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Key Points: 19 

● Natural hazards pose risks that span across multiple sectors and spatiotemporal scales. 20 
● Effective risk management requires integrated approaches, coordinated processes, open 21 

science, and networked efforts. 22 
● The ICON approach brings the scientific community, stakeholders, and decision-makers 23 

together in developing equitable and inclusive risk management strategies. 24 
  25 
Abstract 26 
This article is composed of one integrated commentary about the state of ICON principles (Goldman 27 
et al., 2021) in natural hazards and a discussion on the opportunities and challenges of adopting them.  28 
Natural hazards pose risks to society, infrastructure, and the environment. Hazard interactions and their 29 
cascading phenomena in space and time can further intensify the impacts. Natural hazards’ risks are 30 
expected to increase in the future due to climate, demographic, and socioeconomic changes. It is 31 
important to quantify and effectively communicate risks to inform the design and implementation of 32 
risk mitigation and adaptation strategies. Multihazard multisector risk management poses several 33 
nontrivial challenges, including: i) integrated risk assessment, ii) Earth system data-model fusion, iii) 34 
uncertainty quantification and communication, and iv) crossing traditional disciplinary boundaries. 35 
Here, we review these challenges, highlight current research and operational endeavors, and underscore 36 
diverse research opportunities. We emphasize the need for integrated approaches, coordinated 37 
processes, open science, and networked efforts for multihazard multisector risk management.   38 
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1 Introduction 39 
Natural hazards drive major damages to communities, infrastructure, and ecosystems across the 40 

globe. Recent European floods (Cornwall, 2021), wildfires in the United States (Swain, 2021), and 41 
drought in South Africa (Pascale et al., 2020) highlight how human and natural systems are exposed 42 
and vulnerable to natural hazards. Between 2000 to 2019, natural hazard-related disasters caused over 43 
2 trillion United States (U.S.) dollars in global economic losses and over 1 million deaths worldwide 44 
(United Nations Office for Disaster Risk Reduction, 2020). These impacts are expected to rise in the 45 
future with coevolving natural and human systems subject to the impacts of multiple hazards, including 46 
extreme weather events, sea-level rise, anthropogenic disturbances, and climate change. There is 47 
growing recognition of the critical need to improve the understanding and prediction of natural hazards, 48 
characterize multihazard multisector risk, and enhance the communication of risk and its associated 49 
uncertainties to inform the design of effective risk management strategies (IPCC, 2021). 50 

Multihazard multisector risk management requires a comprehensive understanding of different 51 
interacting systems and processes, including the feedback between ecosystems, human systems, and 52 
climate systems (Byers et al., 2018; Mora et al., 2018; Piontek et al., 2014). A growing number of 53 
scientific studies (Bates et al., 2021; Cook et al., 2018; Hirabayashi et al., 2013; Strömberg, 2007) 54 
provide valuable new insights on the potential impacts of a single hazard on a specific sector and in a 55 
specific region. However, there is a lack of integrated frameworks, coordinated processes, open science, 56 
and networked efforts that can account for the complex interactions across natural and human systems 57 
in the context of multiple interacting stresses and over a wide range of spatiotemporal scales (Figure 58 
1).  59 

This commentary highlights the challenges and opportunities for multihazard multisector risk 60 
management, acknowledging the pressing need for integrated (I) approaches, coordinated (C) 61 
processes, open (O) science, and networked (N) efforts. We discuss the challenges and research 62 
opportunities related to i) integrated risk assessment, ii) Earth system data-model fusion, iii) crossing 63 
traditional disciplinary boundaries, and iv) uncertainty quantification and communication, and further 64 
emphasize the immediate need for ICON science (Goldman et al., 2021). 65 

 66 
2 Challenges and Research Opportunities 67 
2.1 Integrated risk assessment 68 

