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Abstract16

The interface between rivers and groundwater is a key driver for the turnover of reactive17

nitrogen compounds, that cause eutrophication of rivers and endanger drinking-water pro-18

duction from groundwater. Molecular-biological data and omics tools have been used to19

characterize microorganisms responsible for the turnover of nitrogen compounds. While20

transcripts of functional genes and enzymes are used as measures of microbial activity it21

is not yet clear how they quantitatively relate to actual turnover rates under variable en-22

vironmental conditions. We developed a reactive-transport model for denitri�cation that23

simultaneously predicts the distributions of functional-gene transcripts, enzymes and re-24

action rates. Applying the model, we evaluate the response of transcripts and enzymes at25

the river–groundwater interface to stable and dynamic hydrogeochemical regimes. While26

functional-gene transcripts respond to short-term (diurnal) �uctuations of substrate avail-27

ability and oxygen concentrations, enzyme concentrations are stable over such time scales.28

The presence of functional-gene transcripts and enzymes globally coincides with the zones of29

active denitri�cation. However, transcript and enzyme concentrations do not directly trans-30

late into denitri�cation rates in a quantitative way because of non-linear e�ects and hystere-31

sis caused by variable substrate availability and oxygen inhibition. Based on our simulations,32

we suggest that molecular-biological data should be combined with aqueous chemical data,33

which can typically be obtained at higher spatial and temporal resolution, to parameterize34

and calibrate reactive-transport models.35

Plain Language Summary36

Nitrate inputs, including from agricultural fertilizer applications, threaten groundwa-37

ter quality and drinking water production. In the process of denitri�cation, bacteria can38

remove nitrate by converting it into harmless nitrogen gas using specialized enzymes. The39

interface between rivers and groundwater is a known hotspot for denitri�cation. Molecular-40

biological tools can detect how many enzymes, functional genes, and gene-transcripts (i.e.,41

precursors of enzyme production) associated with denitri�cation exist in a sample. Although42

these measurements contain valuable information about the number of bacteria and how ac-43

tive they are, their exact relationships with the denitri�cation rate and thus nitrate removal44

remain unclear. Here, we use a computational model to simulate the coupled dynamics of45

denitri�cation, bacteria, transcripts, and enzymes when nitrate-rich groundwater interacts46

with a nearby river. The simulations yield complex and non-unique relationships between47

the denitri�cation rates and the molecular-biological variables. While functional-gene tran-48

scripts respond to daily �uctuations of environmental conditions, enzyme concentrations and49

genes are stable over such time scales. High levels of functional-gene transcripts therefore50

provide a good qualitative indicator of reactive zones. Quantitative predictions of nitrate51

turnover, however, will require high-resolution measurements of the reacting compounds,52

genes, and transcripts.53

1 Introduction54

The increase of di�use nitrogen inputs, mainly by agriculture, has led to elevated con-55

centrations of reactive-nitrogen species in groundwater and surface-water bodies, threaten-56

ing drinking-water production, and causing eutrophication of rivers and lakes (Erisman et57

al., 2013). Microorganisms use reactive nitrogen compounds as substrates for redox reactions58

that fuel their energy metabolism, constituting the main attenuation process for nitrogen59

contamination in environmental systems (Kuypers et al., 2018). Understanding the factors60

that foster microbial removal of reactive nitrogen species from the environment is there-61

fore critical for contamination control and mitigation. Denitri�cation is the key reaction for62

the permanent removal of nitrogen species from the environment because it converts the63

reactive-nitrogen species nitrate into inert N2 gas rather than into another reactive-nitrogen64

species. The interface between surface waters and groundwater plays a key role for the65
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turnover of nitrogen compounds because steep redox gradients (from oxic rivers to anoxic66

groundwater) and the availability of labile organic carbon as an electron donor, either in the67

river water or in the hyporheic and riparian zones, enhance microbial reactions (Krause et68

al., 2011, 2017).69

Molecular-biological tools and so-called omics techniques, i.e., (meta)genomics, (meta-)70

transcriptomics, (meta)proteomics analyses, have been used to characterize microbial nitro-71

gen cycling in riparian zones (Wang et al., 2019), lake and river sediments (Stoliker et al.,72

2016; Reid et al., 2018), and the hyporheic zone (Danczak et al., 2016) by providing infor-73

mation about the microbial community composition, its functional and metabolic potential,74

and activity. While these methods can help to identify the relevant processes at a particular75

site and outline reactive zones, it remains a challenge to quantitatively relate molecular-76

biological measurements to turnover rates of nitrogen. Meta-omics data primarily target the77

relative (qualitative) abundance of genes, transcripts, and proteins and are particularly dif-78

�cult to convert into rate expressions. In contrast, measurements of functional genes, their79

transcripts, and the corresponding enzymes directly relate to the abundance of organisms80

capable of speci�c metabolic pathways and their activity. Several studies have suggested81

using transcript levels or transcript-to-gene ratios to estimate reaction rates of contaminant82

(Rahm & Richardson, 2008; Brow et al., 2013), pesticide (Monard et al., 2013) or nitrogen-83

species turnover (Rohe et al., 2020). However, there is still a need to investigate if and under84

which conditions molecular-biological information can serve as a proxy for reaction rates,85

particularly in spatially variable and temporally dynamic environmental systems.86

The river–groundwater interface is a very dynamic environmental system, exhibiting87

temporal variability on scales ranging from diurnal cycles (e.g., oxygen and temperature) via88

individual events to seasonal variations of temperature, discharge, and nutrient/substrate89

loading. Natural dynamics are superimposed by anthropogenic dynamics such as diurnal90

river-stage �uctuations in managed river systems a�ected by hydropower, so-called hy-91

dropeaking (Sawyer et al., 2009). These dynamics drive highly dynamic spatial and tem-92

poral biogeochemical turnover, underscoring the importance of understanding the impact of93

such forcings on (molecular biological) variables of interest. Spatially and temporally highly94

resolved measurements of gene, transcript, or enzyme concentrations are usually not feasi-95

ble because each sample provides information only about a single point in space and time,96

and the costs are very high. Process-based modeling may help to bridge between a limited97

number of molecular-biological measurements, continuously logged physical and chemical98

parameters (e.g., using probes), and the need to understand the system’s biological, chemical,99

and physical functioning at scales relevant for management. This requires reliable models of100

microbially mediated turnover and solute transport that can simulate molecular-biological101

data.102

In a preceding study, we developed a gene-based, enzyme-explicit model of denitri-103

�cation, and calibrated it with results from a batch incubation experiment (Störiko et al.,104

2021a). In the present study, we extend the model to account for advective-dispersive trans-105

port and use it to predict the patterns of functional-gene-transcript and enzyme concentra-106

tions for several scenarios of denitri�cation at the river–groundwater interface. In particular,107

we explore the expected molecular-biological signature of denitri�cation (functional-gene108

transcripts and enzymes) at the river–groundwater interface. Furthermore, we relate model-109

computed denitri�cation rates to simulated concentrations of transcripts and enzymes over110

time and space. Based on our results, we probe the type of potential sampling schemes111

that would yield reliable estimates of overall nitrogen turnover, and the conditions needed112

to derive simple functional relationships between quantitative molecular-biological mea-113

surements and reaction rates. Our modeling study provides guidelines regarding the inter-114

pretability of molecular-biological and omics measurements, collected in �eld investigations115

that aim to capture nitrogen turnover at the river–groundwater interface.116
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2 Methods117

