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Abstract

Markov Chain Monte Carlo (MCMC) sampling of solutions to large-
scale inverse problems is, by many, regarded as being unfeasible due to
the large number of model parameters. This statement, however, is only
true if arbitrary, local proposal distributions are used. If we instead use a
global proposal, informed by the physics of the problem, we can dramat-
ically improve the performance of MCMC and even solve highly nonlin-
ear inverse problems with vast model spaces. This is illustrated by a seis-
mic full-waveform inverse problem in the acoustic approximation, involving
close to 10® parameters.

Introduction

Full-waveform inversion (FWI) is emerging as a promising method for comput-
ing subsurface properties and high-resolution images from seismic data. How-
ever, since its introduction in the late 1980s through the theoretical work of Lailly
(1983) and Tarantola (1984, 1986, 1988) and subsequent numerical tests [4, 6].
it has been known that inference about the low-wavenumber components of the
Earth model (the background velocity field) is a highly nonlinear problem. Early
attempts to solve this problem using Markov-Chain Monte Carlo (MCMC) tech-
niques (see, e.g., Koren et al., 1991) ran into serious problems, not only because of
the shortcomings of computational resources at the time, but also because large-
scale inverse problems have vast parameter spaces.
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Later improvements [2, 12, 13, 21], of which the frequency-domain approaches
[14, 13, 15] were amongst the most important, gave further momentum to the de-
velopment of more efficient algorithms, but there were still some way to go be-
fore a probabilistic full-waveform inversion could be attempted. Characterizing
the full posterior probability distribution, either through a sample of solutions, or
in a parameterized form, is a formidable problem, far exceeding the calculation of
of best-fitting solutions.

Only recently, improved methods for many-parameter highly nonlinear seis-
mic inversion have come to light, of which inversion based on Hamiltonian Monte
Carlo (HMC) [3, 5] and Variational Full-Waveform Inversion (VFWI) [22] are
notable examples. HMC is an MCMC with improved sampling efficiency using
gradient information of the misfit function - information that can be computed rel-
atively fast for seismic inverse problems through the method of adjoints. VFWI is
a non-sampling method seeking a continuous mapping over the parameter space
that transforms samples from the prior probability density into approximate sam-
ples from the posterior.

A close look at all methods (deterministic and stochastic) used for solution
of inverse problems (linear, weakly nonlinear and strongly nonlinear) reveals that
efficiency always requires specific properties/assumptions about the problem built
into the algorithm: In regular MCMC, good performance depends heavily on
smoothness information obtained through initial experimentation with step lenghts
of the algorithm. In HMC, efficient computation of misfit gradients through ad-
joints, which is a specific property of the wave equation, is built into the algo-
rithm. VFWI assumes a predefined family of posterior distributions among which
it seeks a solution. The role of information in defining the efficiency of an inver-
sion algorithm is further explored in [7] where it is shown that goal-directed use
of specific information, characteristic of the problem, can dramatically improve
performance.

In this study we propose a MCMC methodology for large-scale full-waveform
inversion, based on the Informed Proposal Monte Carlo (IPMC) technique de-
scribed by Khoshkholgh et al. (2020). Our approach in this paper is pragmatic,
in that we use approximate information acquired through classical seismic pro-
cessing and subsequent interpretation to build a proposal strategy for the MCMC
sampler. IMPC ensures that errors and inaccuracies in the proposal information
does not pollute the final sampling result. Only the speed by which statistically
independent samples are collected is influenced: The closer the proposal is to the
posterior, the faster is the sampling.

First we provide a brief overview of the Informed Proposal Monte Carlo method,
and then we apply the method to a synthetic 2D test example and compare the re-
sults with those obtained by a regular MCMC method.



Methods

Probabilistic Inversion

Probabilistic inverse theory is based on the assumption that any state of informa-
tion about a parameterized system can be described by a probability density func-
tion. In the two most widely used formulations, the Bayesian approach [1, 11]
and the approach of Tarantola and Valette (1982), the outcome of the inversion
is a so-called posterior probability distribution o(m) over the model parameter
space. In both formulations, o(m) is expressed as a product of two distributions

o(m) = p(m)L(m) (D

where p(m) quantifies our (uncertain) prior information about m, and L contains
information about m from uncertain, observed data and from physical law. Since
a probabilistic inversion produces, not only one particular solution, but a prob-
ability distribution over the entire model space, we are left with the problem of
characterizing this distribution. One choice is to look for a parametric description
of the posterior (as is done in variational methods [22]), but another approach is
to create a non-parametric description of the posterior. This method, which is
essentially equivalent to forming a multi-dimensional histogram of the posterior,
is the one used by MCMC- and other sampling methods.

