of interest (i.e. all forcings except348

one). Based on an ensemble of simulations, either in a multi-model and/or multi-realizations349

setup, we derive the so-called factual (p1) and counterfactual probability (p0), which read350

p1 = P{E|do(C)} and p0 = P{E|do(C)}, respectively (Hannart and Naveau, 2018). More351

precisely, p1 describes the probability of the event E in the real world where forcing C was352

present, whereas p0 refers to the probability of the event E in a hypothetical world where353

forcing C was absent. The notation do(·) means that an experimental intervention is applied to354

the system to obtain the probabilities (Hannart and Naveau, 2018).355

The three distinct facets of causality can be established based on the probabilities p1 and p0:

PN = max
{

1− p0

p1
, 0
}

, (4)

PS = max
{

1− 1− p1

1− p0
, 0
}

, and (5)

PNS = max {p1 − p0, 0} . (6)

PN refers to the probability of necessary causation, where the occurrence of E requires that of356

C but may also require other forcings. PS refers to the probability of sufficient causation, where357

the occurrence of C drives that of E but may not be required for E to occur. PNS describes358

the probability of necessary and sufficient causation, where PN and PS both hold (Hannart359

and Naveau, 2018). In other words, PNS may be considered as the probability that combines360

necessity and sufficiency. Thus, the main goal is to establish a high PNS that reflects and361

communicates evidence for the existence of a causal relationship in a simple manner (Hannart362

and Naveau, 2018).363

364
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To obtain PNS, we follow the methodology described in detail in Hannart and Naveau365

(Hannart and Naveau, 2018) and derive cumulative distribution functions (CDF) for the factual366

and counterfactual worlds, denoted D0 and D1, respectively. Assuming a Gaussian distribution,367

PNS follows as368

PNS = max{D1(µ1, Σ)− D0(µ0, Σ)} , (7)

where µ1 and µ0 refer to the mean response of all factual and all counterfactual runs,369

respectively. Σ denotes the overall uncertainty and is estimated based on all simulations,370

comprising factual, counterfactual, and centuries-long unforced (pre-industrial) model runs371

(for details see Hannart and Naveau, 2018). Finally, the maximum of PNS determines the372

sought probability of causation (Hannart and Naveau, 2018). We express probabilities using373

the terminology and framework defined by the IPCC (Mastrandrea et al., 2011; Hannart and374

Naveau, 2018).375
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3 results and discussion376

3.1 Natural vegetation exhibits a net gain of leaf area over the last decades, but the number of browning377

regions is increasing378

More than three and half decades of satellite observations (1982–2017, Section 2.1) reveal379

that 40% of the Earth’s natural vegetation shows statistically significant positive trends in LAI380

(Mann-Kendall test, p < 0.1; Table 1), concurrent with a 65 ppm increase in atmospheric CO2.381

However, more and more browning clusters are beginning to emerge in all continents (14%;382

Table 1). Analyzing earlier versions of three shorter duration (1982-2009) LAI datasets, Zhu383

et al. (2016) reported a considerably smaller browning fraction of less than 4% and greening384

percentages ranging from 25% to 50% for all vegetation (i.e. including agriculturally dominated385

regions). The higher browning proportion in the extended record analyzed in this study386

indicates an intensification of leaf area loss in recent years.387

3.2 Earth’s forests respond diversely throughout the satellite era388

A global map of statistically significant trends in LAI (denoted Λ, Section 2.6) for natural389

vegetation reveals greening (Λ > 0) and browning (Λ < 0) clusters across the globe (Figure 1).390

Temperate forests (Λ > 0: 56%) and Eurasian boreal forests (Λ > 0: 53%) exhibit extensive391

regions of increasing LAI, and thereby, contribute the largest fraction to the enhancement of392

leaf area on the planet (Table 2). The global belt of tropical forests, on the other hand, while393

showing a net greening (Λ > 0: 28%), also feature widespread browning areas (Λ < 0: 16%).394

In particular, the Central African tropical forests contain large areas of pronounced negative395

trends (Λ < 0: 25%). North American boreal forests exhibit the largest fraction of browning396

vegetation (Λ < 0: 31%) resulting in an annual net loss of leaf area (Table 1 and 2). The397

picture of Earth’s forests is generally in line with results based on other data sources. For398

instance, Song et al. (2018) reported a net gain of global forested area, with net loss in the399

tropics compensated by a net gain in the extra-tropics.400
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3.3 As in forests, other biomes also indicate divergent vegetation responses to rising CO2401

Tundra in North America is primarily greening (Λ > 0: 46% versus Λ < 0: 7%), whereas402

in Eurasia, browning is intensifying (Λ > 0: 35% versus Λ < 0: 20%), especially in northern403

Scandinavia and on the Taymar Peninsula in Northern Russia. Grasslands in cool arid climates,404

mainly comprising the Mongolian and Kazakh Steppe, as well as the Australian shrublands,405

stand out as prominent greening clusters (Λ > 0: 40% and 49%, respectively). Although these406

biomes show strong positive trends, they are characterized by a low level of LAI. The African407

continent, which is still dominated by natural vegetation, reveals a distinct change in leaf area.408

A greening band of savannas and grasslands in the northern regions of Sub-Saharan Africa409

and a greening cluster in Southern Africa border the browning regions of equatorial Africa410

