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Abstract21

We propose an objective threshold determination method for detecting outliers from22

the empirical distribution of cross-correlation coefficients among seismic waveforms.23

This method is aimed at detecting seismic signals from continuous waveform records.24

In our framework, detectability is automatically determined from Akaike’s Informa-25

tion Criterion (AIC). We applied the method of seismic signal detection to contin-26

uous records collected over 2 years. The results show that the maximum value of27

network cross-correlation coefficients sampled from each constant interval can be ap-28

proximated by the theory of extreme value statistics, which provides a parametric29

probability density function of maxima. Using the function, outliers can be consid-30

ered with a reasonable criterion.31

1 Introduction32

A matched-filter (MF) analysis, which is a technique for quantifying the simi-33

larity between continuous and template waveforms using the cross-correlation coef-34

ficient (CC), is efficient in detecting weak seismic signals embedded in continuous35

waveform records [Gibbons & Ringdal, 2006]. Many types of seismic events have36

been detected automatically using MF analysis: non-volcanic tremors and low fre-37

quency earthquakes [e.g., Shelly et al., 2007; Ohta & Ide, 2008; Aso et al., 2011],38

seismic swarms [e.g., Shimojo et al., 2014; Ohmi, 2015], and foreshocks and after-39

shocks [e.g., Bouchon et al., 2011; Kato et al., 2012; Doi & Kawakata, 2012, 2013].40

In general MF analyses, waveforms are regarded as seismic signals when the CC be-41

tween a template and continuous waveform exceeds a threshold value. The threshold42

value has occasionally been defined as a constant [Doi & Kawakata, 2012, 2013] or43

not specified [Bouchon et al., 2011]. However, given the possibility of relatively high44

CC values randomly occurring for microtremors, the threshold should be determined45

depending on the empirical frequency distributions of CC. In other previous stud-46

ies, the threshold value was defined as a constant factor multiplied by the standard47

deviation (σ) [Ohta & Ide, 2008; Aso et al., 2011] or the median absolute deviation48

(MAD) [Shelly et al., 2007]. Under this strategy, we can estimate the possibility of49

a false positive if a probability density function (PDF) of the CC is known. Thus,50

characteristics of the PDF should be investigated both theoretically and experimen-51

tally. Because event detection is a type of outlier detection, careful attention should52
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be given to the tails of the frequency distribution of CC; do they follow the Gaus-53

sian, exponential, or power law? Only Aso et al. [2011] showed that the tail follows54

a normal distribution in their case. In this study, we first derive a normal distribu-55

tion that the CC between random microtremor and random template waveform may56

follow and investigate the effect of a band-pass filter, which provides reference for57

determining a realistic CC distribution. Next, we consider a distribution that the58

maximum value of CC in every constant interval follows for robust outlier detection59

using non-random continuous waveform records. The distribution of maxima in ev-60

ery constant interval is given by the extreme value theory [Gumbel, 1958]. Subse-61

quently, we demonstrate that the tails of CC values are well modeled by the extreme62

value distribution rather than the normal distribution through a case study of 2-63

years continuous records and multiple templates of foreshocks before an M5.4 crustal64

earthquake in Japan. Given the extreme value distribution, we employ a reason-65

able method for detecting outliers based on Akaike’s Information Criterion (AIC).66

Although we focus on a specific foreshock activity in our data analysis section, the67

method proposed in this study is efficient for other seismic phenomena and regions.68