Markov-Chain Monte Carlo

The goal of an MCMC sampler is to produce a collection of models with a sam-
pling density proportional to a given target distribution. Each step of the sam-
pling from a probability density o(m) proceeds from a current m by first ran-
domly proposing a new model m’ according to a so-called proposal distribution
¢(m’|m), followed by accepting m’ only with probability

prn (S tmim) ),

o(m)g(m’[m)’

2)

This acceptance probability guarantees that, in the limit where the number of mod-
els N — oo, the distribution o(m) will be correctly sampled. There is great free-
dom in the choice of the proposal distribution ¢(m’|m), as long as equation (2)
is well defined for all m’. It is, however, clear from (2) that if we could choose
¢(m’'|m) = o(m’) we would have an algorithm with maximum efficiency: It
would be allowed to move freely between models of non-zero values of the tar-
get probability density, and all moves would be accepted. It is, however, also
clear that this choice of ¢ would require that we already had full knowledge of the
structure of o and hence that the solution would be known from the beginning!
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In practice, the situation is quite the opposite. We usually have very little
information about o or, to simplify implementation of our algorithm, we ignore
this information. A commonly used, minimum information about ¢ used in an
MCMC implementation is about the smoothness of ¢, and it is normally found
by experimentation. The smoothness tells us how far away from the current point
m in the model space we can go without changing the value of o significantly,
and this allows us to build the proposal ¢ so narrow that any new proposed model
have a good chance of being accepted. The advantage of a narrow ¢ is that it
is quite similar (near-proportional) to ¢ in a small neighborhood around m. For
this reason it gives a high acceptance probability, but the disadvantage is that
the resulting moves away from m are so small that successive, accepted models
become highly correlated. Consequently, it takes many moves to produce new,
uncorrelated models.

It is the above-mentioned experience with information-deficient, narrow pro-
posals that leads many to conclude that MCMC is inherently inefficient. We view
the situation quite differently: MCMC is an algorithm that allows (possibly slow)
sampling of a distribution o, even in cases where the approximate smoothness is
the only thing known about o. If, on the other hand, we have more comprehensive
information about o, this can be built into the proposal ¢, and the algorithm can
be made much more efficient. The purpose of this study is to demonstrate that
the latter approach is very efficient. We use a semi-realistic, synthetic, seismic
inversion example where inference about ~ 10° model parameters is sought.

Using a Proposal, Informed by Approximate Physics

Following the formulation of Tarantola and Valette (1982), a general expression
for the joint posterior probability can be written

p(d, m)d(d, m)
p(d, m)

where d is data, m is the model parameters, p(d, m) is the prior and p(d, m)
is the homogeneous probability density in the joint (d, m)-space. The density
6(d, m) is the distribution of errors/uncertainties of the relation between m and
d, including data uncertainties and possible, physical modelization errors. In this
study we will, without loss of generality, assume that y is constant over the model
space, and that p(d, m) = p(d)p(m) (prior information about d and m are inde-
pendent). This leads to (ignoring the normalization constant):

o(d, m) = p(m)p(d)#(d, m) )

3)

o(d,m) =

Following [7], we now build our proposal distribution as a rough approximation
om(m) to the marginal posterior in the model space. G, will be based on sim-
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plified physics where the modelization errors overwhelm the observational data
uncertainties, hence (ignoring normalizations):

Tm(m) ~ o(dgps, m) ~ p(m)6(dyps, m) . 5)

expressing the approximate posterior as a product of the prior and the approximate
likelihood #(dps, m). In the following we will use ¢(m’jm) = 5,,(m’) as a
global proposal distribution to speed up the MCMC algorithm. Even if ¢ is only a
poor approximation to the likelihood L, it will not bias the final sampling result.
Only the efficiency of the algorithm will be influenced.