2.1 Model Scenarios118

We set up three model scenarios that represent di�erent hydrological conditions at the119

river–groundwater interface (Figure 1), ranging from steady-state hydrology and biogeo-120

chemistry to pronounced diurnal cycles. In all scenarios, we considered microbial aerobic121

respiration and denitri�cation. Both pathways were coupled to the oxidation of dissolved or-122

ganic carbon (DOC) which was provided via hydrolysis of particulate organic carbon (POC)123

in the aquifer matrix and via in�ow from the river water.124

The �rst scenario simulated constant groundwater discharge (GD), where nitrate-rich125

water from the aquifer recharged into the river (Figure 1a), a common situation in agricul-126

tural landscapes. In addition, we assumed that the reactive POC concentration was highest127

near the river and decreased with increasing distance away from the streambed. That is, we128

imposed a gradient in the electron donor availability that focused the denitri�cation activ-129

ity near the river-aquifer interface. The formulation of the gradient is presented in the next130

section (see equations 11 and 12).131

In the second scenario, we simulated oxic river water continuously entering the aquifer132

(Figure 1b), mimicking a bank-�ltration (BF) scenario that could be either induced by pump-133

ing or by the natural hydraulic gradient of the system. Oxygen concentrations in river wa-134

ter can be subject to strong daily �uctuations, re�ecting the interplay between radiation-135

dependent photosynthesis, aerobic respiration, and gas exchange in the river (Hayashi et al.,136

2012; Kunz et al., 2017). We considered two sub-scenarios: In the �rst, the oxygen concentra-137

tion in the river remained at a constant level of 8 mg L−1 (BFC, constant oxygen), whereas in138

the second the concentration sinusoidally �uctuated about the mean value, yielding dynamic139

redox conditions close to the river–groundwater interface (BFP, periodic oxygen).140

In a third scenario, denoted bank storage (BS), we considered a �ow-reversal, induced141

by dynamic river-stage �uctuations, re�ecting hydropeaking or tidal in�uences (Figure 1c).142

Close to the river–groundwater interface, the �ow reversal caused alternating oxic and anoxic143

conditions.144

2.2 Governing Equations145

2.2.1 Advective-Dispersive-Reactive Transport146

We described transport and reaction of dissolved compounds (nitrate, nitrite, oxygen,147

DOC) via the one-dimensional (1-D) advection-dispersion-reaction equation. The evolution148

of compound i’s concentration ci in space (x) and time (t) is thus given by:149

)ci

)t

+ v

)ci

)x

− D

)
2
ci

)x
2
= r

i

net , (1)150

where v [m s−1] is the average linear �ow velocity, D [m2 s−1] is the dispersion coe�cient,151

and r inet is the net reaction rate of compound i. We used the parametrization of Scheidegger152

(1974) for dispersion:153

D = |v|�L + De , (2)154

where �L [m] is the longitudinal dispersivity and De [m2 s−1] denotes the pore-di�usion155

coe�cient. We further assumed that �ow is at quasi-steady state, in which v is uniform in156

space and reacts instantaneously to changes in boundary conditions. In scenarios GD and BF,157

the velocity is constant in time, whereas in scenario BS, we approximated v as a sinusoidal158

function of time with mean velocity v̄ [m s−1], amplitude v̂ [m s−1] and frequency fv [s−1]:159

v(t) = v̄ + v̂ sin (2�fv t) (3)160

In all simulations we neglected transport of bacterial cells because the majority (more than161

99 % according to Griebler et al., 2002) of active microorganisms in the subsurface are attached162
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Figure 1. Schematic of the three simulation scenarios and the corresponding boundary conditions.

to sediments (Smith et al., 2018). Transcripts and enzymes were assumed to be con�ned to163

the interior of bacterial cells and thus to be immobile.164

2.2.2 Microbial Reactions165

We used an enzyme-based model formulation of microbial denitri�cation (Störiko et al.,166

2021a) that re�ects the biological regulation of reaction rates by simulating concentrations167

of transcription factors, functional-gene transcripts, and enzymes explicitly. The reaction168

model describes both aerobic respiration and reduction of nitrate to N2 via NO –
2 as a re-169

active intermediate. Denitri�cation is coupled to the oxidation of organic carbon, formally170

expressed as succinate, serving as an electron donor and carbon source for the facultative171

anaerobe Paracoccus denitri�cans. Herein, we applied the parameters in Störiko et al. (2021a)172

speci�c to P. denitri�cans to simulate denitri�cation coupled to DOC oxidation (assuming173

that succinate acts as a generalized form of DOC) to the �ow scenarios outlined in Figure 1.174

Despite the parameters being speci�c to a pure-culture batch experiment (Qu et al., 2015),175

they provide an opportunity with which to probe the thus far poorly-characterized behavior176

of transcription and enzyme regulation in natural subsurface-transport settings, relevant for177

biogeochemical laboratory and �eld investigations. In the following we brie�y summarize178

key model processes and refer the reader to the original publication for more detail.179

The catabolic reactions were described by the following stoichiometric equations:180

7 NO –
3 + C4H6O4

narG 7 NO –
2 + 4 CO2 + 3 H2O (4)181

14 NO –
2 + 14 H+ + 3 C4H6O4

nirS 7 N2 + 12 CO2 + 16 H2O (5)182

7 O2 + 2 C4H6O4 8 CO2 + 6 H2O (6)183
184

Gene expression is controlled by the transcription factors FnrP, sensitive to oxygen levels,185

NarR, regulated by nitrate and nitrite, and NNR, stimulated in the presence of nitrite and186
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absence of oxygen. Transcription of the narG gene, coding for nitrate reductase (NAR), is187

initiated in the presence of FnrP and NarR, whereas the transcription of nirS, coding for188

nitrite reductase (NIR), requires NNR. The concentrations of transcripts were assumed to be189

at quasi-steady state with the transcription factor concentrations. The NAR and NIR enzymes190

are produced in response to narG and nirS levels and decay following a �rst-order rate.191

Denitri�cation rates are a function of the enzyme concentrations, a double Michaelis-192

Menten term for the limitation of electron donor (DOC) and electron acceptor (nitrate, nitrite)193

concentrations and an oxygen inhibition term:194

rN = k
j

maxEj
cN

KN + cN

cDOC
KDOC + cDOC

I
j

O2

cO2
+ I

j

O2

(7)195

Here, kjmax [s−1] is the amount of substrate that the enzyme j (NAR or NIR) can maximally196

turn over per time (also called turnover number), Ej is the concentration of enzyme j that cat-197

alyzes the reaction of substrate N (nitrate or nitrite). KN [mol L−1] and KDOC [mol L−1] are198

the half-saturation concentrations for nitrate/nitrite and DOC, respectively, and I jO2
[mol L−1]199

is the oxygen inhibition constant for enzyme j. Aerobic respiration was described by a stan-200

dard double Michaelis-Menten formulation with the maximum cell-speci�c respiration rate201