2 Theory and Method69

2.1 Ideal frequency distribution of CC70

In the following, without loss of generality, we regard velocity seismograms as71

the data. The frequency distribution of CC between a continuous record and an ar-72

bitrary template waveform array of length d follows a normal distribution whose73

mean is zero and variance is d−1 if the continuous record is an independent and74

identically distributed (i.i.d.) random variable. Let d-dimension vectors u := (ui)75

and v := (vi) (i = 1, 2, . . . , d) be discretized and offset-eliminated waveform arrays of76

length d. Their CC is given as77

CC = û · v̂, (1)78
79

where û and v̂ are normalized u and v, respectively, by their L2-norm. If v is ex-80

tracted from a random waveform, the normalized vector v̂ is an isotropic random81

vector restricted on the (d − 1)-dimensional unit sphere. Because eq.(1) is a projec-82

tion of v̂ along the û-direction, CC can be regarded as a velocity component along83

the û-direction of randomly hurtling particles with unit velocity (|v̂| ≡ 1). There-84
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fore, the PDF of CC can be approximated by extending the Maxwell-Boltzmann85

distribution from 3-dimensional space to d-dimensional space; see also Appendix86

A. In fact, the template and continuous waveform are filtered in MF analyses be-87

cause seismic waveforms have high S/N ratios in some limited frequency bands. Lin-88

ear band-passed filtering is equivalent to the convolution of a characteristic func-89

tion and the continuous waveform, and therefore, v is not a complete random vector90

but necessarily has interdependence among some neighbor samples (referred to as91

“self-interdependence”) depending on the filter. Thus, we conducted numerical ex-92

periments; we calculate CC between an i.i.d. random waveform of length 108 and a93

random array of length d = 500 (figure 1). After 10 experiments, we confirmed that94

CC follows the normal distribution N
(
0, d−1

)
as expected above and in Appendix95

A. On the other hand, if we regard the waveforms as 100 Hz time-series and apply a96

band-pass filter of 5−30 Hz that is required in the next section, we find that the dis-97

tribution is approximated as N
(
0, 1.8 d−1

)
, as shown in figure 1. Therefore, we can98

conclude that CC follows the normal distribution even after applying the band-pass99

filter if the continuous waveform is random.100

100

101

102

103

104

105

106

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

C
o

u
n

t

CC

N(0,d−1)

N(0, 1.8d−1)

RAW

Filtered

Figure 1. Frequency distribution of CC in a numerical experiment. CC between a raw ran-

dom noise vs. a random template follows the normal distribution N
(
0, d−1

)
, whereas CC be-

tween a filtered random noise vs. the random template follows N
(
0, 1.8 d−1

)
.

101

102

103

2.2 Frequency distribution of the maximum of CC104

The assumption of i.i.d. in the previous subsection might not be valid in cases105

where multiple similar earthquake events frequently occur, which radiates waveforms106

similar to the templates, or the microtremor repeats similar patterns. In such cases,107
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even accidentally, relatively high CC values appear around their local peaks because108

of the self-interdependence. Hence, the frequency distribution of all values of CC will109

be contaminated by the high values repeatedly, thus rendering the tail of the distri-110

bution wider and the interpretation more difficult. To avoid this problem, outliers111

should be detected from the maximum value of CC in every M sample by assum-112

ing that the self-interdependence of microtremors or seismic waveforms is lost within113

M samples. This assumption is valid because, in general, shorter-term correlation is114

stronger than longer-term correlation. Theoretically, it has been shown that the fre-115

quency of the maxima of any distribution in every interval follows the Generalized116

Extreme Value (GEV) distribution [Gumbel, 1958; Coles, 2001], which has been em-117

ployed to model possibilities of rare events, such as floods and economic crisis. GEV118

has the following cumulative density function (CDF):119

FGEV (x | µ′, σ′, k) = exp

(
−
(
1 + k

(x− µ′)

σ′

)−1/k
)
, (2)120

121

where x is a random variable, and µ′, σ′ and k are the location parameter, scale pa-122

rameter, and shape parameter, respectively. We have to note that sgn(k) (x− µ′ + σ′/k) ≥123

0 must be satisfied; otherwise the possibility is defined to be zero. It may be pos-124

sible to detect outliers by fitting the distribution of the maxima with GEV even if125

