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Key Points:6

• Earthquake source time functions are modeled by the convolution of two solutions7

of a stochastic differential equation.8

• Modeled functions are dominantly unimodal, evolve as ∼ t3, have ω−2-like spec-9

tra, and satisfy the Gutenberg-Richter law.10

• This convolution may mean that both the stress drop rate and fault impedance11

can be modeled as Bessel processes.12
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Abstract13

Source time functions are essential observable quantities in seismology; they have been14

investigated via kinematic inversion analyses and compiled into databases. Given the nu-15

merous available results, some empirical laws on source time functions have been estab-16

lished, even though they are complicated and fluctuate along time series. Theoretically,17

stochastic differential equations, which include a random variable and white noise, are18

suitable for modeling such complicated phenomena. In this study, we model source time19

functions as the convolution of two stochastic processes (known as Bessel processes). We20

mathematically and numerically demonstrate that this convolution satisfies some of the21

empirical laws of source time functions, including non-negativity, finite duration, uni-22

modality, a growth rate proportional to t3, ω−2-type spectra, and frequency distribution.23

We interpret this convolution and speculate that the stress drop rate and fault impedance24

follow the same Bessel process.25

Plain Language Summary26

Earthquakes are high-speed slips of two rock masses that are followed by seismic27

wave radiation; it is important to quantify the time series of the slip rate during an earth-28

quake. Many studies have revealed some empirical laws on the slip rate via time-series,29

Fourier, and statistical analyses, while they appear to be complicated, fluctuating, and30

individual. Using mathematical and numerical analyses, we reproduce these empirical31

laws using the theory of stochastic random processes. We also speculate on the phys-32

ical reasoning as to why the mathematical model works well. Our theory may explain33

why earthquakes are complex and diverse.34

1 Introduction35

Earthquake source time functions (STFs), which are temporal variations in the slip36

rate integrated over faults during earthquakes, are macroscopically observable in seis-37

mology and have been widely investigated regarding kinematic source inversions and dy-38

namic source modeling. To review some knowledge on STFs, we first summarize some39

empirical laws (ELs) for STFs:40

EL1 STFs are dominantly non-negative, continuous, compactly supported, and unimodal.41

EL2 The moment functions, which are proportional to the time-integration of STFs,42

evolve as ∼ t3, where t is the time since their ignition (this is referred to as “the43

cube law” herein).44

EL3 The ω−2-model can satisfactorily approximate the amplitude of STF Fourier spec-45

tra.46

EL4 The frequency of their total moment follows the Gutenberg-Richter (GR) law.47

Many studies, from early pioneering research (e.g., Houston, 2001) to recent rev-48

elations (e.g., Yin et al., 2021) have cataloged numerous STFs and revealed their ten-49

dencies and variabilities over time. Although several outliers have been found, EL1 has50

arisen as an obvious tendency, based on cataloged data. For example, ∼80% of the cat-51

aloged STFs are unimodal; they are labeled Group 1 in the research of Yin et al. (2021).52

In EL1, the fact that STFs are compactly supported is natural because regular earth-53

quakes terminate within a few minutes, whereas slow earthquakes have longer durations.54

Uchide and Ide (2010) compared the moment functions of Mw1.7−6.0 events in55

Parkfield, California, based on multi-scale inversion analyses. They pointed out that EL256

holds from the very early to later stages of the source processes. Meier et al. (2016) demon-57

strated that peak ground displacement evolves with the cube law. As the far-field ground58

displacement is proportional to STFs, they suggested that the law is sourced from the59
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phenomenon of self-similar rupturing of the fault, which results in EL2. In addition, the60

proportionality between the final moment and the cube of the total duration has been61

established (e.g., Houston, 2001).62

Given the spectra of STFs, their amplitudes above their corner frequencies can be63

modeled by a power law, and their fall-off rates can be quantified. As shown by numer-64

ous studies (e.g., Boatwright, 1980; Abercrombie, 1995; Kanamori, 2014), EL3 seems to65