In this study we obtain ¢(m’|m) through traditional processing and interpretation
of the seismic data d. This procedure is in the following formally denoted /, a
pseudo-inverse operator mapping from data space into the model space: m =
h(d). For real data this may include muting, velocity analysis, normal moveout
correction, stacking, deconvolution, migration, and subsequent interpretation. In
our illustrative synthetic example we simplify this procedure.

Constructing the Approximate Likelihood

In our study, we take a simple approach and construct 6(d,;s, m) as follows:

1. Using a simplified approach, we construct an approximate solution m to the
inverse problem.

2. The ’true” modelization error is dmy,.,, = M — My, but since my,,. is
unknown, we instead compute an approximation to the modelization error:

M gppron = h(g(m)) —m,

where ¢ is the forward function used to compute synthetic data. Since
h(g(m)) is an approximate solution to the inverse problem with g(m) as
data, the above formula estimates what the modelization error would have
been if m had been the true model. In case m is close to my,.,., we expect
that dm,,., Will be close to dmy, ..

3. We now define now 6(d,s, m) as a Gaussian with mean m and a diagonal
covariance matrix where the n’th standard deviation is equal to the n’th
component of d1m 04



Informed Proposal Sampling

Given that S(m) is the (accurately computed) misfit function for the problem, we
can now use an MCMC algorithm to sample the posterior, using p(m) as the prior,
L(m) = exp (—S(m)) as the accurately computed likelihood, and ¢(m’'|m) =
p(m’)6(dps, m’) as the proposal. We assume here that values of the prior can be
computed explicitly, so our proposal is now fully defined.

Each step of the algorithm now runs as follows:
1. Perturb the current model m — m’ using the proposal ¢(m’|m).

2. Accept/reject the perturbed model m’ with probability

b — min p(m’)L(m’)g(m|m’) — min L(m")6(dyps, m)
Face = ( () L (m) g (' [m) ’1> (L(rn)@(dobs, m')’ 1> '

(6)
If m’ is rejected, the current model m will be repeated.

In practice, the rate of accepted models found by the above algorithm can be
improved if we introduce a burn-in period (say, within the first Ny iterations) in
the sampling procedure where we replace the approximate model 6(d,s, m) with
better-fitting models discovered in the process. We will see an example of this in
the numerical example below.

Results

Model Parameters and Data

The above-mentioned method was applied to acoustic full waveform inversion
of synthetic reflection data from a subset of the Marmousi velocity model [20]
giving P-wave velocities in a 755 x 1255 Cartesian grid (= 947525 parameters)
with a grid size of 1.5 m in vertical and horizontal directions (see Figure (1)). Two
shot records were generated by a finite difference algorithm to solve the constant-
density, variable-velocity acoustic wave equation in two dimensions (CREWES
Library: Youzwishen, 1999, and Margrave, 2000). The algorithm uses second-
order finite-difference operators for the time derivative and the Laplacian operator
and applies simple, absorbing boundary conditions. Figure (2) shows one of the
two shot records used as observed data in our study. The dominant frequency of
the Ricker wavelet related to the source term is 40 Hz. The seismic sources were
located at x = 375 m and z = 1500 m, and receivers were located at the surface,
equally distributed with distances of 7.5 meters.



The Likelihood Function

Assuming Gaussian white noise on the data, we use the likelihood function

L(m) = exp (—[|d — g(m)||/o*))

where g is the forward function calculating synthetic data from a model m, and o
is the standard deviation of the noise. o was chosen to give a signal-to-noise ratio
S/N =~ 2.0. Synthetic noise was not added to the data.

The Prior Distribution

In our study, we use a prior probability density assigning non-zero probability
only to piecewise constant velocity models that can be derived from:

1. Smooth, continuous 1-1 deformations ("warpings’) of the approximate model.
A warping is defined by a random, smooth displacement field u with |Qu; /Jx;| <
1 where z; (+ = 1,2) are the image location coordinates. Warping takes
place in a randomly centered square window with a predefined dimension
(here 250 x 250), a cosine variation of displacement coordinates in both ver-
tical and horizontal direction, and with zero displacement at the boundary.
Any such warping will result in a new, piecewise constant velocity model.