CC does not follow the normal distribution while their maxima follow GEV; see Ap-126

pendix C for the maximum likelihood estimation (MLE) of the GEV parameters. In127

particular, if every interval contains a sufficient amount of data, the cumulative dis-128

tribution converges to one of 3 specific cases depending on the shape of their tail:129

the Gumbel distribution, Fréchet distribution, or Weibull distribution. In the next130

section, we assume that they can be approximated by the CDF of the Gumbel distri-131

bution:132

FG (x | µ′, σ′) := lim
k→0

FGEV (x | µ′, σ′, k)

= exp

(
− exp

(
−x− µ′

σ′

))
.

(3)133

134

This is because of the following reasons: 1) as confirmed in the next section, the ac-135

cumulated data distribution shows straight falloff in semi-log plots, which is a char-136

acteristic of the Gumbel distribution, and 2) as in Appendix C, MLE of three pa-137

rameters for GEV is technically difficult in some case. We focus on and plot 1 − FG138

in the following.139
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2.3 Method for event detection140

Although the threshold for MF analyses has widely been assumed from the his-141

togram of data, we have no unified or objective algorithm to assume an appropriate142

value of the threshold. Here, we propose an algorithm for detecting outliers reason-143

ably and objectively on the basis of an information criterion. The elimination of out-144

liers for minimizing AIC has been developed in applied statistics [Kitagawa, 1979;145

Ueda, 1996, 2009; Marmolejo-Ramos et al., 2015] and implemented in bioinformatics146

[Kadota et al., 2003]. Kitagawa [1979], Ueda [1996, 2009], and Kadota et al. [2003]147

assumed that the random variable other than the outliers follows a normal distri-148

bution and calculated AIC; Marmolejo-Ramos et al. [2015] investigated the applica-149

bility of the method in non-Gaussian and skewed distribution cases. We assume the150

Gumbel distribution and calculate the difference in AIC when we increase the num-151

ber of suspects, which indicates whether the increment of the number is reasonable.152

We sort N data in the descending order (x1 > x2 > · · · > xN ) and assume153

that the leading s data (x1, x2, . . . , xs) are outliers that do not follow the Gumbel154

distribution while other N − s data are sampled from the same Gumbel distribution.155

Note that, unlike our notation, N data were sampled from the population distribu-156

tion and number of all data was N + s in Ueda [1996, 2009]. Then, AIC with the s157

outliers is represented as158

1

2
AICs = −

N∑
j=s+1

log f(xj | θ′)− log (N − s)! + s (4)159

160

[Ueda, 1996, 2009; Marmolejo-Ramos et al., 2015], where f is the assumed PDF161

the samples follow, and θ′ is the maximum likelihood parameters. In the original162

method, f has been assumed to be the normal distribution [Ueda, 1996, 2009]. How-163

ever, the original method tends to be sensitive and detect too many values as out-164

liers if the true ditribution is positively skewed [Marmolejo-Ramos et al., 2015]. In165

our case, we assume that the true distribution is approximated by the Gumbel dis-166

tribution that has positive skewness. Therefore, instead of the normal distribution,167

f(xj | θ) = PG(xj | µ′, σ′) should be considered, where PG := dFG

dx is the PDF of the168

Gumbel distribution.169

In the following, we do not directly calculate eq.(4) that contains uncalculat-170

able huge number log (N − s)! for our case (N ∼ 106). Instead, for sufficiently large171

N , the difference in AIC between the cases of s outliers and s + 1 outliers, 1
2dAICs,172
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can be approximated as173

1

2
dAICs :=

1

2
(AICs+1 −AICs)

∼ logPG (xs+1 | µ′, σ′) + log (N − s) + 1.