be very robust. Some forward modeling studies of dynamic rupturing have been conducted66

to explain the ω−2-model; they have shown that STFs consist of functions that are al-67

most entirely smooth, except for a kink. For example, Brune’s model has a kink at its68

start, while Sato & Hirasawa’s model and Madariaga’s model both have a kink due to69

their stopping phases (see the review of Madariaga & Ruiz, 2016, on each mathemat-70

ical or numerical representation). However, the cataloged STFs do not show such an iso-71

lated kink, but do show some fluctuations (Yin et al., 2021). This implies that the tra-72

ditional modeling approaches are too simplified to reproduce the complexity of STFs,73

and thus, that some stochastic modeling is required.74

Apart from the entire shape of each STF as discussed above, it has been well es-75

tablished that EL4 holds. The GR law originally means that the probability density func-76

tion (PDF) of a seismic moment is a power law. By recalling the cube law between the77

moment and the duration, the GR law means that the PDF of the duration is also a power78

law. Once we model stochastic STFs, we can estimate the PDF of the duration and dis-79

cuss whether the PDF satisfies the GR law.80

The stochastic modeling of faulting processes has been proposed both theoretically81

and numerically. Andrews (1980, 1981) considered a spatio-temporal slip distribution82

with self-affinity, mainly in the Fourier domain. This approach revealed the spectra of83

the distribution and energetics of the faulting. Significantly, the fault impedance, which84

is the factor of proportionality between the slip rate and stress drop in the Fourier do-85

main, can enlighten the relationship between the quantities, even in the stochastic model.86

After Andrews (1980, 1981), the importance of stochasticity has been more recognized87

(see the introduction of Aso et al. (2019) for details). Aso et al. (2019) introduced tem-88

poral stochasticity into their boundary integral equation for the dynamic rupture pro-89

cess and demonstrated the rupture complexity. While such numerical modeling is de-90

veloping, mathematical modeling, if available, would contribute to the understanding of91

complex faulting processes.92

Stochastic differential equation(SDE)-based models have been employed in the field93

of earthquake source physics. Matthews et al. (2002) and Ide (2008) modeled recurrent94

and slow earthquakes, respectively, as Brownian motion. Matthews et al. (2002) focused95

on regular earthquakes; however, the time scale considered by them was longer than each96

event, and they did not consider the properties of STFs. Wu et al. (2019) assumed that97

the generalized Langevin equation can model the equation of motion for the fault slip98

rate. Although their model was based on some physical properties of dynamic friction,99

their solution was Brownian motion, which cannot satisfy the non-negativeness (EL1)100

or the ω−2-like spectrum (EL3). Thus, a novel approach is need for SDE-based model-101

ing under EL1–4.102

In this article, we consider an SDE known as the Bessel process. We analytically103

and numerically demonstrate that the convolution of two solutions from the same Bessel104

process satisfies EL1–4. Finally, we discuss the physical meaning of these two solutions105

on the basis of the fault impedance.106
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2 Mathematical modeling107

In the following, we do not distinguish STF :=

∫
Γ

V (x, t) dx and moment-rate func-108

tion Ṁ(t) := µ

∫
Γ

V (x, t) dx on a flat fault Γ, where µ is the rigidity and V is the slip109

rate distribution. We introduce a mathematical model to generate Ṁ(t) using solutions110

of an SDE. Ide (2008) modeled Ṁ for slow earthquakes as Brownian motion because the111

observed source spectra of slow earthquakes follow the ω−1-model, which is similar to112

the spectrum of Brownian motion. For regular earthquakes, however, EL3 holds. Thus,113

we consider a product of the spectra of two stochastic processes (i.e., ω−1×ω−1 = ω−2),114

which is a convolution of the two stochastic processes in the time domain, which we de-115

note as X
(1)
t and X

(2)
t herein. Thus, we assume that Ṁ = X

(1)
t ∗ X(2)

t holds, where116

the asterisk “*” denotes the convolution in time.117

To fulfill EL1, we assume that both X
(1)
t and X

(2)
t are solutions of the following

SDE called the Bessel process:

dX
(i)
t =

d− 1

2

dt

X
(i)
t

+ dB
(i)
t , (i = 1, 2) (1)

with its initial value X
(i)
0 (> 0), which is equivalent to the integral form as:

