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# Abstract 7 

Precision yield data is commonly recorded by modern combine harvesters and can be used to 8 

help growers optimize their operations. However, there have been very few attempts to predict 9 

variation in yield within a given field using multispectral satellite data. We used a precision yield 10 

dataset gathered in canola (Brassica napus L.) crops in central Alberta, Canada, and a time series 11 

of medium-resolution Sentinel-2 data collected over the growing season. Using two mapping 12 

methods, random forest regression and functional data analysis, we were able to predict crop 13 

yield to within 12-16% accuracy of actual yield, and to capture within-field variation. Our results 14 

demonstrate that time series of medium-resolution multispectral imagery is capable of mapping 15 

small-scale variation in crop yields, presenting new research and management applications for 16 

these techniques. 17 
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# 1. Introduction 19 

Precision agriculture (PA) uses technological innovations to increase production by conducting 20 

the right management practice at the right time and place. PA has been practiced commercially 21 

since the 1990’s (Mulla, 2013) and is now deployed widely across the North American 22 

agricultural sector. For example, in the United States, guidance systems are used in about half of 23 

all planted acres, and GPS-based yield mapping and variable-rate technology are used in about 24 

40% and 30% of operations, respectively (Schimmelpfennig, 2016).  Adoption is even higher in 25 

Canada, as a survey by Agriculture and Agri-Food Canada indicated that 84% of Canadian 26 

farmers are currently using PA and have combine yield monitoring capability, and 75% of 27 

participants said they would use more PA in the future (Steele, 2017). 28 

Remotely sensed imagery is a key data source for PA, summarizing soil properties (e.g., organic 29 

matter, moisture, pH) or plant conditions (e.g., crop nutrients, biomass, yield, water/heat stress, 30 

weed infestation, insects and plant diseases) (Thorp & Tian, 2004; Liaghat & Balasundram, 31 

2010; Ge et al., 2011; Mulla, 2013; Chlingaryan et al., 2018). Crop yield maps are perhaps the 32 

most important data products for crop management, and medium-resolution multispectral 33 

satellite datasets (≥ 10-meter) have long aided in this objective, providing insights at coarse 34 

resolution over large areas (Bauer et al., 1978; Rudorff & Batista, 1991; Doraiswamy et al., 35 

2004; Bala & Islam, 2009; Liu et al., 2010; Salmon et al., 2015; Hunt et al., 2019; Sakamoto et 36 

al., 2020). However, airborne multispectral, airborne hyperspectral, and high-resolution satellite 37 

imagery have typically been favoured for PA because of a closer match to the scale of variation 38 

typically observed within fields.  39 

Medium-resolution multispectral satellite data has several advantages that make it attractive for 40 

use in PA. First, it is often free to the public, while the high-resolution or hyperspectral data can 41 
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be costly. Second, medium-resolution multispectral platforms (such as Landsat 8 or Sentinel-2) 42 

offer extra spectral bands, including Red Edge and Shortwave Infrared, which are useful in crop 43 

mapping and monitoring (Liu et al., 2004; Herrmann et al., 2010; Delegido et al., 2013; Braga 44 

et al., 2020). Lastly, data products from the medium-resolution multispectral satellites, especially 45 

those from space agencies such as NASA (National Aeronautics and Space Administration), 46 

JAXA (Japan Aerospace Exploration Agency), and ESA (European Space Agency), are already 47 

preprocessed to high-quality for time series analysis.  48 

To our knowledge, only Thenkabail (2003) and more recently Hunt et al. (2019), have attempted 49 

to use medium-resolution satellite imagery for monitoring within-field conditions. Thenkabail 50 

(2003) showed that Landsat Thematic Mapper images can be used to quantify between- and 51 

within-field variation in biophysical quantities (e.g., Leaf Area Index, biomass) of six crops, and 52 

classified quantities with an overall accuracy of 81%. They found a significant relationship 53 

between combine yield monitor data and Landsat-derived NDVI (R2 = 0.77). Hunt et al. (2019) 54 

produced high resolution wheat yield maps at 10-meter resolution using Sentinel-2 imagery in 55 

random forest regression models (RMSE of 0.61 tonnes/ha). Incorporating environmental 56 

datasets further improved predictions (RMSE of 0.66 tonnes/ha). Although Thenkabail (2003) 57 

and Hunt et al. (2019) have successfully demonstrated that medium-resolution satellite imagery 58 

can be used in mapping precision crop yield, there remains potential to improve mapping 59 

method, and to better capture within-field variation. In addition, as climate, crop type and its 60 

spectral response can vary greatly due to geographic location, more studies are still needed to 61 

demonstrate the performance and limitations of medium-resolution imagery in precision 62 

agriculture across a broad range of field conditions. 63 
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Our objective in this study is two-fold. First, we aim to demonstrate the capability of medium-64 

resolution multispectral satellite imagery, e.g. Sentinel-2, in mapping precision canola yield (dry 65 

seed mass in tonnes/ha). Second, we propose two yield mapping approaches that can be applied 66 

to any climate region and crop type. Because a single observation in time may not represent the 67 

best yield-spectra relationship, we propose two mapping methods that utilize the rich Sentinel-2 68 

time series images. Accuracy of the proposed approaches is assessed by mean-absolute-errors 69 