(5)174

175

Strictly, the maximum likelihood parameters based on all N data could differ from176

those estimated using N − s or N − s − 1 data. However, we assume that N ≫ s177

holds and the parameters do not change significantly after the elimination of s data;178

see also Appendix B on its effect. Because we focus on the right tail of PG and xi is179

in the descending order, PG(xs) < PG(xs+1) holds, which results in180

1

2
dAICs <

1

2
dAICs+1. (6)181

182

In other words, the difference in AIC is a monotonically increasing sequence. If dAICs <183

0 holds, from the definition, we can reasonably regard that xs+1 is also an outlier184

rather than a sample from the Gumbel distribution. On the contrary, if dAICs > 0185

holds, the monotonicity guarantees that the difference is always positive as s in-186

creases. Thus, all xi (i > s) are not outliers. Finally, our procedure schematically187

illustrated in Figure 2 is as follows. We first obtain the MLE of the parameters µ′
188

and σ′, and then calculate dAICs for s = 0, 1, 2, . . .. We stop the calculation when s189

reaches s0, which makes dAICs positive for the first time, and finally conclude that190

x1, x2, . . . , xs0 are outliers.191

3 Case Study199

3.1 Data200

We considered a foreshock sequence of an M5.4 earthquake: origin time =201

2011-06-30 08:16:37:06(JST); epicenter = 35.188N, 137.955E; depth = 4.3 km. Ac-202

cording to the JMA catalog, 27 small foreshocks were recorded within 13 h before203

the mainshock (Table S.1); their epicenters are within 1 km from the epicenter of204

mainshock and surrounded by 4 Hi-net observation stations within 10 km (Figure205

3), which may enable us to investigate the seismicity precisely. Thus, for each sta-206

tion and component, the 27 template waveforms were extracted from 0.5 s before207

each arrival of P-wave, and their length was 5 s (= 500 samples), such that the sig-208

nificant part of S-wave and its coda are included. To search events similar to these209

foreshocks, a criterion for outlier detection based on the empirical distribution of210

CC is required. We thus calculated the Network Cross-correlation Coefficient (NCC)211
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Figure 2. Schematic illustration for estimating s0 = 4, where s0 is the number of outliers

ouf of N = 104. (a) Cumulative number of raw data (blue steps), estimated Gumbel dis-

tribution (gray broken line), and cumulative number of data after elimination of x1, . . . , xs0

(green steps). (b) Dependence of AIC on the number of outlier candidates, s. (c) Dependence

of dAICs := AICs+1 − AICs on s, where the definition is exemplified for s = 6. Even though

the blue step due to x5 is above the gray line in (a), x5 is not regarded as the outlier because the

step becomes closer to the gray line after the elimination.
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198

among template waveforms due to the 27 events and 2-years continuous waveforms212

between 2009-06-29 and 2011-06-28 before the activation of the foreshocks. NCC213

is the averaged value of CC obtained in each station and component after shifting214

CC by lags between the origin time and arrival time of P-wave [Gibbons & Ringdal,215

2006]. Even after averaging, maxima of NCC should follow GEV because maxima216

generated by arbitrary distribution follow GEV [Gumbel, 1958; Coles, 2001]. In our217

case, we stack 12 CC time series based on 3 components of the 4 stations and ob-218

tain 27 histograms of NCC in total. Before the calculation, we applied a band-pass219

filter to focus on the frequency band, in which waveforms due to foreshocks show220

high S/N ratios. Although Doi & Kawakata [2012] applied a band-pass filter of 15–221

40 Hz, we applied the filter of 5–30 Hz depending on the spectra of template wave-222

forms; some automatic and objective determination method of the band should be223

developed in the future. We eliminated 15-s daily data of 09:00:00.00-09:00:15.00 for224
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checking the state-of-health of the observation instrument of Hi-net to ensure that225

CC was not affected by the test signals.226
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34˚
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Figure 3. Distribution of observation points (triangles) and foreshock hypocenters (white cir-

cles) prior to an M5.4 mainshock in Nagano, Japan. Waveforms observed at N.MWDH (green),