(Figure 1). Overall, the response of LAI to rising CO2 is somewhat homogeneous for some411

biomes (widespread browning of the tropical forests and dominant greening of the temperate412

forests), but divergent for others (tundra and boreal forests show a ’North America – Eurasia’413

asymmetry, interestingly, in that they show changes of reversed sign; Figure 1).414

3.4 Net annual gain of leaf area is declining in natural vegetation415

Leaf area loss occurs primarily in densely vegetated biomes (i.e. forests), which outweighs416

leaf area gain in rather sparsely vegetated regions (e.g. grasslands). For instance, vigorously417

greening areas of circumpolar tundra result in a leaf area gain of 8.74 × 10
3 km2 yr−1, which418

is almost outbalanced fourfold by a leaf area loss of 34.31 × 10
3 km2 yr−1 in the browning419

regions of the tropical forests (Table 2). To assess the responses of different biomes to rising420

CO2 in more detail, we iteratively calculate statistically significant LAI trends for different421

time windows with advancing initial year (i.e. 1982, 1983, ..., 2000), but fixed final year (2017).422

Although the estimated trends become less robust with shorter time series, this analysis allows423

us to test for weakening or strengthening responses to further rising CO2. We see that the424

fraction of significantly browning regions is increasing over time, reaching a maximum for425

a time window starting in 1995. The greening fraction evolves in the opposite manner. The426

estimates are represented as fractions of the total area of significant change, because the latter427

inherently decreases as a result of the Mann-Kendall test for shorter time windows. Thus,428
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the average annual net leaf area gain of 150.51 × 10
3 km2 yr−1 for the entire observational429

period (1982–2017) decreases with advancing initial year, approaching zero for the period430

1995 to 2017, and rebounding to ∼ 40 × 10
3 km2 yr−1 for the period 2000 to 2017 (black431

line in Figure 1 inset). To obtain comparability between different time windows, the net leaf432

area gain estimates were scaled to the total area of significant change derived for 1982–2017433

(unprocessed estimates for period 2000–2017 are listed in Table S2). Chen et al. (2019) reported434

a global greening proportion of ∼ 33% (AVHRR: 21%; Table S2) and a browning proportion435

of only 5% (AVHRR: 13%; Table S2) analyzing the MODIS record including anthropogenic436

vegetation (2000–2017). On a global scale, LAI trends from MODIS and AVHRR agree over437

61% of the vegetated area (Chen et al., 2019). Disagreement arises primarily in the tropical438

regions (absence of browning in the Central African tropical forests in the MODIS record) and439

in the northern high latitudes (Chen et al., 2019). In a recent study, Yuan et al. (2019) presented440

results comparing various remote sensing datasets of vegetation greenness which are in line441

with AVHRR-based estimates.442

3.5 High LAI regions are browning and low LAI regions are greening443

The intensification of browning during the second half of the AVHRR observational period444

(2000–2017) results in a reversal of the sign in terms of net leaf area change in some biomes445

(e.g. tropical forests, North American boreal forests, and Eurasian tundra; Table S3). Critically,446

the tropical forests display the sharpest transition from a substantial net gain of 24.11 × 10
3

447

km2 yr−1 (Table 2) to a comparably strong net loss of leaf area (-18.42 × 10
3 km2 yr−1; Table448

S3). To address the temporal development of positive and negative changes in leaf area in449

more detail, we calculate time series of area-weighted averages of LAI (Figure 2a). We find that450

browning of natural vegetation occurs at a considerably higher level of LAI (on average ∼1.85)451

than greening (on average ∼1.32). Throughout the observational period, these two time series452

of opposite trends converge towards a LAI of 1.6 (Figure 2a). This convergence of greening and453

browning is not only evident in terms of their LAI level (Figure 2a), but also in their proportions454

(inset in Figure 1). The time series of anthropogenic vegetation on the other hand, aggregated455

for positive and negative Λ separately, are both confined to a comparable low LAI level (on456

average between 1 and 1.25). We next investigate the global LAI distributions of negative457
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and positive changes and their development over time. Comparing distributions of the earlier458

(1982–1984) with those of the more recent years (2015–2017) reveals that browning primarily459

occurs at a high (5–6) and a medium level of LAI (1–2.5; Figure 2b). Greening, however, is460

occurring almost entirely at low levels of LAI between 0–1.5. As a consequence, the global461

area-weighted averages of the browning and greening regions are approaching one another462

(dashed versus solid vertical lines in Figure 2b), as also depicted by the time series (Figure463

2a). Overall, these results suggest a homogenization of Earth’s natural vegetation in terms of464

LAI texture with rising CO2. This homogenization becomes prominent when we compare the465

distributions of negative and positive Λ over time using a Q-Q plot (quantile-quantile; Figure466

2c). The relationship between the quantiles is skewed to the left at higher LAI (positive Λ on467

x-axis, negative Λ on y-axis), because browning is prevalent in high LAI regions. Over time, the468

quantiles of the greening and browning distributions are approaching the 1-1 line (representing469

identical distributions), emphasizing their convergence.470

3.6 The majority of models reproduce the observed convergence of greening and browning trends471

Thus far, we have described the diverse long-term changes of natural vegetation across all472

continents and throughout the satellite era. We next investigate the underlying mechanisms473

driving these greening and browning trends and use the fully-coupled MPI-ESM and the474

TRENDYv7 ensemble of observation-driven LSMs (Section 2.3 and 2.4). First, we ask if475

these models capture the observed behavior of natural vegetation under rising CO2. MPI-476