X
(i)
t = X

(i)
0 +B

(i)
t +

d− 1

2

∫ t

0

ds

X
(i)
s

, (i = 1, 2) (2)

where B
(i)
t is a standard Brownian motion and d is the dimension of the Bessel process.118

SDE(1) is valid while X
(i)
t > 0 holds. Thus, we define X

(i)
t = 0 after the process hits119

zero; the time T := mint

{
t|t > 0 &X

(i)
t = 0

}
is referred to herein as the first hitting120

time (Göing-Jaeschke & Yor, 2003). According to the above definition, X
(i)
t is contin-121

uous and non-negative. Moreover, X
(i)
t with d < 2 is compactly supported because T �122

∞ holds almost surely if d < 2 (Göing-Jaeschke & Yor, 2003). Therefore, given d <123

2, EL1 holds if we can confirm that X
(1)
t ∗X

(2)
t is unimodal. We demonstrate this state-124

ment numerically in the next section.125

We also confirm that X
(1)
t ∗ X(2)

t satisfies EL2 and EL3 numerically in the next126

section. It can be expected that EL3 would be satisfied, as described in the first para-127

graph of this section.128

The condition for EL4 can be derived analytically. Hamana and Matsumoto (2013)

showed that P (T ), which is the PDF of the first hitting time T with d < 2 and X
(i)
0 =

a, can be represented as:

P (T ) =
2ν

a2Γ(|ν|)
T ν−1 exp

(
− a

2

2T

)
, (3)

where ν =
d

2
− 1, and Γ(·) is a gamma function. On the other hand, considering the129

cube law (M0 ∼ T 3), the GR law with respect to Mw = 2
3 log10M0 − 6.1 can be rep-130

resented as131

P (Mw) ∼ 10−bMw ∼ T−2b, (4)

where b ∼ 1 holds and the constant coefficients are neglected. Thus, if we assume a suf-132

ficiently small initial value, a (�
√

2T ), eqs (3) and (4) imply that:133

ν = −2b+ 1, i.e., d = 4(1− b) (5)

is required for EL4.134
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Figure 1. The 1,000 computed convolutions of the two Bessel processes for (a) case A and (b)

case B. Time scale and total moment are normalized.

3 Numerical Modeling and Results135

In the following section, we investigate how the convolution X
(1)
t ∗X

(2)
t satisfies

EL1–3 after solving eq.(1) using the SRIW1 algorithm (Rößler, 2010) implemented in
DifferentialEquations.jl (https://diffeq.sciml.ai/) for Julia 1.6.1 (https://julialang.org/).
Given eq.(5) and b = 1, we solve:

dXt = −1

2

dt

Xt
+ dBt

with a constant time step of dt = 10−6 and a sufficiently small initial value of X0 =136

10−3 up to time Tmax = 2×10−3 (i.e., 2,000 steps). Because the solution must become137

zero in our model, we reject numerical solutions that never reached zero before Tmax. The138

convolution of two solutions does not follow ω−2-model if their corner frequencies, which139

are comparable to the inverse of their fist hitting time, are quite different. Thus, we de-140

note the lower limit of the first hitting time as Tmin and reject solutions that reach zero141

before Tmin. In the following, we investigate two cases: A) Tmin = 2 × 10−4 (i.e., 200142

steps) and B) Tmin = 1 × 10−3 (i.e., 1,000 steps). Therefore, we consider the Bessel143

processes with the probabilistic first hitting time T satisfying Tmin ≤ T ≤ Tmax, where144

Tmin/Tmax = 0.1 for case A and Tmin/Tmax = 0.5 for case B. For every two solutions,145

we regard the solution with relatively shorter duration as X
(1)
t and the other as X