�
O2
max [mol cell−1 s−1] and biomass concentration B [cells L−1]:202

rO2
= �

O2
maxB

cO2

KO2
+ cO2

cDOC
KDOC + cDOC

(8)203

To predict the dynamics of transcripts and enzymes under conditions similar to those204

found in natural environments, we modi�ed and complemented the parts of the model that205

relate to DOC and biomass. (Note: in our original formulation carbon was assumed to be206

non-limiting). Here, the model was expanded to include the release of DOC from POC in207

the aquifer matrix, and its consumption by both denitri�cation and aerobic respiration. The208

latter yielded a DOC consumption dependent on the electron-acceptor consumption rates209

(de�ned in equations 7 and 8) and their stoichiometric coe�cients in the metabolic reaction:210

r
j

DOC =



i

DOC



j

A

r
j

A
(9)211

212

and213

rDOC = ∑

j

r
j

DOC , (10)214

215

where 

j

A
and 


j

DOC
are the stoichiometric coe�cients of the electron acceptor and DOC216

in reaction (j) and r j
A

is the corresponding electron-acceptor reaction rate. We modeled the217

release of DOC from the POC-containing aquifer matrix as a �rst-order mass transfer process218

(Kinzelbach et al., 1991; Gu et al., 2007; Knights et al., 2017), with the �rst-order coe�cient219

k
DOC
release [1/s]:220

rrelease = k
DOC
release (c

sat
DOC − cDOC) (11)221

The DOC saturation concentration c
sat
DOC [mol L−1] depends on the POC content of the sed-222

iment, which tends to decrease with distance from the river (Marmonier et al., 1995; Stelzer223

et al., 2011). Following Knights et al. (2017), we therefore assumed an exponential pro�le of224

c
sat
DOC:225

c
sat
DOC = c

sat,0
DOC exp

(
−

x

l
)
, (12)226

where l [m] is the length scale for the concentration decrease.227

In contrast to the original formulation, bacterial growth was parameterized as a func-228

tion of the oxidation of organic carbon coupled to both oxygen and nitrogen oxide reduction.229
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The synthesis of biomass, represented with the molecular formula C10H18O5N2, can formally230

be described by the reaction:231

3 C4H6O4 + 2 NH +
4 C10H18O5N2 + 2 CO2 + 3 H2O + 2 H+ (13)232

Equation 13 was then coupled to the energy-gaining reactions 4–6 to obtain the overall233

metabolic reaction. The stoichiometric coe�cients in the metabolic reaction depend on the234

number of catabolic formula reactions that must be completed to generate the energy re-235

quired for one anabolic formula reaction (and thus produce one mol of biomass). In turn,236

this number is directly related to the growth yield Yi [cells mol−1
C ], which corresponds to237

the amount of biomass that is produced per mole of organic carbon consumed. The growth238

yield relates the growth rate associated to the electron acceptor i to the corresponding DOC-239

consumption rate:240

r
i

growth = Yir
i

DOC (14)241

Furthermore, we applied a logistic term to the biomass-growth expression (not to the242

substrate consumption rates) to limit biomass growth to a set maximum density (e.g., Grös-243

bacher et al., 2018). This is in line with observations that biomass densities in porous media244

reach a “carrying capacity”, even under non-growth-limiting conditions (Mellage et al., 2015;245

Ding, 2010). The logistic growth term can be interpreted as a reduction in the maximum246

growth yield by the occupancy level:247

Yi = Y
i

max
(
1 −

B

Bmax )
, (15)248

where Y imax is the maximum growth yield and Bmax is the carrying capacity. This implies249

that the growth yield and therefore the stoichiometric coe�cients of the metabolic reactions250

depend on the biomass concentration. The model also accounts for biomass decay via a251

�rst-order term with the decay coe�cient kdec [s−1]:252

rdecay = kdecB (16)253

This leads to the build-up of dead biomass, which, in turn, decays in a �rst-order process254

with constant kmin, releasing DOC via mineralization.255

2.2.3 Boundary Conditions256

Fixed concentration (Dirichlet) boundary conditions were applied at the river and ground-257

water in�ow boundaries. The river water was assumed to be saturated with respect to oxy-258

gen, and contained 10 mg L−1 of nitrate and 2 mg L−1 of DOC. These concentrations cor-259

respond to anthropogenically in�uenced but not excessively nutrient-enriched rivers. The260

in�owing groundwater was assumed to be anoxic but rich in nitrate (30 mg L−1) and depleted261

in DOC. In scenario BFP, oxygen concentrations in the river were described by a sinusoidal262

function with amplitude ĉO2
[mol L−1], frequency fO2

= 1 d
−1 and mean value cO2

[mol L−1]:263

c
in
O2
(t) = ĉO2

sin (2�fO2
t) + cO2

(17)264

All other concentrations at the in�ow boundary were constant over time, with values given265

in Table 1. At the out�ow boundary, we assumed zero dispersive �ux.266

2.3 Simulation Parameters267

Parameters related to transcript and enzyme concentrations, denitri�cation and aer-268

obic respiration were obtained from our previous study (Störiko et al., 2021a) in which we269

calibrated the enzyme-based model with the laboratory data of Qu et al. (2015). In the sim-270

ulations presented here, the median values of the parameter distributions in Störiko et al.271

(2021a) were imposed (Table 1). Values of new parameters, that is, those that were not in-272

cluded in the previous model (transport and DOC-related parameters) were chosen based on273

literature values.274
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Table 1. Parameter values used in the simulation.

Parameter Description Value Unit Reference

v linear velocity (GD, BF) 10−5 m s−1 a

v̄ mean velocity (BS) −10−6 m s−1 b

v̂ velocity amplitude (BS) 10−5 m s−1 b

fv velocity frequency (BS) 1 d−1 c

�L longitudinal dispersivity 0.1 m d

De e�ective di�usion coe�cient 3 × 108 m2 s−1 e

k
NO –

3
max NAR turnover number 4.4 × 104 s−1 f

k
NO –

2
max NIR turnover number 2.9 × 102 s−1 f

KNO –
3

NO –
3 half-saturation constant 5 µM g

KNO –
2

NO –
3 half-saturation constant 5 µM g

KDOC DOC half-saturation constant 40 µmolC L−1 h

I
NAR
O2

O2 inhibition constant for NAR 1 µM f

I
NIR
O2

O2 inhibition constant for NIR 340 nM f

�
O2
max maximum cell-speci�c O2 oxidation rate 6.4 × 10−19 mol cell−1 s−1 f

KO2
O2 half-saturation constant 31 µM f

k
DOC
release DOC release rate constant 0.2 d−1 i

c
sat,0
DOC maximum DOC saturation concentration 20.8 mmolC L−1 j

l length scale for decrease in sediment POC 0.2 m k

Y
NO –

3
max maximum growth yield with NO –

3 2.6 × 1013 cells mol−1
C l

Y
NO –

2
max maximum growth yield with NO –

2 1.6 × 1013 cells mol−1
C l

Y
O2
max maximum growth yield with O2 7.7 × 1013 cells mol−1

C f, m

Bmax carrying capacity 3.3 × 1011 cells L−1 n

kdec biomass decay constant 10−7 s−1 o

c
in
O2

O2 concentration in the river (GD, BFC, BS) 250 µM p

cO2
mean O2 concentration in the river (BFP) 250 µM p

ĉO2
amplitude of oxygen �uctuations (BFP) 94 µM q

c
river
NO –

3
NO –

3 concentration in the river 161 µM r

c
GW
NO –

3
NO –

3 concentration in groundwater 484 µM r

c
river
DOC DOC concentration in the river 167 µmolC L−1 s

a See Bertin and Bourg (1994) for bank �ltration and Kennedy et al. (2009) for groundwater ex�ltration. b Gerecht et