2. Choosing new velocities in each layer within given fixed intervals.

All models that can be generated according to the above rules are assumed a priori
equally likely. Figure 3 shows four sample models from the prior. It is seen
that the prior allows considerable variations in the model, but retains its basic
"topology’.

Building the Proposal Distribution

Our proposal distribution is a rough approximation to the posterior, which in turn
is a product of the prior and a Gaussian, approximate likelihood. The approximate
likelihood is centered at the approximate solution to the problem and with stan-
dard deviations proportional to the modelization errors of each model parameter.
Hence, our proposal sampler is based on four components:

1. A rough approximation to the posterior. To find this, we assume that
we have a 2D seismic reflection profile across the area, from which we will
derive a rough subsurface model through classical processing and interpre-
tation. To simulate this situation, we generate zero offset seismic data using
the exploding reflector model [10]. The first step in our data processing is
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a depth migration using a rough background velocity model derived from
the true velocity model through Gaussian smoothing (Figure 4), followed
by computing an approximate reflectivity profile through frequency domain
spiking deconvolution (Figure 5). Then we simulate seismic interpretation
by identifying clearly visible reflectors, and after combining this interpreted
image with the long-wavelength migration velocity field, we arrive at an ap-
proximate, homogeneous-layer velocity model for the area (Figure 6). This
velocity model is a rough solution m to the full-waveform inverse problem.

. Standard deviations of the approximate likelihood. The difference be-
tween the exact likelihood and the approximate likelihood is obtained by
generating synthetic reflection data from the approximate model, and then
performing a rough inversion of this data through processing and interpre-
tation to obtain a second (and even less accurate) approximate model. Sub-
tracting this from the (first) approximation allows estimation of the model-
ing error, providing standard deviations of our Gaussian, approximate like-
lihood. The spatial envelope of the velocity differences at each pixel in the
model, computed through a Hilbert transform, is shown in Figure 7 and
reveals regions of large and small modelization errors.

. A warping scheme that allows deformation of a model into a new model
with nonzero prior probability. Our warping consists of a series of defor-
mations, each in a quadratic window centered at the point chosen for max-
imum perturbation. The size of the maximum displacement is random and
is adjusted such that, in that point, the change will be no larger than the
estimated modelization error at that point. The displacement field in each
window is smooth and has random directions, and at the boundary of each
window the displacement is zero. We chose 100 quadratic windows of size
1/16 of the model size for random warping.

. A simple velocity perturbation scheme that allows a random change of
velocity within one layer, within given bounds (here +5%). The size of
the velocity perturbation is adjusted such that, in any point, the change will
be limited by the estimated modelization error.

This composition of the proposal algorithm ensures that the sampling is guided by
(1) information about the approximate solution and its errors, and (2) information
about the structure of the solution (piecewise constant).

Producing Samples from the Posterior Distribution:

We use the approximate model derived from processing and interpretation as the
starting model from our sampling. In 30 percent of the perturbations the velocity
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of a random layer is perturbed and the layer boundaries are kept constant. In
the rest of the perturbations we perturb the layer boundaries. During the first
300 iterations we replaced the approximate model m (which is the center of the
proposal distribution) with the best-fitting model found so far by the algorithm,
and adjusted the modeling error accordingly. In this way we have deliberately
introduced a burn-in sequence of 300 iterations in order to improve the acceptance
rate of the sampler.

Figures 8 shows four realizations from the posterior probability density pro-
duced after 200, 400, 600 and 800 iterations of the IPMC algorithm. Figure 9
compares the convergence of IPMC with a regular Extended Metropolis Algo-
rithm (EMA) (Mosegaard and Tarantola, 1995). The EMA starts in a random
realization from the prior, and its proposal distribution uses the same prior as the
IPMC. However, as is customary for the EMA, the proposal establishes a random
walk with a limited steplength:

¢(m'|m) = p(m’)u(m’|m) (7

where u(m’|m) is a uniformly sampling random walk. Note that, in contrast to
the IPMC, the EMA proposal does not use the approximate likelihood 6(d,s, m’).