(MAE) and a visual comparison between actual and predicted yield maps. Our results show how 70 

medium-resolution satellite imagery can be used to predict within-field yield variability, and they 71 

have potential applications in variable-rate fertilization and the evaluation of within-field and 72 

whole-field profitability. In addition, because our proposed mapping approach depends only on 73 

the presence of a remote sensing time series, and on no other geographically-determined 74 

variables, there is potential to extend it to other areas and crop types. 75 

# 2. Data and methods 76 

## 2.1. Data 77 

### 2.1.1. Precision canola yield 78 

We used precision yield data from eight canola fields (CF) located in the County of Vermilion 79 

River, Alberta, Canada (relative locations are shown in order to protect the data owner’s privacy; 80 

Figure 1). Fields were seeded using three canola varieties (Liberty L234, L255, and Pioneer 81 

P501) in May of 2019, using standard seeding densities (~60 plants/m2). Fields were treated with 82 

pre-emergence herbicide, and 1-2 passes of post-emergence herbicide, depending on weed and 83 

stand establishment. From late August to October, fields were first swathed and then harvested 84 

using a Case IH 8230 combine with a 10.7 m header bar. Precision yield data was recorded in 85 

segments by the combine’s on-board yield monitor. Each segment is characterized by a starting 86 
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position of the combine (Figure 2b), width of the header bar (m), direction of travel (0-360° N), 87 

the length of a recorded segment (m), and the total dry mass of canola (tonnes). We used these 88 

attributes to construct harvested segments (polygons) within each field (Figure 2c), and 89 

rasterized the yield from all polygons using an area-weighted average yield (tonnes/ha) for each 90 

pixel of the Sentinel-2 images (Figure 2c,d). We only retained pixels that had at least 95% of 91 

their area covered by harvested polygons (Figure 2). 92 

 93 

Figure 1. Relative locations of canola fields (CF1-CF8) with precision yield data shown using a UTM-94 

based pseudo coordinate system (both axes are in meters). The fields for the three training scenarios 95 

(see Section 2.3.3) are separated by coloured lines. 96 
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 97 

Figure 2. Preparation of precision canola yield from raw yield monitor data at CF4: (a) a sample 98 

Sentinel-2 RGB image of the field, (b) starting positions of the harvested segments, (c) harvested 99 

segments that were constructed from recorded attributes, and (d) precision canola yield in raster. 100 

Axes are in a UTM-based pseudo-coordinate system (meter) 101 

### 2.1.2. Sentinel-2 images 102 

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The 103 

mission specification of the twin satellites is designed to give a high revisit frequency of 5 days 104 

at the Equator. Each satellite carries an optical instrument payload that samples 13 spectral 105 

bands: four bands at 10 m (including Red, Green, Blue and NIR), six bands at 20 m, and three 106 
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bands at 60 m spatial resolution. There are two Sentinel-2 products available for users: Level-1C 107 

(top-of atmosphere reflectance) and Level-2A (bottom-of-atmosphere reflectance). Both 108 

products are available in 100x100 km2 tiles and delivered free-of-charge through multiple 109 

sources, including the Google Earth Engine (GEE) platform. In this study, we used Level-1C 110 

product—the only product available for the study area through the GEE. 111 

We downloaded all top-of-atmosphere Sentinel-2 tiles between Apr-01-2019 and Oct-31-2019 112 

from GEE. A built-in cloud/snow mask was applied for each image to remove unreliable 113 

observations. In total, 67 Sentinel-2 images were available for the study area (Table 1). Among 114 

eleven spectral bands, only seven were used in the study, including three visible (B2-Red, B3-115 