N.MNYH (blue), N.MMOH (yellow), and N.SOJH (red) stations were analyzed in this study. See

Table S.1 for detail of the 27 events within 1 km from the epicenter shown in the darkest circle.
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3.2 Result: Histogram of NCC231

All histograms of NCC are shown in Figure 4. The histograms were normalized232

by their standard deviation, which means that they should be well approximated by233

the standard normal distribution plotted by the gray parabola in the semi-log plot234

if NCC follows a normal distribution. However, the tails of the NCC histograms ap-235

pear to be linear in the semi-log plot, and significantly different from the theoretical236

distribution discussed in the previous section. The difference between the theoretical237

model and empirical data is over a hundredfold in 7σ and ten thousandfold in 8σ.238

Therefore, the possibility of false positives may be severely underestimated if we set239

the threshold value as 8σ [Aso et al., 2011; Kato et al., 2012] and implicitly assume240

that the histogram follows a normal distribution. This fact strongly implies that the241

observed microtremor is significantly far from the i.i.d. assumed in the ideal case242

and has non-negligible self-interdependence. Weekly statistics of NCC histograms243

(Figure. 5) show that the standard deviation is higher than the case of the random244
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waveform (σ =
√
1.8 d−1, where d = 500 × 12 in this case), which implies that245

the microtremor is somehow biased. Hence, we should refer to the distribution of246

the maxima of NCC that is less sensitive to the self-interdependence. Figure 5 also247

shows that characteristics of histograms, such as the standard deviation and kurto-248

sis, fluctuated immediately after the week, including those on March 11, 2011, the249

day the M9.0 Tohoku earthquake occurred. However, the 2 years were not separated250

in our analysis because a sufficient amount of data is required to investigate the tails251

of histograms.252
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Figure 4. Empirical distribution of NCC between 2-years continuous records and 27 template
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3.3 Result: Cumulative Distribution of max. of NCC259

We attempted to detect seismic events that possibly occurred in the 2 years260

using the proposed method in 2.3 after fitting the cumulative number of the max-261

ima of NCC at every minute between 2009-06-29 and 2011-06-28. In total, we could262

select 21 outliers according to Figure 6, which shows the cumulative number of cal-263

culated NCC, the estimated Gumbel distribution 1 − FG (x | µ′, σ′), and detected264

outliers. However, we classified some of these outliers as the same event because265

they emerged within 1 s. Finally, we could detect 4 new events, as shown in Table266

1, which have not been cataloged by the JMA. As shown in Figure S.1–S.4, the de-267

tected waveforms show amplitudes of maximum 10–20% of the template waveforms268

and, therefore, have relatively low S/N ratios compared to the template. Even from269

such noisy data, our method provided the seismic signals without any prescribed270

threshold. The finding of the triplet similar events 3–4 days before the mainshock271

in the foreshock region (IDs B–D in Table 1) may provide us with new insight for272

considering the preparation process of the mainshock.273

Table 1. Detected events by the proposed algorithm.278

ID date time similar to

A 2011-05-04 19:17:00 05, 06

B 2011-06-26 11:57:47 01, 02, 04, 14, 18, 27

C 2011-06-26 12:57:45 01, 02, 04, 18, 23, 27

D 2011-06-27 07:24:14 01, 02, 04, 18, 20, 23, 27

4 Discussion279

Compared to conventional thresholding methods, the most important advan-280

tage of our method is that the results are objective and reasonable; the result is less281

affected by arbitrariness in principle. We can suggest the possibility of false positives282

under the Gumbel distribution because the differences between the distribution and283

cumulative number of data are almost less than tenfold (Figure 6). The conventional284

method involves a trade-off between the number of detected events and false positive285

depending on the threshold value. In our method, however, the detection criterion is286

automatically determined depending only on the quality of data. Only 4 events were287
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with µ′ = 0 and σ′ = 1 as the fitting curve (gray) for 27 templates of Table S.1. Red steps indi-

cate detected outliers in terms of the minimization of AIC. 17 cases accompanied by no outliers

are plotted all together in the right bottom.