Looking at the log-likelihood curves of the two methods (Figure 9) we see
a significant difference between their convergence properties. The IPMC algo-
rithm starts advantageously at a reasonable approximation to the solution with a
relatively high value of the log-likelihood. From there it proceeds towards equi-
librium, which is attained after around 100 iterations. The log-likelihood curve
for the MCMC is, however, showing long-term correlations throughout the 3000
iterations. Even the models sampled after 3000 iterations (not shown) show no
similarity to the true model, but rather resembles white noise. The proposed IPMC
method shows a remarkable improvement in efficiency as compared to the regular
MCMC algorithm.

Discussion

It is often claimed that Markov-Chain Monte Carlo methods are highly inefficient
for solution of large-scale inverse problems. This statement is only true if simple,
local proposal mechanisms are used. In this study we show that a global proposal,
incorporating substantial external information about the problem (from approxi-
mate physics, and from knowledge about the character of the solution), dramat-
ically changes the situation and allows MCMC to equilibrate much faster. In
our case with ~ 10° model parameters, the Informed Proposal Monte Carlo con-
verged to equilibrium within ~ 100 iterations whereas the classical local-proposal



MCMC was unable to approach any close-to-equilibrium sampling within this
time frame.

As always, when comparing algorithms, or differently tuned versions of the
same algorithm, one has to be critical about the conditions under which the com-
parison was carried out. Here, it is easy to see what the difference between IPMC
and MCMC is. The IPMC algorithm suggested in this paper is a specialized
MCMC algorithm using much more external information about feasible solutions
than the regular MCMC implementation. Knowing in this case that the solution is
near-piecewise constant is one important piece of information, and knowing that
classical processing and interpretation will produce a reasonable solution is an-
other. Since our approximate likelihood enters only via our proposal and assigns
nonzero probability to all models, it does not asymptotically bias our solution and
is therefore risk-free to use (it does not exclude any models). It can only, in the
best case, speed up the sampling. On the other hand, our prior has the special
property that it excludes (assigns zero probability) to all non-piecewise-constant
models. For this reason it actually biases the solution. However, this is desirable
(and intentional), because we want the prior information to have an imprint on the
solutions.

When interpreting our numerical results, one should remember the following:

1. The convergence speeds of both the IPMC and the regular MCMC depend
on the noise variance of the data. The lower the variance, the slower the
convergence.

2. Our data consist only of two shot records. For this reason the solution is not
strongly constrained by the data. This is apparent on the four realizations
from the posterior probability density shown in Figure 8. More data would
make the solution more well-determined and would probably slow down the
sampling process.

3. The proposed IPMC uses a global proposal, and for this reason can generate
independent samples quite fast. In our numerical example we could produce
uncorrelated samples separated by ~ 200 iterations. This, however, does
not mean that a complete description of the posterior can be obtained within
short time. More that 10° samples may be required to completely describe a
posterior defined in a 10°-dimensional model space, and this is independent
of the sampling algorithm used.

Conclusions

In this study we have investigated how external physical information can be used
to establish a proposal distribution for efficient MCMC sampling of solutions to
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an inverse problem. Our test problem was an acoustic full-waveform inverse prob-
lem where earth models consistent with data from two seismic shots we produced.
Our aim have been to simulate a practical situation where a preliminary, approx-
imate subsurface model created from processing and interpretation of reflection
data was available. The preliminary model was used in two different, independent
ways: (1) To define a prior distribution assigning nonzero probability only to mod-
els consisting of a stack of homogeneous layers intersected by a major fault, and
(2) to quantify the modelization error of combined processing and interpretation
and to use this information to build a global proposal distribution centered at the
preliminary model and with a dispersion proportional to the modelization error.
Our study showed how informed proposal distributions can have significant im-
pact on the computational speed of Monte Carlo sampling of solutions to inverse
problems.

Acknowledgements

This work was supported by Innovation Fund Denmark through the OPTION
Project (5184-00025B). Klaus Mosegaard would like to thank Dr. Amir Khan
and colleagues at the Department of Earth Sciences, ETH, for their hospitality
and inspiring discussions during the fall 2017 where this work was initiated.

10



0 200 400 600 800 1000 1200 1400 1600 1800

Figure 1: True velocity model

Observed Data

200

=l i

w
£.1000 3 b 3331 177Y
P

= it

1600
1800

2000 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
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