al. (2011); Liu et al. (2017) c Diurnal cycles. d Gelhar et al. (1992) e Based on the approximation De = D� where

D = 10
−9
m

2
s
−1 is the molecular di�usion coe�cient and � = 0.3 is porosity. f Median of the parameters in Störiko et

al. (2021a). g Hassan et al. (2016) h Fixed to a value within reported ranges (Sanz-Prat et al., 2016; Kinzelbach et al.,

1991). i Fixed to a value within reported ranges (Sanz-Prat et al., 2016; Kinzelbach et al., 1991; Gu et al., 2007; Sawyer,

2015). j Fixed to a value within reported ranges (Gu et al., 2007; Sawyer, 2015; Kinzelbach et al., 1991). k Knights et

al. (2017) l Fixed to a value within reported ranges (Hassan et al., 2016, 2014). m Value corrected for the incorporation

of organic carbon into biomass, which was not considered in Störiko et al. (2021a). n Fixed to a value within reported

ranges (Ding, 2010). o Fixed to a value within reported ranges (Ding, 2010; Kinzelbach et al., 1991). p Liu et al. (2017)
q Kunz et al. (2017) r Gu et al. (2007); Liu et al. (2017) s Hayashi et al. (2012); Bol et al. (2015)
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2.4 Numerical Methods275

We used the cell-centered �nite volume method to discretize the reactive-transport276

equation 1 in space, applying a �rst-order upwind scheme for advection. The domain had277

a total length of 4 m and was divided into 200 cells with a uniform spacing of 2 cm. The278

resulting system of ordinary di�erential equations (ODEs) was solved with the backwards279

di�erentiation formula (BDF) as implemented in the CVODES solver in the SUNDIALS li-280

brary (Hindmarsh et al., 2005). All code was written in Python 3.8, and the package Sunode281

(Seyboldt, 2021) that wraps CVODES was used for solving the ODEs. The simulations were282

run until reaching steady state (in the scenarios with constant boundary conditions) or dy-283

namic steady state, that is, self repeating time cycles in the scenarios with periodic boundary284

conditions.285

3 Results & Discussion286

3.1 Zonation of Redox Species and Denitrifying Bacteria287

The three model scenarios result in distinct spatial distributions of N species, tran-288

scripts, enzymes, biomass, oxygen and DOC (Figure 2, rows a–f). In the following we present289

and discuss the predicted steady-state concentrations scenario-wise in detail: GD (Figure 2,290

left column), BF (Figure 2, center column) and BS (Figure 2, right column).291

3.1.1 Scenario GD: Groundwater Discharge292

Nitrate enters the domain with in-�owing groundwater, and remains at high concen-293

trations (i.e., close to the in�ow value) over the �rst 2 m of the domain, where the aquifer294

matrix contains only little POC (electron donor limitation). At about 1.5 m from the river, ni-295

trate begins to drop and is completely depleted at a distance of 0.25 m from the sediment-river296

interface. Nitrite concentrations increase, mirroring the drop in nitrate, until reaching a peak297

value of 340 µmol L−1 at 0.3 m and then decrease towards the river. Our model-predicted ni-298

trite concentrations are higher than typically observed in natural sediments. Pro�les of pore-299

water nitrite in several studies indicate that the concentrations are usually below 30 µmol L−1
300

(Akbarzadeh et al., 2018; Stief et al., 2002; Harvey et al., 2013). The parameter set used here is301

based on laboratory batch experiments with a single strain where strong nitrite accumulation302

was observed (Störiko et al., 2021a). Thus, while the high model-derived nitrite concentra-303

tions may be speci�c to the strain used in the experiments, we assume that the spatial trends304

in nitrogen species consumption and production are likely generalizable. The concentra-305

tion of DOC drops from 280 µmolC L−1 at the sediment-river interface to below 40 nmolC L−1
306

within 30 cm, driven by the prescribed exponentially decreasing content of POC in the sed-307

iment (the only source of DOC) away from the river boundary. The zones of nitrate and308

nitrite consumption coincide with elevated absolute concentrations of narG and nirS tran-309

scripts (that is, in units of transcripts L−1) and NAR/NIR enzymes (Figure 2c, left column).310

In contrast, cell-speci�c narG transcript and NAR enzyme concentrations are high in the311

DOC-limited section of the domain, despite the absence of denitri�cation (Figure S1). Ni-312

trate triggers transcription but the low availability of the electron donor (DOC) results in313

low biomass concentrations strongly limiting denitri�cation. High biomass concentrations314

are only reached close to the river, where denitri�cation activity is the highest.315

3.1.2 Scenario BF: Bank Filtration316

The center column in Figure 2 shows the dynamics of the two bank-�ltration scenarios317

with periodic (BFP) and constant (BFC) oxygen concentrations in the in�ow. In the BFP318

scenario, concentrations do not reach a steady state but concentration time series converge319

to repeating diurnal cycles.320
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The model predicts a zonation of the redox processes starting with aerobic respiration321

at the in�ow boundary, where oxygen-rich river water in�ltrates. Nitrate, present in the322

incoming water, is subsequently reduced to nitrite and N2. The �uctuating oxygen concen-323

trations in the river (in�ow) in scenario BFP leads to a periodic shift in the location of the324

denitri�cation zone, which oscillates back and forth over 0.1 m about 0.2 m. At a given lo-325

cation, nitrate and nitrite concentrations �uctuate considerably over the course of the day.326

For example, nitrate concentrations at 0.2 m vary between 60 µmol L−1 and total depletion.327

Nitrite is reduced to low, but non-zero “residual” concentrations (20 µmol L−1). The low con-328

centration front subsequently penetrates deep into the aquifer. Biomass concentrations are329

very stable over time in the scenario with a �uctuating in�ow oxygen concentration and330

hardly di�er from the steady-state scenario. Cell doubling times in the simulations range331

from a few hours to several days, which is in accordance with literature values (Mailloux332

& Fuller, 2003). Similarly, biomass decay is slow (with a half-life of about 80 d, see Table333