274

275

276

277

detected in our analysis, which may mean that the hypocenter region had been quite288

inactive before the foreshock activity or our method is excessively strict at finding289

many uncataloged events. Nevertheless, even if the latter is true, the detection of 4290

uncataloged events shows that our method has higher detection ability than that of291

JMA at that term, at least for similar seismic events.292

It is noteworthy that our method is not completely free of arbitrariness. One293

concern is the length of intervals using which we selected the maxima. In our ex-294

periment, we selected an interval of 1 min (i.e., 6,000 samples) considering com-295

putational time, but in principle, the interval can be, for example, 5 seconds (i.e.,296

500 samples). With longer lengths, the data distribution may converge to the Gum-297
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bel distribution [Gumbel, 1958; Coles, 2001], but the temporal resolution will de-298

crease because relatively smaller peaks of CC values will be neglected if a higher299

peak emerges in the same interval, which becomes likely for longer intervals. In con-300

trast, with shorter lengths, the convergence might not be achieved, and the data301

will require fitting using not the Gumbel (3) but the GEV (2) distribution, which302

includes one more parameter and is time-consuming (Appendix C). Therefore, the303

effect of the length should be quantified theoretically and practically in the future.304

The background level of CC may have daily variation [Aso et al., 2011] or long-305

term variation as shown in Figure 5, and, for precise analysis, the threshold should306

be determined in each term (e.g., diurnal and nocturnal distribution of CC). In such307

a case, our method can be applied to each term separately, although we ignored such308

variations for simplicity.309

Because we analyzed continuous records only from 4 stations, it remains un-310

clear whether the empirical distribution can be modeled by the Gumbel distribution311

in general cases. A suitable approximation is possible using other limits of GEV: the312

Fréchet or Weibull distribution. In practice, the shape of the tail should be further313

investigated considering these possibilities in each analysis.314

5 Conclusion315

We developed an objective matched-filter technique based on AIC and the ex-316

treme value theory. We showed that the CC between any template and i.i.d. random317

waveform follows the normal distribution, which provides a reference for examining318

the deviation of data from the i.i.d. case. To reduce the possibility of a false posi-319

tive, we considered the maximum of CC in each interval and found that the maxima320

follows the Gumbel distribution. Finally, using the distribution and AIC, we propose321

a reasonable method for detecting outlier seismic signals that is less sensitive to ar-322

bitrariness than a conventional thresholding method. Regardless of whether NCC323

follows the normal distribution, the proposed method can be applied to analyses of324

seismic event detection.325
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Appendix A Approximation of the CC distribution403

Here, we show that the normal distribution N
(
0, d−1

)
approximates the theo-404

retical distribution of CC between d-dimensional two vectors u and v extracted from405

a continuous waveform record. First, we show that the extracted vector is statisti-406

cally isotropic. From the definition, we consider v(t) = (xt, xt+1, . . . , xt+d−1), where407

xt is the t-th component of continuous record. Therefore, CCt = û · v̂(t) is the t-th408

value of CC if u is the fixed template. If t0 ∈ [t, t + d − 1] exists such that |xt0 | is409

significantly larger (or smaller) than others, v̂(t) itself is strongly (or less) oriented410

to the t0-th direction. However, simultaneously, v̂(t+1), v̂(t+2), v̂(t+3) . . . are strongly411

(or less) oriented towards the t0 − 1, t0 − 2, t0 − 3 . . . direction; this discussion is ob-412

viously valid even if the continuous record has some self-interdependency. Therefore,413

it is impossible to give some tendency to the direction of v, that is, v(t) for all t is414

statistically isotropic.415

Given the isotropy, the normal distribution N
(
0, d−1

)
can be obtained as the416

extension of the derivation of the Maxwell-Boltzmann distribution. However, Maxwell417