ESM reproduces the observed browning of high LAI and the greening of low LAI regions,477

however, the levels of LAI do not match the observations (Figure S2). Historical simulations of478

TRENDYv7 (here 13 models) also show pronounced changes in vegetation, but exhibit a diverse479

behavior among the models (results not shown for brevity). Seven LSMs reproduce observed480

converging trends of greening and browning, whereas the other six models show divergent481

trends. All TRENDYv7 models are driven with identical atmospheric forcing fields, hence, these482

six models most likely lack or incorrectly represent key processes of ecosystem functioning. In483

general, simulated greening patterns are comparable to observations (Murray-Tortarolo et al.,484

2013; Sitch et al., 2015; Mahowald et al., 2016), but browning, especially in the North American485

boreal forests, is underestimated (Sitch et al., 2015).486
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3.7 Models point to the physiological effect of CO2 as the main driver of greening at the global scale487

Hereafter, we use changes in annual average LAI relative to the baseline period 1982–1984488

(Section 2.6) for better comparability between biomes, various simulations and the observed489

signal. Time series of relative LAI changes from historical simulations (multi-model average for490

TRENDYv7 and multi-realizations average for MPI-ESM) are comparable to observations at the491

global scale (Figure 3a and 3b; temporal correlations are low due to high internal variability of492

the signal).493

We use the framework of Counterfactual Causal Theory to attribute changes in LAI to a given494

driver in a probabilistic setting (Pearl, 2009; Hannart et al., 2016; Hannart and Naveau, 2018).495

Based on the all-forcings (also termed factual) and factorial runs (also termed counterfactual),496

we derive Probabilities of causation that combines Necessity and Sufficiency of each factor497

(PNS). At the global scale, the observed estimate (∼ 1.08 % decade−1) and the factual MPI-498

ESM estimate (∼ 1.14 % decade−1) are comparable, whereas the multi-model average of the499

TRENDYv7 ensemble is an overestimate (∼ 1.79 % decade−1; Figure 3c). Omitting CO2-induced500

climate change (no radiative effect of CO2 , No RE) does not have a strong effect in the MPI-ESM501

(∼ 1.04 % decade−1), i.e. the estimate does not differ considerably from the factual run. The502

TRENDYv7 models indicate that the positive trend in LAI can be explained by climate change503

to some extent (∼ 1.21 % decade−1). However, PNS values are low for the radiative effect of504

CO2 (Figure 3d). The opposite is the case, when the physiological effect of CO2 (No PE) is505

excluded. Both model setups agree that almost no positive trend in LAI is present in a world506

without CO2 fertilization (MPI-ESM: ∼ 0.18 % decade−1, TRENDYv7: ∼ 0.08 % decade−1; both507

estimates are lower than internal variability of ∼ 0.49 % decade−1). As a consequence, high508

PNS can be established: The physiological effect of CO2 has in the case of MPI-ESM likely509

(68%) and in the case of TRENDYv7 very likely (91% ) caused the positive trend of global LAI in510

recent decades (Figure 3d). This result is in line with Zhu et al. (2016) who reported that 70%511

of global greening is attributable to CO2 fertilization. Removing both effects of CO2 results in512

slight negative trends, probably due to land use practices (deforestation; Figure 3c).513
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3.8 The global signal switches to a minor negative trend in the second half of the observational period514

Natural vegetation shows a slight negative trend for the period 2000–2017 (∼ -0.4 % decade−1;515

Figure 3e). This estimate is within the range of internal variability, and thus, should be516

interpreted with caution. Note, that the net change in leaf area is still positive when considering517

only significantly changing pixels (inset in Figure 1). Models reproduce this reversal in the518

sign when the physiological effect of CO2 is excluded or with a complete absence of CO2519

forcing (Figure 3e). Overall, driver attribution at the global scale, as described above, and also520

in Zhu et al. (2016), neglects the heterogeneity of natural vegetation and the possibility that521

divergent responses of different natural biomes might cancel out. To account for this omission,522

we identify eleven clusters of significant change and derive probabilities of causation for each523

driver across different vegetation types (Figure 4).524

3.9 Temperate forests prosper with rising CO2 while tropical forests are increasingly under stress525

Forests in temperate climates exhibit a strong positive trend in LAI (∼ 2.53 % decade−1),526

which is also seen in the models, albeit slightly overestimated (MPI-ESM: ∼ 3.18 % decade−1,527

TRENDYv7: ∼ 2.69 % decade−1; Figure S3). The physiological effect of CO2 is the main driver528

with high PNS (85% for MPI-ESM, 80% for TRENDYv7; Figure 4). The trends are slightly529

weaken when only analyzing the second half of the observational period, but the overall530

result does not change. Observed warming might have additionally contributed to enhanced531

vegetation growth (e.g. growing season extension; Piao et al., 2011; Park et al., 2016), however,532

it is not identified as an important driver by models. Most temperate forests are in developed533

countries, and thus, have been managed in a sustainable manner for several decades (Currie534

and Bergen, 2008). It is conceivable, that some of the positive trends in LAI could be attributed535

to forest management or regrowing forests (Pugh et al., 2019), however, this is not captured by536

the models (i.e. trends are negative when complete CO2 forcing is absent; Figure S3).537

The response of tropical forests to rising CO2 is more complex. The signal over the entire538

observational period is slightly positive (∼ 0.3 % decade−1), however, it is within the range of539

internal variability. Therefore, no robust driver attribution is possible (Figure 4 and Figure S4).540