A sound understanding of risk drivers and their dynamic interactions is critical to inform the design 69 
of risk management strategies. Quantifying multihazard multisector risk is challenging as it requires 70 
the integrated assessment of hazard probabilities, the exposure of people and assets, and the 71 
vulnerability or susceptibility to consequent damage. In addition, multihazard risks are dynamic and 72 
are modulated by several factors, including climatic conditions, demographic changes, and 73 
socioeconomic conditions. Understanding the interactions among the risk drivers is crucial to achieving 74 
a comprehensive view of the integrated system. Developing an integrated system requires a priori 75 
planning to integrate different components while ensuring open access and interoperability across data 76 
types and models.  77 
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Earth system modeling efforts are generally focused on understanding the impacts of a single 78 
hazard in isolation, emphasizing risk assessment in limited sectors. However, these individual hazards 79 
often demonstrate compounding and cascading behaviors, where the resulting multihazard multisector 80 
risk becomes increasingly more difficult to be assessed using conventional techniques. Furthermore, 81 
the conventional risk assessment techniques are mostly concentrated on predicting hazards instead of 82 
the actual risk or impacts. Risk predictability is often limited to decision-making across a range of 83 
spatiotemporal scales due to the lack of coordinated databases (Fuchs et al., 2012; Rakhal et al., 2021). 84 
Improving the risk prediction capabilities of Earth system models demands networked efforts among 85 
the scientific community, stakeholders, and agencies for database development and management with 86 
implications to inform mutually beneficial risk mitigation and adaptation strategies. For instance, 87 
tropical cyclones, flooding, and landslide risk prediction ahead of sufficient lead time allow risk 88 
managers enough time to take necessary steps for preparedness and damage mitigation; whereas the 89 
lack of predictability in earthquakes complicates the disaster mitigation and preparedness activities. 90 
Understanding the natural hazard phenomena and generation processes is critical to improve hazard 91 
and risk predictability.  92 

The challenges outlined above raise several questions for researchers and policymakers. How can 93 
we develop an open-source integrated modeling framework that can account for complex interactions 94 
and dependencies among human and natural systems? How do the cascading hazards and associated 95 
risks change with evolving climatic conditions, socioeconomic developments, and settlement patterns? 96 
How do mitigation and adaptation strategies change risk perception? How can we upscale knowledge 97 
from basin-scale process understanding to regional-scale hazards and risks modeling, and vice versa? 98 

The availability of high-resolution datasets and modeling resources have opened opportunities for 99 
integrated multihazard multisector risk assessment across a wide range of spatial and temporal scales. 100 
There is also an increasing acknowledgment of the need to systematically integrate risk management 101 
efforts into policy, plans, and programs for sustainable development. Strategic and integrated efforts to 102 
promote community resilience to disasters have been initiated through Hyogo Framework for Action 103 
2005-2015 and Millennium Development Goals. The Sendai Framework for Disaster Risk Reduction 104 
(Trogrlić et al., 2017) and the 2030 United Nations Sustainable Development Goals (Desa et al., 2016) 105 
underscore the pressing need for inclusive and integrated multihazard risk management approaches. 106 
These networked efforts are designed to be mutually beneficial across multiple stakeholders.  107 

Community risks to natural hazards are often quantified using an index such as the US National 108 
Risk Index (FEMA, 2021), and Global Climate Risk Index (Eckstein et al., 2021). Scientific 109 
communities have made substantial progress in understanding the potential impacts of multihazards on 110 
multisectors and from local to global scales (Chester et al., 2019, 2020; Koks et al., 2019; Wright et al., 111 
2019). Furthermore, World Meteorological Organization’s guidelines have emphasized the need for 112 
multi-hazard impact-based forecast and warning services to disseminate accurate and understandable 113 
weather and climate information. Satellite remote sensing, citizen science, and low-tech sensing could 114 
be instrumental in supporting local-level risk management, particularly in the data-scare region. 115 
Additional networked initiatives such as community-based modeling and data collection that integrate 116 
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traditional wisdom, indigenous knowledge, and experts’ opinion have been effective for multihazard 117 
risk management (Miles, 2018; Rakhal et al., 2021; Sanders et al., 2020). 118 

 119 
2.2 Earth System Data-Model Fusion 120 

Recent advances in big data, high-performance computing systems, cloud computing, and 121 
community-based modeling, among others, have opened the doors for more integrated and coordinated 122 
efforts on modeling, prediction, and risk assessment of natural hazards (Emerton et al., 2016; 123 
Farahmand & AghaKouchak, 2013; Yousefi et al., 2020). There are, however, salient challenges that 124 
the modeling communities across disciplines of natural hazards have recognized. Natural hazards 125 
impact at various spatial and temporal scales, and hence a need for scalable modeling efforts. The 126 
spatial and temporal scales associated with hazards vary with their types, which are often incompatible 127 
and inconsistent with hazard models, available datasets, and decision-making scales. Data collection 128 
for large-scale (regional) hazards such as hurricanes/cyclones and droughts are easier than that of small-129 
scale (local) hazards like riverine flooding and landslides. The integration of such datasets in 130 
multihazard models poses a particular challenge in resolving local-scale processes. Also, developing 131 
FAIR (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al., 2016) datasets with 132 
coordinated and networked approaches through interagency and intergovernmental efforts is still a 133 
challenge. FAIR data and model-based practices in publication and policy reports, for instance, provide 134 
pathways for advancing discoveries in multihazard research and decision-making through open science. 135 
Whether datasets are in-situ or remotely sensed, they are not without uncertainties, which adds further 136 
challenge to integrate with hazard models. The integration of human systems is often challenging in 137 
such hazard models (Howley, 2021; Sima, 2021), hence the lack of a comprehensive assessment of 138 
exposure and vulnerability to people and properties. Also, note that the development and maintenance 139 
of databases and integrated hazard models demand continuous computational and financial resources, 140 
and networked efforts from researchers in the community and monitoring agencies for open access to 141 
data. 142 