(2)
t .146

Thus, Tmin/Tmax ≤ T1/T2 ≤ 1 holds, where Ti is the duration for X
(i)
t (i = 1, 2).147

After iterations, we store 2,000 solutions with Tmin ≤ T ≤ Tmax, which yields148

1,000 pairs of solutions, and calculate 1,000 convolutions of the pairs. Even though we149

calculate and abandon many useless solutions, we obtain ∼120 Bessel processes per minute150

within the duration range by using 12-core AMD Ryzen 9 3900XT.151

The 1,000 convolutions dominantly satisfy EL1 (Fig.1), whereas the case B shows152

more variation (see Supporting Figures for individual cases). Simultaneously, the time153

integration (Fig.2) and Fourier amplitude spectra (Fig.3) reproduce EL2 and EL3, re-154

spectively. EL4 is almost surely satisfied, as discussed in the previous section. Hence,155

we conclude that the convolution of two Bessel processes with d = 0 stochastically ful-156

fills EL1–EL4.157

4 Discussion158

Here, we interpret the physical meaning of the convolution of two Bessel processes.
In the following, we consider a finite flat fault surface Γ and define two convolutions: “∗”
as only in time and “∗̃” as in on-fault position and time. In the case of a finite fault, we
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Figure 2. The normalized moment evolution

(∫ t

0

Ṁ(s) ds/

∫ ∞

0

Ṁ(s) ds

)
for (a) case A

and (b) case B along normalized time scale (t/T ). The curves dominantly follow the cube law

(∼ t3) except for in their initial stages, which are affected by their initial values, and in their final

stages, which converge toward their static states.

Figure 3. The normalized Fourier amplitude spectra of the convolutions plotted in Fig.1 for

(a) case A and (b) case B.
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assume that the stress drop rate, σ̇(x, t) for the on-fault position x ∈ Γ, can be rep-
resented as:

σ̇(x, t) = − (ṁ∗̃Z) (x, t), (6)

where ṁ(x, t) is the moment-rate density function and Z(x, t) is the fault impedance,
as detailed by Andrews (1980, 1981). If the surrounding area is an elastic body, Z can
be derived from linear elasticity. However, we consider a stochastic process in which Z
includes a non-deterministic property. Eq.(6) represents the stress rate (i.e., Neumann
condition) based on the displacement discontinuity (i.e., Dirichlet condition) along a fi-
nite fault; thus, Z is called a Dirichlet-to-Neumann operator. Here, we assume that there
exists a Neumann-to-Dirichlet operator Z−1, whose support is Γ, satisfying:

ṁ(x, t) = −
(
σ̇∗̃Z−1

)
(x, t). (7)

Furthermode, the Fourier transform with respect to position (

∫
Γ

e2πik·xdx, where k is

a two dimensional wavenumber) yields:

ṁ(k, t) = −
(
σ̇(k, ·) ∗ Z−1(k, ·)

)
(t). (8)

As the limit k → 0 is equivalent to the integration in space (limk→0

∫
Γ

e2πik·xdx =∫
Γ

dx), eq.(8) results in

ṁ(t) = Ṁ(t) = −
(
σ̇ ∗K−1

)
(t), (9)

where the overlines denote integration over Γ. Finally, eq.(9) implies that EL1–4 are ful-159

filled if the stress rate, σ̇(t), and Neumann-to-Dirichlet operator, Z−1, when integrated160

over Γ, are Bessel processes.161

As σ comprises stress drop, −σ̇(t) is always non-negative and −σ(t) is a non-decreasing162

function from zero to its final value (> 0). This property is naturally produced if −σ̇(t)163

is a Bessel process. For the 1,000 results, X
(1)
t ∗X

(2)
t , as obtained in the previous sec-164

tion, we also calculate −
∫ t

0

X(1)
s ds, where the duration of X

(1)
s is shorter than that of165

X
(2)
s . By considering this quantity as σ(t), we confirm the relationship between M(t)166