1), such that the biomass does not respond to daily cycles of substrate availability. Biomass334

concentrations are highest at the river in�ow boundary where neither oxygen nor DOC are335

limiting and cell densities reach the maximum capacity Bmax. At locations where oxygen and336

nitrate are consumed, the remaining low nitrite concentrations can only sustain the survival337

of a small biomass pool (starting at 1.3 m from the river boundary), which in turn reduces338

the denitri�cation rate to values close to zero.339

Transcripts of the narG gene are abundant in the region where nitrate is available and340

nirS transcripts co-occur with nitrite. In the scenario with dynamic boundary conditions,341

the transcript concentrations of denitri�cation genes exhibit a distinct diurnal cycle with an342

amplitude of up to 70 % (narG) and 100 % (nirS) of the mean value, in some parts of the domain.343

Concentrations of NAR and NIR enzymes follow the patterns of narG and nirS transcripts,344

but are much more dampened, with amplitudes that are one order of magnitude smaller than345

those of the corresponding transcripts. This di�erence stems from the di�erent time scales346

of production and decay of transcript and enzymes. While transcripts usually decay within347

a few minutes (Bernstein et al., 2002; Härtig & Zumft, 1999) and are therefore assumed to348

be at quasi-steady state in our simulations, enzyme half-lives range on the order of several349

hours to days (Maier et al., 2011).350

Because of the high DOC concentration (0.1 mmol L−1) imposed at the river boundary,351

the river water serves as a DOC source. The DOC concentration, however, drops sharply in352

the aquifer due to the high microbial electron-donor demand, driven by the presence of oxy-353

gen and nitrate. Outside of the zone of denitri�cation, the DOC concentration rises towards354

the groundwater boundary, driven by the hydrolysis of POC, reaching a maximum at about355

1 m. The decreasing POC content away from the river yields a �nal gradual decline in DOC356

approaching the groundwater boundary.357

3.1.3 Scenario BS: Bank Storage358

In the bank storage scenario, the alternating in�ow of nitrate from the aquifer and359

from the river leads to the formation of two distinct zones of denitri�cation (Figure 2, right360

column). The �rst one is located directly at the the river-aquifer interface. It is active only at361

the times when �ow is from the river into the aquifer, hence supplying nitrate. We estimated362

the maximum penetration depth of the river water by integrating the positive part of the363

velocity function over one period. Via advection only, the water penetrates 0.23 m into the364

aquifer. Oxygen and nitrate reach that point only at very low concentrations because they365

are rapidly depleted after entering the aquifer.366

The second zone of denitri�cation at about 1.1 m is fed by nitrate from the incoming367

groundwater. At the aquifer boundary, denitri�cation is mainly limited by carbon availabil-368

ity, such that nitrate concentrations remain at high values until the distance to the river369

is x ≈ 1.5m, after which they sharply decrease. Due to the �ow reversal, this denitri�ca-370

tion zone shifts between 1 m and 1.35 m over time. The response of concentrations to the371
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Figure 3. Relationships between the concentrations of functional-gene transcripts narG (upper row) and

nirS (lower row) with the denitri�cation rates in the di�erent scenarios. In the scenarios where concentra-

tions do not reach constant steady state values but exhibit repeating diurnal cycles, daily averages of rates

and concentrations are shown. The color indicates the spatial coordinate with dark blue corresponding to

the groundwater in�ow boundary and light green corresponding to the river boundary.

dynamic �ow is generally similar to scenario BFP where the dynamics are caused by �uctu-372

ating oxygen concentrations. Both solute concentrations and mRNA strongly �uctuate over373

time while enzyme concentrations and biomass are stable because of their longer time scales374

of production and decay.375

Compared to the other two scenarios, the DOC concentration in the bank storage sce-376

nario is high in the 1.2 m adjacent to the river. On average, the magnitude of the advective377

velocity and therefore the in�ux of electron acceptors (nitrate and oxygen) is smaller in this378

scenario. This limits the consumption of DOC and leads to its overall high concentration.379

3.2 Relationship Between Transcripts/Enzymes and Reaction Rates380

Based on our simulation results, we computed denitri�cation rates to explore how tran-381

script and enzyme concentrations relate to the denitri�cation activity in the di�erent scenar-382

ios (see Figure 3 for transcripts and Figure S4 for enzymes).383

3.2.1 Scenario GD: Groundwater Discharge384

In the groundwater-discharge scenario, the system reaches a steady state where the385

enzyme concentrations are proportional to transcript concentrations. Therefore, it is suf-386

�cient to analyze the relationship between reaction rates and transcripts or enzymes. For387

simplicity we compare rates to transcripts in Figure 3a and 3b. The relationships between388

rates and transcripts are non-linear and the correlation is positive in some parts of the do-389

main, but negative or zero in other parts. At the groundwater-in�ow boundary (dark blue390

colors), both narG transcript concentrations and NO –
3 reduction rates are close to zero and391
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increase towards the river (lighter colors). However, when the rates reach 10 nmol L−1 s−1
392

at 0.39 m, the trend reverses, that is, where transcript levels decrease reaction rates increase393

and reach their maximum at 0.27 m. At the points closest to the river boundary, both the394

nitrate reduction rate and narG transcript levels return to zero, closing the hysteresis loop.395

The concentrations of nirS transcripts rise between 1 m and 0.3 m (Figure 3b). However,396

their increase does not correspond to an increase in reaction rates, suggesting that under cer-397

tain conditions, transcript concentrations and reaction rates may be completely decoupled.398

One may intuitively expect that increasing reaction rates would be accompanied by increas-399

ing transcript concentrations. However, the rise of reaction rates between 0.3 m and 0.17 m400

is concomitant with the opposite, a decrease in transcript concentrations. A positive cor-401

relation between nirS transcript concentrations and reaction rates is only observed in the402

15 cm closest to the river. The strong non-linearity of the transcript-rate relationships (and403

partly negative correlations) can be explained by the limited availability of DOC over most404

of the domain (which in this scenario originates from the river and hydrolysis of POC). The405

latter limits denitri�cation, whereas transcript production is still triggered by the presence406

of nitrate and nitrite, irrespective of electron-donor availability.407

3.2.2 Scenario BF: Bank Filtration408

Figure 4a and 4c show the relationship between transcript concentrations and denitri�-409

cation rates for scenario BFP (bank �ltration with a �uctuating oxygen in�ow concentration).410

Reaction rates and transcript concentrations (and, to a lesser extent, also enzyme concentra-411

tions) both �uctuate over the course of the day, but the signals have a phase shift. This leads412

to a hysteresis in the relationship between transcript concentrations and reaction rates, with413

a di�erent hysteretic pattern at di�erent locations. Overall, transcript concentrations and414

denitri�cation rates do not show a clear (linear) relationship. These results suggest that it415

may not be possible to infer the denitri�cation activity at a given time and location from a416

single determination of the transcript concentration.417

The relationship between enzyme concentrations and denitri�cation rates (Figure 4b,418