TRENDYv7 models show strongly opposing responses of LAI to the different effects of CO2:541

23



manuscript submitted to AGU Advances

LAI decreases when the physiological effect is omitted, but increases when the radiative effect542

is omitted. MPI-ESM shows qualitatively the same responses, but less pronounced (Figure S4).543

For the second half of the satellite record, the observed trend switches sign to a strong negative544

trend (∼ -1.4 % decade−1). The models reproduce this tendency, but the multi-model average of545

the TRENDYv7 ensemble is still positive. During the same time period, the opposing reactions546

to CO2 in the factorial runs are more strongly marked (Figure S4). These results suggest that547

browning caused by CO2-induced climate change is compensated by greening affiliated with548

the CO2 fertilization effect at the biome level. Based on these findings, we hypothesize that the549

physiological effect of CO2 is strong in models and outbalances the negative effect of climate550

change in the tropical forests (Kolby Smith et al., 2016). As a consequence, the all-forcings551

simulations fail to reproduce the observed patterns of strengthening vegetation browning in552

the tropics (Zhou et al., 2014; Song et al., 2018), for reasons discussed below.553

3.10 Droughts and intensification of the dry season in the Amazon basin554

The Amazonian tropical forests are being frequently afflicted by severe droughts. During555

the satellite era most of these droughts were strongly modulated by the El Niño Southern556

Oscillation (ENSO). For example, the droughts of 1982-83, 1987 and 1991–92 (Asner and Alencar,557

2010; Anderson et al., 2018), 1997 (Williamson et al., 2000), and 2015-16 (Jiménez-Muñoz et al.,558

2016). The causes of the droughts in 2005 and 2010, however, were not related to ENSO, but559

rather to a warm anomaly in sea surface temperatures in the tropical North Atlantic (Marengo560

et al., 2008; Marengo et al., 2011; Xu et al., 2011). Whereas the ENSO-driven droughts peak in561

northern hemispheric winter, thus during the wet season, the non-ENSO droughts happened562

during the dry season (July – September), when tropical ecosystems are more vulnerable to563

negative rainfall anomalies.564

These intense and frequent droughts have diverse impacts on tropical ecosystems (Bonal565

et al., 2016), the most prominent being an increase in wildfires and tree mortality. Recently,566

perennial legacy effects have been identified which lead to persistent biomass loss in the567

aftermath of severe droughts (Saatchi et al., 2013; Yang et al., 2018). For instance, some regions568

were still recovering from the impact of the megadrought of 2005 when the next major drought569

began in 2010 (Saatchi et al., 2013). Maeda et al. (2015) found that these extreme events are also570
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capable of disrupting hydrological mechanisms, which can lead to long-lasting changes in the571

structure of Amazonian ecosystems. Such droughts and associated wildfires are predicted to572

increase in frequency (Cai et al., 2014) and intensity (Fasullo et al., 2018) as a consequence of573

the ENSO-related amplification of heat waves, but also due to the projected warming of the574

tropical North Atlantic (Munday and Washington, 2019).575

In addition to these episodic disturbances, long-term changes in climate also affected the576

tropical forests in the Amazon region. Rising surface air temperatures have considerably577

increased atmospheric water vapor pressure deficit (VPD), which has a negative effect on578

vegetation growth (Yuan et al., 2019). Moreover, we find that precipitation has steadily579

decreased during the dry season (July – September, Figure S5 and S6) based on the latest580

version of the ECMWF reanalysis for the last forty years (ERA5; Dee et al., 2011). This rainfall581

deficit and the identified lengthening of the dry season (Fu et al., 2013) exacerbate vegetation582

water stress during dry seasons and favor conditions for wildfires. The slight increasing trend583

in wet season precipitation (February – April) most likely cannot compensate for the water loss584

and its impact during the dry season (Figure S5). Overall, the intensification of the dry season585

and the recurring droughts cause long-term browning trends (Xu et al., 2011), in line with our586

results of intensified browning of Amazonian forests (Figure S6).587

3.11 Drying trend in central African humid forests588

African tropical forests have been experiencing a long-term drying trend since the 1970s589

(Malhi and Wright, 2004; Asefi-Najafabady and Saatchi, 2013; Zhou et al., 2014). In contrast to590

South America, the steady decline in rainfall is seen during both dry and wet seasons (Figure591

S5). The origin of this decreasing trend in year-round rainfall is still under debate. Precipitation592

in equatorial Africa is expected to increase under climate change (Weber et al., 2018), so593

it is hypothesized that this trend is associated with the Atlantic Multidecadal Oscillation594

and/or changes in the West African Monsoon system (Asefi-Najafabady and Saatchi, 2013).595

Long-term drying in rainforests could also be connected to the physiological effect of rising596

CO2. Recently, it has been demonstrated that the reduction in stomatal conductance and597

transpiration induces a drier, warmer, and deeper boundary layer, resulting in a decline in local598

rainfall (Langenbrunner et al., 2019). Regardless of what the causes may be, this long-term599
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water deficiency most likely has led to the most pronounced cluster of vegetation browning in600

Earth’s tropical forests (∼ 174 × 10
3 km2 net loss of leaf area in the time period of 2000–2017).601

No robust attribution is possible with the set of models analyzed in this study, since they602

fail to capture this substantial decrease in leaf area in the all forcing runs (Figure S7). In the603

case of the TRENDYv7 models, this finding is particularly noteworthy as they are driven with604

observed precipitation estimates: The spatial patterns of negative trends in LAI and dry season605

precipitation in the Central African tropical forests coincide to a large extent (Figure S5).606