The challenges outlined above suggest several questions for researchers. How can we make 143 
optimal use of sparse station networks, remotely sensed radar and satellite retrievals, numerical weather 144 
prediction products, and global climate model outputs to provide high resolution forcing to modeling 145 
integrated human and natural systems? How can the Earth system models capture both local as well as 146 
large-scale dynamics? What are the efficient ways to couple models to understand compounding and 147 
cascading hazards? What is the best choice of spatiotemporal model resolution for specific hazard and 148 
risk assessment? Can we develop a modular framework for risk assessment across spatiotemporal 149 
scales? How do we integrate human system feedback into a multihazard modeling framework? 150 

The availability of novel observational datasets presents significant opportunities for improving 151 
our understanding, modeling, and predictions of natural hazards. Data collection has started to become 152 
coordinated through large research community networks, including the Long-Term Ecological 153 
Research, the Great Lake Ecological Observatory Network, the United States Geological Survey, the 154 
National Ecological Observatory Network, and the French network of Critical Zone Observatories, 155 
among others. However, there is a need for greater coordination within each data system to ensure 156 
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internal consistency and develop crosswalk tools to enable the interoperability of data products among 157 
these efforts. Recent advances in data assimilation and machine learning techniques provide 158 
opportunities to integrate high-resolution in-situ and remote-sensing observations into hazard models. 159 
Free and open-source data and code sharing platforms like GitHub and Google Collaboratory have been 160 
effective tools for open science. Open data initiatives, including OpenDRI and DesInventar provide 161 
systematic, homogeneous, and compatible databases of natural hazards. Recent advances in high-162 
performance computing systems such as the National Center for Atmospheric Research Cheyenne 163 
allow the wider research community to run computationally intensive computer models. In addition, 164 
cloud-based tools such as Google Earth Engine, Amazon Web Services, and EOfactory have been 165 
crucial to forging collaborations among diverse research communities worldwide. 166 

Coordinated modeling efforts across disciplines can promote the Earth system modeling by 167 
developing, supporting, and disseminating open-source codes, documentation, and integrated software 168 
modules.  Some examples include- National Center for Atmospheric Research (NCAR) community 169 
models, International Institute for Applied System Analysis’ community water model, Community 170 
Surface Dynamics Modeling System (CSDMS), European Center for Medium-Range Weather 171 
Forecasts (ECMWF), European Flood Awareness System (EFAS), and Global Landslide Hazard 172 
Assessment Model (LHASA) with Global Landslide Catalog (GLC). These modeling resources can 173 
help improve the understanding of complex connections that drive the Earth system and predict high-174 
impact hazard events to potentially inform decisions about policy and resource allocation for hazard 175 
mitigation and adaptation strategies. 176 
 177 
2.3 Uncertainty quantification and communication 178 

Risk communication requires a sound understanding of future risks with quantification of 179 
associated uncertainties, and a coordinated approach among disciplines (Scolobig, 2015). Natural 180 
hazard risks are dynamic and deeply uncertain. Deep uncertainty refers to a situation “where the system 181 
model and its input parameters are not known or widely agreed on by the stakeholders to the decision” 182 
(Lempert, 2002). For instance, deep uncertainty in flood risk projections arises from different system 183 
components, and propagates along the modeling chain that consists of emission scenarios, general 184 
circulation models, downscaling techniques, hydrological models, hydraulic models, and exposure and 185 
vulnerability components (Sharma et al., 2021). All components of the ICON science permeate through 186 
this modeling chain of uncertainty quantification. In addition, these uncertainties often propagate 187 
through multisector systems. For example, agricultural planning and management efficacy are subject 188 
to uncertainty propagation stemming from an integrated agricultural, atmospheric, and hydrologic 189 
modeling system. However, current approaches to estimate hazards sample only a relatively small 190 
subset of the known unknowns such as model structures and parameters while neglecting the cross-191 
sectoral feedback mechanisms. Such assumptions ignore the impacts of key uncertainties on hazards 192 
and dynamics. This can drastically underestimate the tails of the hazard probability distribution (Wong 193 
et al., 2018). In addition, natural hazards’ warnings/alerts are communicated generally through the 194 
discrete single-valued warning products. Most often, such products do not openly provide associated 195 
uncertainty measures and make them publicly available. It could be partly because different studies 196 
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have highlighted “uncertainty” as a major challenge in risk communication, including the challenges 197 
associated with establishing reliable sources of warning, consistency in the communication strategies, 198 
the credibility of the source, and accuracy of the information (Carr et al., 2016). Failing to effectively 199 
communicate risk and uncertainty could lead to overconfidence in risk perception, and result in poor 200 
decisions and outcomes (Zarekarizi et al., 2020). 201 