4d) is also highly non-linear and location-speci�c. However, it exhibits less pronounced419

hysteresis loops because, in contrast to transcripts, the characteristic times for enzyme pro-420

duction and decay are longer than the time scale of the �uctuations. As a consequence, in421

dynamic steady state with diurnal cycles, the enzyme concentrations remain almost con-422

stant throughout the day, whereas the reaction rates �uctuate in response to the periodic423

concentration changes of aqueous substrates. Thus enzyme distributions could, under the424

right conditions, be used as proxies for delineating the average denitri�cation activity.425

For the mitigation of nitrate contamination in groundwater daily averages of reaction426

rates are of greater interest than their diurnal �uctuations. To investigate whether repeated427

transcript measurements could be used as indicators of denitri�cation activity, we compare428

the daily averages of the denitri�cation rates and the transcript concentrations in Figures429

3c and 3d. As can be seen, upon averaging more distinct positive correlations emerge, al-430

though they are still non-unique, particularly in the case of nirS transcripts, where the same431

transcript concentration can be associated with rates that di�er by more than one order of432

magnitude. Di�erent combinations of nitrite, oxygen and DOC concentrations can lead to433

the same transcript concentration, while the factors describing substrate limitation and oxy-434

gen inhibition a�ecting denitri�cation rates di�er. The relationship looks very similar for435

transcripts and enzymes because daily averages of transcript concentrations are almost pro-436

portional to enzyme concentrations (see Figure S2).437

The relationship between steady-state transcript concentrations and denitri�cation438

rates for BFC (bank �ltration with constant oxygen input; Figure 3e, 3f) slightly di�ers from439

the BFP scenario (Figure 3c, 3d) but essentially mirrors the BFP characteristic features. For440

example, both bank �ltration scenarios yield a positive, but non-unique, relationship of narG441

transcripts with the rates, whereas nirS transcripts exhibit a strong hysteretic behavior. It442
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Figure 4. Relationships between transcript (left column) respectively enzyme (right column) concen-

trations and denitri�cation rates for scenario BFP (river water with �uctuating oxygen concentrations

in�ltrating groundwater). Colors indicate the time point within the diurnal cycle. Every location shows

a distinct pattern (with one “loop” corresponding to one location), and many of them are non-linear and

hysteretic in time.

is to be expected that the relationships are generally similar for the steady-state solution443

and daily averages of the periodic solution as the simulated concentration pro�les are nearly444

the same in both cases (Figure 2, center), but non-linearity in the rate laws can lead to the445

observed di�erences.446

3.2.3 Scenario BS: Bank Storage447

Similar to the BFP scenario, the periodic reversal of �ow in the BS scenario results in448

complex relationships between the transcript or enzyme concentrations and the denitri�ca-449

tion rates (Figure S3). However, in contrast to BFP, daily averages of transcript concentra-450

tions and reaction rates (Figure 3g and 3h) show two clearly distinct patterns, corresponding451

to the two denitri�cation zones, and resembling to some extent the patterns of the pure452

groundwater-discharge and pure bank-�ltration scenarios. In both zones, the relationships453

are non-linear and non-unique, analogous to all other scenarios. This is most evident for the454

narG transcripts (shown in Figure 3d).455

3.3 Unraveling the Relationship Between Transcript Concentrations and Reac-456

tion Rates457

The relationships between transcript concentrations and denitri�cation reaction rates,458

presented in the previous section, clearly show that transcript concentrations are not a reli-459

able predictor of denitri�cation rates, even in cases where these are proportional to enzyme460

concentrations. Deviations from an expected linear relationship arise because denitri�cation461

rates are not only limited by enzyme concentrations (which, in turn, are ultimately deter-462
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do not reach a steady state are omitted because correcting for the rate limitations based on time-averaged

concentrations is not a valid approach).

mined by the nitrogen species triggering transcription), but also by substrate availability (in463

our study DOC and nitrogen species) and oxygen inhibition. In the model, we can eliminate464

these limitations by dividing the rate by the corresponding Michaelis-Menten or inhibition465

term. This then yields the potential denitri�cation rates. When these potential rates are466

compared to the transcript concentrations, clear positive relationships emerge (Figure 5).467

In the groundwater-discharge scenario (Figure 5a, 5c), removing the DOC limitation468

yields a nearly linear relationship, showing that carbon limitation is the most important469

rate-limiting factor in this scenario. The remaining non-linearity of narG-transcripts at low470

reaction rates can be explained by the presence of nitrite near the river boundary, triggering471

narG-transcription even though nitrate levels and thus nitrate-removal rates are low.472

The current model assumes that transcription of the denitri�cation genes is indepen-473

dent of DOC availability. While this approach is consistent with the current understanding474

of the targeted regulation of denitri�cation genes by nitrogen species and oxygen (Gaimster475

et al., 2018), our model formulation neglects unspeci�c mechanisms of gene regulation that476

act to shut down microbial metabolism at low carbon availability, thereby a�ecting deni-477

tri�cation genes. Accounting for transcription down-regulation of the denitri�cation genes478

under carbon limitation in our model formulation would likely yield relationships between479

transcripts and reaction rates closer to the potential rates without DOC limitation (Figure 5).480

Non-linear e�ects of DOC limitation on the reaction rates would persist. However, the abso-481

lute deviation from a linear relationship would be negligible when transcript concentrations482

and, therefore, potential rates are close to zero. Under extreme electron-donor limitation, our483

model predicts very low absolute transcript concentrations even without explicitly account-484

ing for DOC-controlled down-regulation of transcription because DOC-limitation restricts485

microbial growth, leading to low biomass and, thereby, low transcript concentrations. How-486

ever, if there is evidence for a large abundance of inactive denitri�ers, the model might need487
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to distinguish between the active and an inactive microbial pool, in which transcription is488

shut o� (see, e.g., Chavez Rodriguez et al., 2020).489

In the case of bank �ltration with a constant oxygen concentration (Figure 5b, 5d),490

accounting for the DOC limitation term alone does not remove the non-linearity because491

oxygen inhibition also exerts an important control on denitri�cation. Eliminating both DOC492

limitation and oxygen inhibition leads to an approximately linear relationship between tran-493

scripts and potential rates. However, the corrected rates are orders of magnitude larger than494

the actual reaction rates.495

In the scenarios in which concentrations undergo periodic �uctuations in time (BFP496

and BS), applying the correction terms would only be permissible for the time-variable rates497

and concentrations, but not for the averages. This is so because the correction terms are498

nonlinear and the concentrations involved are strongly correlated in time. Under such con-499

ditions, the product of their time-averaged values is not the same as the time-average of their500

product. Hence, applying corrections to the time-averaged rates to obtain a more unique re-501

lationship of the time-averaged transcript concentrations is not permissible. Similar e�ects502

have been described for spatial correlations of degrader communities and substrate concen-503

trations in carbon cycling models. Chakrawal et al. (2020) used scale-transition theory to an-504

alyze how spatial correlations among state variables or between state variables and kinetic505

parameters a�ect upscaled reaction rates. In theory, the same method could be applied to506

obtain time-averaged rates based on average concentrations. However, it requires knowing507

the covariance terms of substrate and enzyme concentrations in time, which is not possi-508

ble in practice because highly time-resolved measurements of transcript or substrate (DOC,509

nitrogen species) concentrations in groundwater are not available in the �rst place.510