Interestingly, the MODIS record does not exhibit this browning cluster (Chen et al., 2019),607

though it has been reported in other independent observational datasets (Zhou et al., 2014).608

Also, atmospheric CO2 inversion studies have identified negative trends in carbon uptake for609

this region (Fernández-Martínez et al., 2019), which corroborates our results based on the610

LAI3g dataset.611

3.12 Tropical forests in Oceania are afflicted by deforestation612

Although we exclude anthropogenic land cover changes (Figure S1, Table S1) as well as613

abrupt changes (Mann-Kendall test for monotonic trends, Section 2.6), the LAI trend maps614

nevertheless show characteristic deforestation patterns, e.g. the so-called "arc of deforestation"615

in the Amazon region (Figure S6; Aldrich et al., 2012). Hence, deforestation practices may616

explain some part of the observed gradual browning of the Amazon (Song et al., 2015) and617

African tropical forests (Mayaux et al., 2013; Tyukavina et al., 2018).618

In Oceania, however, deforestation appears to be a crucial driver of the observed browning in619

the pristine tropical forests. Significant negative trends align strongly with patterns of drastic620

deforestation during recent decades, described in detail by Stibig et al. (2014, in comparison to621

Figure 1). As opposed to Central Africa and the Amazon region, climate changes are unlikely622

to be the key driver of browning regions in Oceania. There, precipitation, although highly623

variable in the dry season, appears to increase (Figure S5) and the increase in VPD is rather624

minor (Yuan et al., 2019) in tropical forests.625
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3.13 Climate change drives an asymmetrical development of North American and Eurasian ecosystems626

The boreal forests show strong positive trends in Eurasia (Observations: ∼ 2.69 % decade−1,627

MPI-ESM: ∼ 3.48 % decade−1, and TRENDYv7: ∼ 2.08 % decade−1), which can mostly be628

attributed to amplified warming of the temperature-limited northern high latitudes (PNS =629

71% for TRENDYv7, PNS = 44% for MPI-ESM; Figure S8). North American boreal forests630

exhibit a negative response to rising CO2, which has amplified over the last two decades631

(∼ -0.95 % decade−1, 2000–2017). Models do not reproduce the dominant browning pattern632

(Figure S9), which is most likely connected to inadequate representation of disturbances (Sitch633

et al., 2015). Several studies have proposed that browning has occurred as consequence of634

droughts, wildfire, and insect outbreaks in the North American boreal forests (Goetz et al., 2005;635

Sitch et al., 2015; Beck and Goetz, 2011; Kurz et al., 2008). Macias Fauria and Johnson (2008)636

showed that the frequency of wildfires is strongly related to the dynamics of large-scale climatic637

patterns (Pacific Decadal Oscillation, El Niño Southern Oscillation, and Arctic Oscillation) and638

thus, cannot be tied conclusively to anthropogenic climate change. However, there is also639

evidence that the residing tree species suffer from drought stress induced by higher evaporative640

demand as the temperature rises (Verbyla, 2011). Moreover, models lack a representation of641

the asymmetry in tree species distribution between North America and Eurasia, which could642

explain their divergent reactions to changes in key environmental variables (Abis and Brovkin,643

2017). Further observational evidence for the browning of North American boreal forests and644

the associated decline in net ecosystem productivity can also be inferred from CO2 inversion645

products (Fernández-Martínez et al., 2019; Bastos et al., 2019).646

Tundra ecosystems also reveal a dipole-type development between North America and647

Eurasia, however with a reversed sign. Hence, North American tundra is strongly greening648

(Observations: ∼ 4.23 % decade−1, MPI-ESM: ∼ 4 % decade−1, and TRENDYv7: ∼ 4.51 %649

decade−1), which is virtually certain (PNS = 99% for TRENDYv7) and about likely as not (PNS650

= 51% for MPI-ESM) caused by warming (Figure S10). The trend decreases for the period651

2000–2017, which could be linked to the warming hiatus in the years 1998–2012 (Bhatt et al.,652

2013; Ballantyne et al., 2017; Hedemann et al., 2017). This is in line with the observed slow653

down in tundra greening due to short-term cooling after volcanic eruptions (Lucht et al., 2002).654
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Eurasian tundra show a positive trend for the years 1982–2017, but a reversal in trend sign for655

the years 2000–2017 (Figure S11). Models exhibit some evidence of a strengthening browning656

signal, but fail to capture the full extent of the emerging browning clusters seen in observations.657

If we only consider the grid cells that show significant browning in observations and models,658

we are able to conduct a robust driver attribution. According to the TRENDYv7 ensemble,659

the browning cluster in Eurasian tundra can very likely be attributed to CO2 induced climate660

change (PNS = 93%, PNS = 47% for MPI-ESM). These results are in line with studies showing661

that tundra ecosystems are susceptible to warm spells during growing season (Phoenix and662