Key questions associated with uncertainty quantification include the following: What are the 202 
decision-relevant uncertainties driving natural hazards and risks estimates? How does uncertainty 203 
propagate along with the integrated socioeconomic, environmental, and infrastructure systems? What 204 
are the coordinated approaches for uncertainty characterization, quantification, and reduction in hazard 205 
predictions and risk assessment? Key questions associated with uncertainty communication include the 206 
following. What are the effective tools and approaches to communicate uncertain hazards and risk 207 
information? How do policymakers, decision-makers, and communities perceive uncertainty? What 208 
changes are needed to make uncertainty an integral part of risk assessment? How do risk perceptions 209 
impact mitigation, preparedness, and response behavior, and how do these change when the estimated 210 
risk accounts for uncertainty?  211 

 212 
2.4 Crossing traditional disciplinary boundaries  213 

Multihazard multisector risk management requires integrating multiple areas of expertise that 214 
bring together different disciplines in multi-, inter-, and/or trans-disciplinary research (Wehrden et al., 215 
2019). Such integration can span across Earth science, engineering, social science, data science, and 216 
decision science, among others. For instance, the development of flood prediction and information 217 
dissemination systems require reliable weather predictions (atmospheric science), land surface 218 
modeling (Earth science), big data analysis (data science), high-performance computing system 219 
(computer engineering), a user-friendly web-based information portal (information science), risk 220 
communication (social science), and a continuous automated monitoring network (electrical/electronic 221 
engineering). It further demands coordinated approaches and networked efforts that are designed for 222 
mutual benefit among governmental/non-governmental institutions, industries, policymakers, decision-223 
makers, and practitioners. However, designing, implementing, and evaluating cross-disciplinary, 224 
mutually beneficial research remains challenging. Researchers, research institutions, and funding 225 
organizations still lack a concrete framework for promoting and implementing mechanisms to foster 226 
ICON-based research collaborations. In addition, differing research methods, languages, and 227 
knowledge barriers among disciplines compound the complexity of ICON science implementation 228 
(Barringer et al., 2020; Pischke et al., 2017).   229 

The key question is: How can we promote and strengthen ICON-based cross-disciplinary research? 230 
Scientific communities have recognized the need for cross-disciplinary research. Nonetheless, the full 231 
use of ICON principles remains nascent. The National Research Council Committee on Facilitating 232 
Interdisciplinary Research (NRC, 2005) identified key driving forces to promote interdisciplinary 233 
research: i) the inherent complexity of nature and society, ii) the desire to explore problems and 234 
questions that are not confined to a single discipline, iii) the need to solve societal problems, and iv) 235 
the power of new technologies. In addition, collaborative research proposals have been gaining 236 
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increasing emphasis from funding organizations. For example, the United States National Science 237 
Foundation (NSF) adopts convergence as one of the ten Big Ideas for future NSF investments (NSF, 238 
2021). NSF identifies convergence research as having two primary characteristics: i) research driven 239 
by a specific and compelling problem, and ii) deep integration across disciplines.  240 
 241 
3 Call to Action 242 

Scientific efforts, policies, and decision-making on multihazard multisector risk require a sound 243 
understanding of risk and its drivers, from local to global scales. This includes understanding how risk 244 
may change across a wide range of spatiotemporal scales and how that risk may be reduced through 245 
disaster risk reduction efforts. Such efforts may be through both structural (such as mitigation 246 
measures) and nonstructural (such as adaptation that promotes resilience) means. As we highlight in 247 
this commentary, ICON provides a unique opportunity to bring scientific communities, policymakers, 248 
decision-makers, and the public together, facilitating the development of equitable and inclusive risk 249 
management strategies. The need for ICON science permeates through multihazard risk assessment and 250 
management in terms of integrated risk assessment, data-model fusion, uncertainty quantification and 251 
communication, crossing traditional disciplinary boundaries, and gears toward developing efforts to be 252 
mutually beneficial, and beyond.  253 
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 366 

Figure 1: Multihazard multisector risk management under the Integrated, Coordinated, Open and Networked 367 
(ICON) science framework. Natural hazards can be geophysical (earthquakes, landslides, and volcano), 368 
hydrometeorological (flood and avalanches), biological (disease epidemics and animal/insect plagues) and 369 
climatological (droughts and wildfires), among others.  370 