3.4 Implications for the Design of Field Sampling and Measurements511

Our simulations show that transcripts of denitri�cation genes respond to short-term512

(diurnal) �uctuations of electron-acceptor concentrations, yielding highly temporally vari-513

able transcript concentrations at the river–groundwater interface. In such a dynamic system,514

analyses based on transcripts of functional genes would strongly depend on the time point of515

sampling. Transcripts exhibiting a low, even undetectable, abundance at a given time, may516

be present at much higher concentrations at other times of the day, and vice versa. Hence,517

interpretations on overall system behavior based on transcript concentrations obtained from518

sporadic sampling events, could be misleading in highly dynamic biogeochemical environ-519

ments such as those found at the river–groundwater interface.520

Based on our modeling results we simulated transcript measurements over time and521

space to illustrate, how di�erent sampling frequencies and times can a�ect the outcome cap-522

tured by measurement campaigns. Figure 6a shows time series of nirS transcript concen-523

trations in the bank �ltration scenario with �uctuating oxygen concentrations (BFP) at a524

distance of 0.17 m from the river, sampled at di�erent frequencies (weekly samples, daily525

samples, 3 and 10 samples per day). We added a small random time perturbation to the sam-526

pling times to represent a realistic situation. The high sampling frequency of 10 samples527

per day captures the diurnal signal quite well. Taking 3 samples per day also captures the528

dynamic behavior of the system, albeit with less accuracy, with many of the peaks cut o�529

and a more irregular signal than it actually is. Daily and weekly sampling creates apparent530

patterns in the data that are not linked to any real process but that are due to sampling the531

diurnal signal at slightly di�erent times each day or week.532

Figure 6b shows a spatial pro�le of simulated transcript measurements, taken at two533

di�erent times of the day. While the general shape of the two pro�les is similar, the loca-534

tion of the peak is shifted by about 10 cm, and between 5 cm and 20 cm the concentrations535

between the two time points di�er by up to two orders of magnitude. This example empha-536

sizes the need to consider the relevant time scale of variation for transcripts when planning537
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Figure 6. Simulated measurements of the nirS transcript concentrations. a) E�ect of di�erent sampling

frequencies on a time series measured at a �xed location (x = 0.17m). b) Dependence of a spatial pro�le on

the time of the measurement.

measurement campaigns. Simple tools like redox- or oxygen-sensitive probes could provide538

a �rst approximation of what the relevant time scale for transcript dynamics is.539

In contrast to transcripts, the concentrations of functional enzymes and functional540

biomass (which can be estimated by functional-gene concentrations) are much more damp-541

ened and hardly respond to diurnal �uctuations of electron-acceptor availability because of542

their larger time scales of production and decay. As a consequence, DNA-based methods543

such as the quanti�cation of functional genes or metagenomics can provide information less544

dependent on short-term �uctuations of electron acceptor or electron-donor concentrations.545

However, a DNA-based approach, analogous to an enzyme-based approach, is subject to546

other uncertainties related to DNA’s persistence and presence outside of active organisms547

(relic DNA) that can distort the characterization of the microbial community (Carini et al.,548

2016; Nielsen et al., 2007; Lennon et al., 2018), an e�ect not considered in this study. Di�er-549

ent approaches to �lter out the signals from relic DNA (viability PCR, e.g. Fittipaldi et al.,550

2012; Carini et al., 2016) and inactive microbes (BONCAT-FACS, selecting for translationally551

active cells, e.g. Couradeau et al., 2019) have been developed in the past years but are not yet552

applied routinely.553

The unresponsiveness of enzyme concentrations and biomass in a system with short-554

term dynamics also implies that incorporating their time-variability into a biogeochemical555

model is not necessary and they can be assumed to be constant in time (i.e., via a biomass-556

implicit rate formulation). However, spatial variations should be considered, for example by557

using spatially variable rate coe�cients. In systems in which the concentrations of electron558

acceptors vary over larger time scales (seasonal dynamics, �ood events with e�ects of several559

days), the temporal variability of functional biomass and particularly enzyme concentrations560

might also play a role. Measurements of functional enzymes would also provide a more561

robust picture of microbial activity compared to functional-gene transcripts. Unfortunately,562

the quanti�cation of functional enzymes (as opposed to transcripts) is not yet an established563

measurement technique for environmental samples, even though some pioneering studies564

have been done (e.g., Li et al., 2017).565
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Daily averaged transcript concentrations, however, are proportional to enzyme con-566

centrations (for the scenarios investigated here), thus implying that several transcript mea-567

surements in time could replace the more di�cult to measure enzymes in groundwater sys-568

tems. Because only averages are required, mixing samples from several time points prior to569

RNA extraction could also help to reduce transcript measurement e�orts. The main chal-570

lenge, however, lies in obtaining samples from the same location at several time points, as571

sampling for gene quanti�cation is destructive. When reactions are much slower than ad-572

vective transport (low Damköhler number), several samples along a �owpath at a single time573

point (representing water parcels in�ltrated at di�erent times) could replace samples from574

the same location at several time points. In our simulations, however, reactions deplete sub-575

strates within a few centimeters. Water parcels with a time di�erence of 12 h are separated by576

a distance of 0.43 m, such that averaging over the locations does not provide a replacement577

for the temporal average at a single location. Therefore, samples should be taken at adja-578

cent locations, corresponding to the same distance along a �ow path (heterogeneity would579

make that more di�cult). The latter illustrates the di�culty of acquiring time-resolved �eld580

measurements of transcripts. However, column experiments in the laboratory that simulate581

conditions in the �eld (see, e.g., Liu et al., 2017) provide a potential alternative, and would582

be a useful addition to capture higher-resolution dynamics.583

Even after time-averaging, transcript or enzyme concentrations are not reliable pre-584

dictors of reactions rates. The relationships in the simulated scenarios are non-unique and585

non-linear. Our analysis reveals that enzyme concentrations can be interpreted as a proxy586

for potential rates, which are hypothetical rates in the absence of speci�c limitations, such587

as substrate limitation and oxygen inhibition. These limitations reduce the potential rates588

towards the actual (in-situ) reaction rates.589

Based on these �ndings we postulate an approach of how transcript or enzyme data590

could be used to directly predict denitri�cation rates. As a �rst step, the relationship between591

transcript concentrations and potential reaction rates needs to be determined. This could be592

achieved with lab incubations under non-limiting conditions. A caveat here is that under593

non-limiting conditions, a di�erent part of the microbial community with a di�erent physi-594

ology might be more active than under in-situ conditions (Hazard et al., 2021), modifying the595

relationship . In a system at steady state the relationship between transcript concentrations596

and potential reaction rates should ideally be linear. Measured transcript concentrations can597

subsequently serve as a predictor of potential rates which then need to be amended by rate598

limiting factors like substrate limitation to obtain the actual reaction rates. This correction599

step does not only require measurements of the involved solute concentrations, but also esti-600