and σ(t). The results show monotonic slip-weakening curves (Fig.4). Therefore, the as-167

sumption that the stress drop rate is a Bessel process explains the natural weakening pro-168

cess of the on-fault stress change. In Fig.4, the abscissa and ordinate mimic averaged slip169

and stress drop over the fault, respectively. This means that the characteristic slip weak-170

ening distance ranges from 20% to 50% of the final slip amount. Interestingly, this frac-171

tion is close to results obtained based on observations (e.g., Mikumo, 2003).172

To interpret the other assumption that the inverse fault impedance, Z−1, is a ran-173

dom process is not straightforward. When we calculate seismic waves, the Green func-174

tions are well modeled within the framework of linear elasticity. This might be because175

the Green functions depend on the medium between the fault and (usually) far-field ob-176

servation points, where almost all of the region is an elastic body. However, the (inverse)177

fault impedance is a propagator among the on-fault positions traveling along the fault.178

In general, faults are segmented, bumpy, and surrounded by fractured rocks. Modeling179

such a complex system by assuming a flat fault may cause non-deterministic fluctuations180

due to scattering waves, as schematically illustrated by Aso et al. (2019). Therefore, this181

assumption is possible, even though it is difficult to directly observe.182

In the numerical simulation, we restrict the ratio of the duration of X
(1)
t and X

(2)
t183

within tenfold. This is not only for EL3, as mentioned here, but also for another phys-184

ical property. If X
(1)
t is the stress drop rate, its duration should correspond to the du-185

ration of the most energetic faulting process, which is given by the fault length divided186
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Figure 4. Normalized moment versus normalized stress drop assumed to be time-integration

of a Bessel process for case A.

by the rupture speed. On the other hand, because Z−1(t) = X
(2)
t is based on the fault187

impedance, its duration must be equivalent to the time taken for the scattering wave to188

spread over the entire fault. This time is at least, or even a few times greater than, the189

fault length divided by the seismic wave speed. Therefore, the durations of X
(1)
t and X

(2)
t190

should have almost the same order, and Tmin/Tmax = 0.1 and 0.5 in our assumption191

might be two possible end members.192

5 Conclusions and outlooks193

Here we demonstrate that the four empirical laws on STFs, or moment-rate func-194

tions, can be reproduced by modeling STFs as the convolution of two Bessel processes195

with almost the same order of duration. In terms of fault mechanics, given the complex-196

ity of the geometry and surroundings of the faults, this result is comprehensible if both197

the stress drop rate and the inverse fault impedance follow a Bessel process.198

One possible future approach could be to extend the model by considering spatial199

heterogeneity of stress, fault geometry, and the surrounding medium. This is similar to200

the numerical model of Aso et al. (2019); further mathematical model and results will201

broaden our understanding. The main difficulty might be that we must somehow con-202

sider a stochastic partial differential equation that considers both space and time, which203

is a more mathematically challenging task. Were such a model available, it would be pos-204

sible to discuss the physical processes related to rupture initiation, propagation, and ter-205

mination as stochastic processes. Moreover, some relationships between the kinetic and206

potential energies released from heterogeneous slip distribution (e.g., Hirano & Yagi, 2017)207

could be revealed, which would be necessary for the energetics of faulting.208

A future plan could be to apply our model to scientific and engineering studies on209

strong ground motions. One way to numerically simulate strong ground motions is to210

compute the convolution of an STF and the Green function. However, this STF should211

not be unique, even if we consider a single fault, and stochastic simulation would be re-212

quired by assuming various STFs. Our model allows us to generate numerous STFs us-213

ing a the stochastic process that leads to statistical analyses. In general, even without214

numerous numerical simulations, we can investigate the statistical properties of a stochas-215

tic process if the PDF of the random variable at any time is available by solving the cor-216

responding Fokker-Planck equation. Fortunately, the PDF for the Bessel process is al-217

ready known (Guarnieri et al., 2017). Thus, it should be possible to calculate some sta-218

tistical properties of strong ground motion at low computational costs.219
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