Bjerke, 2016) and to frequent droughts (Beck and Goetz, 2011). The asymmetry between Eurasia663

and North America can be explained by changes in large-scale circulation. Eurasia is cooling664

through increased summer cloud cover, whereas North America is warming through more665

cloudless skies (Bhatt et al., 2013; Bhatt et al., 2014). Also linkages between regional Arctic sea666

ice retreat, subsequent increasing ice-free waters, and regional Arctic vegetation dynamics have667

been postulated (Bhatt et al., 2014).668

3.14 Vegetation in arid climates is greening, except in South America669

Non-forested greening clusters beyond the high northern latitudes coincide with semi-arid670

to arid climates (Park et al., 2018). The Northern Sub-Saharan African savannas and grasslands671

greened extensively in recent decades (∼ 4.63 % decade−1; Figure S12), which is reproduced by672

the observation-driven TRENDYv7 models (∼ 4.55 % decade−1), and is likely caused by climatic673

changes (PNS = 68%). No robust attribution is feasible based on the MPI-ESM simulations.674

However, it is noteworthy, that the fully-coupled Earth system model points to climate change675

as having a negative effect in these regions, thus, not reproducing the observed increase in676

rainfall (Figure S12). This provides evidence for the hypothesis that African precipitation677

anomalies are not induced by rising CO2, but rather follow a multidecadal internal climatic678

mode (Asefi-Najafabady and Saatchi, 2013).679

Internal variability in LAI changes is strong in the Southern African grasslands and savannas,680

and thus, no robust long-term change can be identified (Figure S13). It has been shown681

that shrublands in the more southern regions are greening in response to increased rainfall682

(Fensholt and Rasmussen, 2011). In general, the literature suggests that greening and browning683
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patterns in arid climates are mainly driven by precipitation anomalies (Fensholt and Rasmussen,684

2011; Fensholt et al., 2012; Gu et al., 2016; Adler et al., 2017). Close resemblance arises when685

comparing the spatial patterns of precipitation trends throughout the satellite era (Adler et al.,686

2017) with significant changes in vegetation in arid environments, especially so in the African687

continent. Decreased rainfall in arid South America coincides with strong browning clusters688

(Fensholt et al., 2012). This is in disagreement with the expected strong manifestation of CO2689

fertilization in water-limited environments (Ukkola et al., 2016).690

Australian Shrublands show a persistent positive LAI trend (∼ 3.84 % decade−1), intermit-691

tently perturbed by climatic extreme events (e.g. strong anomalous rainfall with subsequent692

extensive vegetation greening in 2011, Figure S14; Poulter et al., 2014). Models reproduce693

the steady greening of Australia, but no robust driver attribution is feasible due to strong694

internal variability. However, both model setups point to the physiological effect of CO2 as the695

dominant driver (Figure S14). These results are congruent with recent studies (Donohue et al.,696

2009; Ukkola et al., 2016) that show CO2 fertilization enhanced vegetation growth by lowering697

the water limitation threshold.698

Grasslands in the cool arid climates exhibit persistent positive trends (∼ 2.03 % decade−1,699

Figure S15). Simulated estimates are in the range of the observations (MPI-ESM: ∼ 2.33700

% decade−1 and TRENDYv7: ∼ 1.81 % decade−1). Our analysis suggests that the positive701

response of cool arid grasslands to rising CO2 can be explained by the physiological effect of702

CO2 (PNS = 85% for TRENDYv7, PNS = 88% for MPI-ESM). These ecosystems are dominated703

by C3-type plants (Still et al., 2003), which are susceptible to CO2 fertilization (Sage et al.,704

2012), thus, consistent with our results. In the warm arid areas, C4-type grasses dominate705

(Still et al., 2003), which are less sensitive to the physiological effects of CO2 (Sage et al., 2012).706

As discussed above, vegetation changes there are mostly driven by precipitation anomalies,707

although CO2 fertilization might also contribute to a limited extent (Sage et al., 2012).708
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4 conclusions709

In this paper we examine nearly four decades of global LAI changes under rising atmospheric710

CO2 concentration. We find that the Earth’s greening trend is weakening and clusters of711

browning are beginning to emerge, and importantly, expanding during the last two decades.712

Leaf area is primarily decreasing in the pan-tropical green belt of dense vegetation. Leaf area713

gain is occurring mostly in sparsely vegetated regions in cold and/or arid climatic zones, and714

in temperate forests. Thus, vegetation greening is occurring mainly in regions of low LAI,715

whereas browning is seen primarily in regions of high LAI. Consequently, these opposing716

trends are decreasing the texture of leaf area distribution in natural vegetation.717

We identify clusters of greening and browning spread across all continents and conduct718

a regional, i.e. biome-specific, driver attribution based on factorial model simulations. The719

results suggest that the physiological effect of CO2 (i.e. CO2 fertilization) is the dominant720

driver of increasing leaf area only in temperate forests, cool arid grasslands and likely the721

Australian shrublands. A cause-and-effect relationship between CO2 fertilization and greening722

of other biomes could not be established. This finding questions the study by Zhu et al. (2016)723

that identified CO2 fertilization as the most dominant driver of the Earth’s greening trend.724

We find that many clusters of greening and browning bear the signature of climatic changes.725

The greening of Sub-Saharan grasslands and savannas can be explained by increased rainfall.726

Climatic changes, primarily warming and drying, determine the patterns of vegetation changes727

in the northern ecosystems, i.e. greening of Eurasian boreal forests and North American tundra,728

but also emerging browning trend in the Eurasian tundra. Models fail to capture the browning729

of North American boreal forests. Models suggest rising CO2 has compensatory effects on730

LAI in the tropical forests. Climatic changes induce browning, which is opposed by greening731

due to a strong physiological effect in the models. Hence, if the physiological effect of CO2732

is “turned-off”, models simulate the emerging browning trend in the tropics comparable to733

observations. Our analysis of changes in rainfall during the satellite age underpins climate734

changes as the main cause of tropical forest browning: recurrent droughts and decline in dry735

season precipitation in the Amazon as well as long-term drying trends in Africa.736
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Models represent a simplified view of the real world reduced to its essential processes.737