(1860) assumed that each component of the vector, which is 3-dimensional and d-418

dimensional in the original and our problem, respectively, is independent; in our419

problem, this assumption does not hold because of |û|2 = |v̂|2 = 1, where û and420
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v̂ are normalized u and v, respectively, after elimination of their offset. Therefore,421

we loosen this constraint as E
(
|v̂|2

)
= 1, where E( · ) indicates the mean value.422

After the derivation, we justify this assumption for larger value of d.423

The derivation of the Maxwell-Boltzmann distribution is purely mathematical424

rather than physical. Maxwell [1860] considered that each component of particle ve-425

locity v = (v1, . . . , vd) is a random variable that follows the same PDF, P . Although426

only d = 3 was considered in the original, we extend it into the general case. In the427

following, we consider the PDF for each component of v̂ = (v̂1, . . . , v̂d).428

By assuming that the random vector v is statistically isotropic (i.e., “the direc-

tions of the coordinates are perfectly arbitrary”, Maxwell wrote), E(v̂j) = 0 holds

for arbitrary direction, and the joint probability of v̂1, . . . , v̂d is coordinate-free and

depends only on |v̂|2 written as

d∏
j=1

P (v̂j) = ϕ

 d∑
j=1

v̂2j

 . (A.1)

Because only an exponential function satisfies this property,

P (v̂j) =
1

α
√
π
exp

(
−
v̂2j
α2

)
(A.2)

is obtained under the condition of
∫
R P (x)dx = 1, where α is a positive parameter to

be determined. The joint probability is written as

d∏
j=1

P (v̂j) =
1

αdπd/2
exp

(
−|v̂|2

α2

)
, (A.3)

and the mean value of |v̂|2 is

E
(
|v̂|2

)
=

∫
Rd

|v̂|2
d∏

j=1

P (v̂j) dv̂j (A.4)

=
1

αdπd/2

∫
Sd−1

dω

∫ ∞

0

|v̂|2 |v̂|d−1
exp

(
−|v̂|
α2

)
d |v̂| (A.5)

=
2πd/2

αdπd/2Γ (d/2)

1

2
αd+2Γ

(
d

2
+ 1

)
(A.6)

=
α2d

2
, (A.7)

where Sd−1 = 2πd/2/Γ(d/2) is the area of (d − 1)-dimensional unit sphere, dω is the

solid angle, and Γ is the Gamma function. |v̂|d−1
is derived from the Jacobian, and

we use ∫ ∞

0

xp exp

(
−x2

a2

)
dx =

1

2
ap+1Γ

(
p+ 1

2

)
. (A.8)
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Finally, with E
(
|v̂|2

)
= 1, we get

α2 =
2

d
, (A.9)

which yields

P (v̂j) =

√
d

2π
exp

(
−

v̂2j
2d−1

)
. (A.10)

Obviously, if d is small, eq.(A.10) does not approximate the distribution of CC be-

cause the probability is not negligible for |v̂j | > 1. Hence we have to consider the

sufficiently large value of d that makes P (|v̂j | > 1) negligibly small. Moreover, the

variance of |v̂|2 calculated as

E
((

|v̂|2 − 1
)2)

=E
(
|v̂|4

)
− 2E

(
|v̂|2

)
+ E(1) (A.11)

=α4

(
d

2
+ 1

)
d

2
− 2 + 1 (A.12)