mates of parameters describing rate-limiting factors of reaction kinetics (half-saturation and601

inhibition constants). Such parameter values are often not well known and reported values602

typically range over several orders of magnitude (see, e.g., García-Ruiz et al., 1998). There-603

fore, additional experiments to determine speci�c parameters of the studied system would604

be necessary.605

A powerful integrative approach would be to use a process-based reactive-transport606

model to predict reaction rates, making use of molecular-biological data to determine model607

parameters. One advantage is that once a process-based model is calibrated it can deliver608

reaction rates at time-points and locations where no data are available. We therefore suggest609

the following strategy combining molecular biological data, biogeochemical measurements610

and modeling to determine denitri�cation rates.611

1. Measure functional enzymes, genes or transcripts to determine temporally stable, spatial612

pro�les of the active functional biomass. Our simulations show that pro�les of daily613

averaged transcript concentrations, enzymes, and functional biomass are very similar614

and generally linked to the denitri�cation activity. Given the challenges of measuring615

time-averages of transcript concentrations and excluding inactive biomass in DNA-616

based methods, enzyme measurements seem to be the most accurate proxy variable for617
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active functional biomass. These data will provide a relative measure of the spatially618

variable maximum rate coe�cient in a biomass-implicit rate formulation. Compared619

to an enzyme-explicit formulation (as used in this study), a biomass-implicit formu-620

lation has the advantage that it requires fewer parameters. The hypothesis that the621

active functional biomass maintains a constant spatial distribution should be veri�ed622

with repeated measurements at di�erent time points, and seasonal trends could po-623

tentially be accounted for using several coe�cients. If a considerable time-variability624

of active functional biomass is observed, a biomass- or enzyme-explicit model formu-625

lation that provides a process-based explanation for the variability should replace the626

biomass-implicit formulation.627

2. Measure oxygen, nitrogen substrates and DOC at several locations with a high temporal628

resolution. These data are required to appropriately account for substrate limitations629

and oxygen inhibition. In order to capture the short-term variability inherent to these630

variables, continuous logging with probes, if possible, is a good approach (e.g., for631

oxygen). Otherwise, manual measurements should also cover several temporal scales.632

For example, hourly measurements that capture diurnal dynamics on individual days633

could be combined with daily or weekly samples to provide information about longer634

terms dynamics.635

3. Use a process-based model to obtain temporally and spatially resolved predictions of con-636

centrations and reaction rates. The model integrates the di�erent data types through637

the calibration of model parameters, yielding estimates of total in-situ denitri�cation638

rates, that are otherwise impossible to obtain with direct measurements.639

The predictions of a reactive-transport model strongly depend on transport related parame-640

ters, such as �ow velocities or solute �uxes at boundaries, governed by subsurface hydraulic641

conductivity. Therefore, at �eld sites, complementary hydrogeological data should accom-642

pany biogeochemical investigations.643

3.5 Conclusions and Outlook644

Our simulations highlight some of the prospects and limitations of using functional-645

gene transcripts and enzymes to characterize biogeochemical reactions at the river–groundwater646

interface. Concentrations of functional-gene transcripts quickly respond to changes in sub-647

strate concentrations and oxygen levels, implying that dynamic systems need to be sampled648

at the appropriate temporal resolution. High transcript and enzyme concentrations spatially649

coincide with active denitri�cation and are therefore qualitative indicators of reactive zones.650

Substrate limitation and oxygen inhibition of the enzymes, however, impede quantitative651

predictions of reaction rates from transcript or enzyme concentrations.652

We based our study on a relatively simple model that describes only a part of the sys-653

tem (gene regulation of denitri�cation) in detail, with the advantage that it enables a straight-654

forward analysis of predicted patterns. However, even with our simplistic model formulation,655

the relationships between transcript or enzyme concentrations and denitri�cation rates are656

not straightforward. Our results highlight that a rigorous quantitative interpretation of tran-657

script or enzyme data is not possible without a process-based mathematical model. While658

our purely numerical study provides predictions of expected transcript and enzyme behavior659

in dynamic natural systems, it does not replace laboratory and �eld investigations. In fact,660

we highlight that further improvements in enzyme-explicit model development will depend661

on highly-temporally resolved measurement campaigns.662

Further, highly spatially resolved measurements are also needed to capture the bio-663

geochemical reactivity of heterogeneous subsurface environments. Subsurface lithofacies of664

varying physical and chemical properties yield transitions between more permeable, oxi-665

dized, and less permeable, reducing zones, with greater availability of electron donors. Reac-666

tion rates are highest at the interfaces between the facies where electron donors and ac-667

ceptors meet (Sawyer, 2015; Stegen et al., 2016). We expect that in such heterogeneous668
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subsurface environments, transcripts and enzymes related to denitri�cation would also be669

non-uniformly distributed and, hence, sampling a single location carries the risk that the670

measured functional potential is not representative for the system as a whole. Addition-671

ally, the correction approach for potential rates would not be easily applicable, because spa-672

tial correlations of enzyme and substrate concentrations lead to di�erent e�ective rate laws673

(Chakrawal et al., 2020).674

In natural systems, other N-cycling processes (nitri�cation, anaerobic ammonium ox-675

idation (annamox), dissimilatory nitrate reduction to ammonium (DNRA)), alternative elec-676

tron donors (e.g., reduced sulfur and iron species/minerals), and the temperature dependence677

of the reaction kinetics can also a�ect denitri�cation rates. In a next step of model develop-678

ment, further nitrogen cycling processes, in particular nitri�cation and DNRA, should be679

included into models to better represent the functional potential of natural microbial com-680

munities. Instead of simulating microbial biomass as a single variable, a model that considers681

more N-cycling processes should use a gene-centric approach (Reed et al., 2014) to account682

for the fact that the reactions are carried out by di�erent organisms.683

Acronyms684

BDF Backwards Di�erentiation Formula685

DNRA Dissimilatory nitrate reduction to ammonium686

DOC Dissolved organic carbon687

NAR Nitrate reductase688

NIR Nitrite reductase689

ODE Ordinary di�erential equation690

POC Particulate organic carbon691

Open Research692

Version 0.1.0 of the Python package Nitrogene (Störiko et al., 2021b) used for de�ning693

the reaction model and analyzing output data is preserved at https://doi.org/10.5281/694

zenodo.5590919, available under an MIT license and developed openly at https://gitlab695

.com/astoeriko/nitrogene. The repository also contains the output data used to gen-696

erate �gures.697

Version 0.1.0 of the Python package adrpy (Störiko, 2021) used for coupling the reac-698

tions to 1-D advective-dispersive transport is preserved at https://doi.org/10.5281/699

zenodo.5590973, available under an MIT license and developed openly at https://gitlab700

.com/astoeriko/adrpy.701

Version 0.2.2 of the Sunode library (Seyboldt, 2021) used to solve the ODEs result-702

ing from spatial discretization of the advection-dispersion-reaction equation is preserved at703

https://doi.org/10.5281/zenodo.5213947, available under an MIT license and de-704

veloped openly at https://github.com/aseyboldt/sunode.705
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