Some of these processes are under-represented or lacking in the current generation of land738

surface models. Whether they are driven with observed climatic conditions or operate in a739

fully-coupled Earth System model, they fail to capture the full extent of adverse effects of740

rising CO2 in natural ecosystems. In particular, the deficiency of reproducing the observed741

leaf area loss in North American boreal and in pan-tropical forests - biomes which account742

for a large part of the photosynthetic carbon fixation - has considerable implications for743

future climate projections. Thus, it is important to focus model development not only on a744

better representation of disturbances such as droughts and wildfires, but also on revising the745

implementation of processes associated with the physiological effect of CO2, which currently746

offsets browning induced by climatic changes.747

Another vital issue for future research is the impact of large-scale climatic anomalies on748

vegetation. All three major clusters of browning are hypothesized to be associated with749

temperature or precipitation anomalies modulated by climatic modes. Many droughts in750

the Amazon were attributed to El Niño events (Bonal et al., 2016). The long-term drying751

trend in tropical Africa is possibly connected to the Atlantic Multidecadal Oscillation (Asefi-752

Najafabady and Saatchi, 2013). Likewise, disturbances in North American boreal forests753

are likely controlled by an interplay between large-scale climatic patterns (Pacific Decadal754

Oscillation, El Niño Southern Oscillation, and Arctic Oscillation; Macias Fauria and Johnson,755

2008). Little is known about how these large-scale patterns might change in a warming756

climate. Current Earth system models struggle to simulate these climatic modes and related757

precipitation patterns, which is likely rooted in their coarse spatial resolution. New tools, such758

as high-resolution simulations or large ensembles, offer possibilities to study these phenomena.759

Finally, it is important to note that the impacts of leaf area changes are not comparable760

between biomes. Regarding biodiversity, the consequences of leaf area loss in tropical forests761

that harbor the most diverse flora and fauna of the planet are not compensated for by leaf area762

gain in temperate and arctic ecosystems. A similar caveat is in order with respect to the carbon763

cycle, e.g. an additional leaf in the tundra does not offset the reduction in primary productivity764

of a leaf lost in the tropical rainforest. Thus, our results indicating loss of tropical leaf area765

should be of concern. A recent study suggested that the tropical forests have already switched766
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to being a net source of carbon, also considering land-use emissions (Baccini et al., 2017). The767

uncertainty in future projections is large, ranging from a stable CO2 fertilization-driven carbon768

sink to a collapse of the system at a certain CO2 concentration (Cox et al., 2000). Concerning leaf769

area, the models project a steady greening of the tropical forests in the high-end CO2 emissions770

scenario (business-as-usual) and a slight browning in the low-end scenario (mitigation) by771

the end of the century (Piao et al., 2019). Altogether, the tropical forests have the potential to772

crucially influence the evolution of climate throughout the 21
st century and should be a vital773

issue for future research.774
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Figure 2 | Observed homogenization of the global natural vegetation. a Time series of the area-
weighted annual average LAI (AVHRR, 1982-2017) of natural and anthropogenic vegetation
for regions of positive (greening) and negative trends (browning). Only regions exhibiting
significant trends are considered (Mann-Kendall significance test, p < 0.1) and are referred
to as Λ. The percentages in brackets in the legend represent the respective proportions
with respect to the total area. b Violin plot comparison of probability density functions
(PDF, Gaussian kernel density estimation; all PDFs scaled to contain the same area) of LAI
distributions of natural vegetation for negative (left) and positive Λ (right), and in time,
1982-1984 (dashed) versus 2015-2017 (solid). The horizontal lines represent the mean values
for the respective period. c Q-Q (quantile-quantile) plot comparing the distributions of LAI
for negative (x-axis) and positive Λ (y-axis) and their change over time, 1982-1984 (blue dots)
versus 2015-2017 (orange dots).
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Figure 3 | Global driver attribution of changing natural vegetation for the entire period versus the
second half of the observational record. a Time series of the area-weighted annual average
LAI (AVHRR, 1982–2017) for regions of positive (blue dotted line) and negative sensitivity
(red dashed line) to rising atmospheric CO2 concentration (Λ) of natural vegetation. Black
solid line represents the overall signal of all pixels. The percentages in brackets in the
legend represent the greening and browning proportions with respect to the total area.
b Time series of changes in LAI relative to the average state from 1982–1984, comparing
observations (black solid line) with historical simulations, where the green dashed line
denotes the ensemble mean of 13 offline-driven land surface models (TRENDYv7, Data
and Methods), and the purple dotted line denotes the average of an ensemble of multi-
realizations with a fully-coupled Earth system model (MPI-ESM, Data and Methods). The
colored shading represents the 95% confidence interval estimated by bootstrapping. The
correlation coefficients (including significance level) of the observed and simulated time
series are displayed in brackets in the legend. c Bar chart showing relative trends in LAI (in
% yr−1) of the total observed signal (black) and for factual (all historical forcings; ALL) as
well as for counterfactual simulations, i.e. no historical CO2 forcing (No CO2), all historical
forcings except the physiological effect (No PE) or the radiative effect (No RE) of atmospheric
CO2, as estimated by TRENDYv7 (green) and MPI-ESM (purple). The yellow bar represents
internal variability (IV) derived from all simulations (control, factual and counterfactual). d
Probabilities of necessary and sufficient causation (PNS) of the change in LAI, comparing the
physiological (PE) and radiative effect (RE) of CO2 as well as their combined effect (Both). e
as in c but for the period 2000–2017. f as in d but for the period 2000–2017.