=
2

d
, (A.13)

means that the possibility of |v̂|2 = 1 in the strict sense becomes larger as d in-429

creases. Therefore, the constraint |v̂|2 = 1 is approximately satisfied for larger values430

of d.431

Considering that both Maxwell’s particle and our unit random vector is isotropic,432

the PDF (A.10) provides not only the specific component v̂j but also a component433

along all directions including û in the same manner. Therefore, the inner product of434

an arbitrary random unit vector v̂ extracted from random continuous waveform and435

arbitrary fixed unit vector û approximately follows the normal distribution with the436

variance of d−1.437

Appendix B Does not the log-likelihood vary significantly after438

elimination of some data?439

In eq.(5), we assume that the maximum likelihood parameters for all N , N − s440

and N − s − 1 data do not vary significantly because N ≫ s holds. Even so, the441

effect of the small difference of the parameters on AICs appears to be unclear. In442

the calculation of the log-likelihood,
∑N

j=s+1 logP (xj | µ′, σ′), even negligibly small443

difference could be stacked and possibly become a significant amount.444

However, we can show that the stacked amount is still negligible. Let the pa-

rameters (µ′, σ′) and (µ′′, σ′′) be the MLE using all N data and N − s data, respec-
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tively. Therefore, the error of AIC (i.e., error of the log-likelihood) using the former

instead of latter has the same order of the Kullback–Leibler divergence

D(PG(µ
′′, σ′′), PG(µ

′, σ′)) =

∫
R
PG(x | µ′′, σ′′) log

PG(x | µ′′, σ′′)

PG(x | µ′, σ′)
dx. (B.1)

This is equivalent to the loss function defined in eq.(3.1) of Akaike [1973], and de-445

pends only on the second or higher order of (µ′′ − µ′) and (σ′′ − σ′) after the Taylor446

series expansion; see eq.(4.5) of Akaike [1973]. Hence, any small error of (µ′′ − µ′) or447

(σ′′ − σ′) does not vary the log-likelihood significantly.448

Appendix C MLE of GEV parameters449

MLE of GEV parameters is equivalent to solving the equations below with re-

spect to µ′, σ′, and k:

N∑
i=1

zi
yi

=0,

−N +
N∑
i=1

zi
yi

(
xi − µ′

σ′

)
=0,

N∑
i=1

(
zi log(yi) +

zi
yi

(
xi − µ′

σ′

))
=0

(C.1)

[Martins & Stedinger, 2000; Coles, 2001], where yi := 1 + (k/σ′)(xi − µ′) and450

zi := 1 + k − y
−1/k
i (note: k is opposite in sign between Coles [2001] and Mar-451

tins & Stedinger [2000]), and we eliminate some unnecessary coefficients. To solve452

them using the Newton-Raphson method, the Hessian matrix that is the deriva-453

tive of eqs.(C.1) with respect to the 3 parameters should be calculated. Although454

the representations of the derivatives are slightly complicated, we simply compute455

the matrix by the automatic differentiation using a small complex variable [Squire456

& Trapp, 1998]. The initial values for iteration are given by L-moments [Hosking,457

1990].458

Unfortunately, the Newton-Raphson method sometimes fails during its itera-459

tion due to the following reason. During the MLE process, we have to calculate the460

log-likelihood logPGEV(xj | µ′, σ′, k) for all the sample xj , where µ′, σ′, k is not nec-461

essarily the MLE of the parameters, which is attributable to the iteration. In case462

of k < 0, as mentioned in the main text, the PDF, PGEV, for x > µ − σ′/k is zero.463

Therefore, we may substitute zero into PGEV if xj > µ − σ′/k holds, and the itera-464

tion stops due to the numerical error (log 0 = −∞). In particular, this error tends to465

–19–



Confidential manuscript submitted to JGR-Solid Earth

occur if the sample includes outliers, which is abnormally large. Hence, the MLE of466

GEV parameters is technically difficult, and we may require some ad hoc implemen-467

tation.468

Because we particularly focus on the case of the Gumbel distribution, the equa-

tions for maximum likelihood estimators are represented explicitly by taking k → ∞:

N∑
i=1

(
1− exp

(
−xi − µ′

σ′

))
=0,

−N +
N∑
i=1

(
1− exp

(
−xi − µ′

σ′

))(
xi − µ′

σ′

)
=0.

(C.2)
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