45



manuscript submitted to AGU Advances

0.0

0.2

0.4

0.6

0.8

1.0
a Physiological Effect of CO2

0.0

0.2

0.4

0.6

0.8

1.0

P
N

S

c Radiative Effect of CO2

Tem
per

at
e

For
es

ts

Eura
sia

n

Bor
ea

l For
es

ts

N-A
fri

ca
n

Sav
an

nas
-G

ra
ss

lan
ds

Aust
ra

lia
n

Shru
blan

ds

Cool Gra
ss

lan
ds

N-A
m

er
ica

n

Tundra

0.0

0.2

0.4

0.6

0.8

1.0
e Overall CO2 Forcing

0.0

0.2

0.4

0.6

0.8

1.0
b Physiological Effect of CO2

MPI-ESM TRENDYv7

0.0

0.2

0.4

0.6

0.8

1.0
d Radiative Effect of CO2

Tro
pica

l

For
es

ts

Cen
tra

l-A
fri

ca
n

Tro
pica

l For
es

ts

N-A
m

er
ica

n

Bor
ea

l For
es

ts

Eura
sia

n

Tundra

S-A
fri

ca
n

Sav
an

nas
-G

ra
ss

lan
ds

0.0

0.2

0.4

0.6

0.8

1.0
f Overall CO2 Forcing

Clusters of Postive Λ Clusters of Negative Λ

Figure 4 | Probabilities of sufficient and necessary causation (PNS) of LAI changes in response to
CO2 for eleven clusters. Bar charts represent PNS of LAI changes in response to the
physiological effect (a, b), radiative effect of CO2 (c, d) and all anthropogenic forcings (e,
f). Different colors represent the identified clusters of substantial change in LAI. Panels
on the left comprise clusters that show consistent greening, panels on the right represent
emerging browning clusters (observed net leaf area loss in the period 2000–2017; attribution
is conducted only for significant decreasing trends, Data and Methods). The two types
of bar illustrate the two different ensembles of model simulations (left: MPI-ESM, right:
TRENDYv7).
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Table 1 | Greening (positive Λ), browning (negative Λ) and non-changing fractions of vegetated area for
different biomes and prominent clusters of change for the time period 1982–2017. Significant
changes are determined by the means of the Mann-Kendall significance test (p < 0.1). The
abbreviations used to describe the different clusters are explained in Materials and Methods.

Area Vegetated Area Positive Λ Fraction Negative Λ Fraction No-Change Fraction

Unit 10
6 km2 - - -

All Vegetation 109.42 0.43 0.13 0.45

Anthro. Vegetation 15.37 0.6 0.07 0.32

Natural Vegetation 94.05 0.4 0.14 0.47

Biomes
Grasslands 26.77 0.4 0.12 0.48

Tropical Forests 20.32 0.28 0.16 0.55

Boreal Forests 13.69 0.4 0.19 0.41

Temperate Forests 11.2 0.56 0.08 0.36

Shrublands 10.37 0.41 0.1 0.49

Tundra 7.03 0.41 0.14 0.45

Savannas 4.22 0.48 0.13 0.38

Clusters
Cool Gl 12.32 0.4 0.12 0.48

EA Brl F 8.0 0.53 0.1 0.37

NAm Brl F 5.69 0.23 0.31 0.46

NAf Sv Gl 5.6 0.59 0.06 0.35

CAf Trp F 5.35 0.3 0.25 0.45

SAf Sv Gl 4.6 0.24 0.24 0.52

Aus Sl 4.43 0.49 0.03 0.49

EA Tundra 3.57 0.35 0.2 0.44

NAm Tundra 3.46 0.46 0.07 0.47
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Table 2 | Leaf area gain, loss, and net change for different biomes and prominent clusters of change for
the time period 1982–2017. Significant changes are determined by the means of the Mann-
Kendall significance test (p < 0.1). The abbreviations used to describe the different clusters
are explained in Materials and Methods.

Leaf Area Leaf Area Gain Leaf Area Loss Net Leaf Area Change

Unit 10
3 km2 yr−1

10
3 km2 yr−1

10
3 km2 yr−1

All Vegetation 296.87 -85.71 211.16

Anthro. Vegetation 67.12 -6.47 60.65

Natural Vegetation 229.75 -79.24 150.51

Biomes
Grasslands 48.01 -12.51 35.50

Tropical Forests 58.42 -34.31 24.11

Boreal Forests 32.11 -14.45 17.66

Temperate Forests 53.32 -7.45 45.87

Shrublands 10.9 -2.4 8.50

Tundra 8.74 -3.69 5.05

Savannas 17.99 -4.21 13.78

Clusters
Cool Gl 15.06 -3.75 11.31

EA Brl F 25.93 -4.26 21.67

NAm Brl F 6.18 -10.18 -4.00

NAf Sv Gl 23.42 -0.98 22.44

CAf Trp F 16.76 -13.76 3.00

SAf Sv Gl 5.51 -6.76 -1.25

Aus Sl 4.48 -0.16 4.32

EA Tundra 3.96 -3.04 0.92

NAm Tundra 4.78 -0.64 4.14
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