Green, B4-Blue), two NIR (near infrared, B8 and B8A), and two SWIR (shortwave infrared, B11 116 

and B12) bands. After cloud/snow filtering, the remaining good observations in each band were 117 

stacked to create a time series dataset at each pixel. 118 

Table 1. Sentinel-2 images used in the study. 119 

 120 

Using the seven spectral bands, we also computed two spectral indices: normalized difference 121 

vegetation index (NDVI; Tucker, 1979; Huete et al., 1997) and normalized difference water 122 

index (NDWI; Gao, 1996). NDVI [(NIR - Red)/(NIR + Red)] is an indicator of the greenness of 123 
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the biomass (photosynthetic activity) while NDWI [(NIR - SWIR1)/(NIR + SWIR1)] is known 124 

to be strongly related to the plant water stress, making these two indices good proxies for plant 125 

health and productivity. 126 

A current trend in remote sensing is to utilize a time series dataset to explore the spectral 127 

signatures of studied objects, as a single snapshot image may not capture the best relationship 128 

between an object of interest and its corresponding spectral signature. In addition, observations 129 

were often not uniform within and across fields due to a limited swath width and cloud cover, 130 

making a single-image approach impractical. There are two common approaches for using time 131 

series: (1) generating statistical composites of spectral bands and indices (statistical features) 132 

over a given time window, (e.g., growing season) and (2) reconstructing the time series to 133 

retrieve gap-free dataset at every pixel. In this study, we assessed both approaches of exploiting 134 

time series images in mapping precision yield. 135 

#### Statistical features 136 

From the time series of seven spectral bands and two indices, we computed six sets of annual 137 

statistical features, including the Min, Max, Mean, and 10th, 50th, and 90th percentiles of each 138 

pixel. For each Sentinel-2 tile, 54 composites (9 data layers x 6 statistical features) were 139 

generated. 140 

#### Reconstructed NDVI and NDWI time series 141 

Since the masking process on GEE is not able to completely remove unreliable observations 142 

from Sentinel-2 images (Figure 3), we applied an additional filter (Appendix A) to further reduce 143 

noise in the NDVI time series. Masked data points in the NDVI time series were also removed 144 

from the NDWI time series. We then retrieved daily NDVI and NDWI values between Apr-01 145 
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and Oct-30 (day-of-year or doy: from 91 to 304) from the corrected time series by a simple linear 146 

interpolation (Figure 3). 147 

 148 

Figure 3. Reconstruction of NDVI time series at a sample location (pixel) of CF7. The additional filter 149 

was applied to further reduce noise in the GEE-retrieved (original) NDVI time series. Daily NDVI values 150 

(reconstructed NDVI) were obtained from the corrected time series by a simple linear interpolation. 151 

Note that additional filter cannot completely remove cloud-contaminated observations (e.g., at DOY 152 

280) but majority of large noises were successfully removed. 153 

## 2.2. Mapping precision canola yield 154 

We used two statistical approaches for modelling canola yield given a time series of remotely 155 

sensed images. First, we used statistical features of each pixel as inputs into a random forest 156 

regression (RFR; Breiman, 2001). RFR has been used widely in agricultural remote sensing to 157 

predict crop health and development using spectral information (Zhou et al., 2016; Liang et al., 158 

2018; Hunt et al., 2019; Sakamoto, 2020). Secondly, we used functional data analysis (FDA; 159 

Ramsay & Silverman, 2005) to predict the canola yield using the reconstructed NDVI/NDWI 160 
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time series, because it is more natural to think about plant growth as a continuous process (in a 161 

functional form of NDVI/NDWI time series) rather than sequence of individual observations. A 162 

specific type of FDA—functional linear regression (NDVI/NDWI time series) with scalar 163 

responses (canola yield)—was used in this study (Kokoszka & Reimherr, 2017). 164 

### 2.2.1. Random Forest Regression 165 

Random forest regression is an ensemble of randomized regression trees, each created with a 166 

random subset of training samples and features. The random forest predictor is then retrieved by 167 

averaging the results of all individual trees. Performance of RFR—prediction accuracy and 168 

computational time—can vary widely due to size of the sample dataset (sample_size) as well as 169 

the tuning of hyper-parameters (e.g., the number of regression trees: n_estimators, the number of 170 

features tested at each node: max_features, and the minimum number of samples required to split 171 

an internal node: min_sample_split). We experimented with different parameter settings, 172 

deciding on the following “optimal” settings (good balance between prediction accuracy and 173 

computation time) : n_estimators = 200, max_features = 54, min_sample_split = 20, sample_size 174 

= 50% of available pixels. We performed all random forest regression in Python using scikit-175 

learn library (Pedregosa et al., 2011). 176 

### 2.2.2. Functional Linear Regression 177 

A functional linear regression (FLR) models crop yield, y, as: 178 

𝑦 = 𝑓(𝑋, 𝛽) + 𝜀 = ∫𝑋(𝑡)𝛽(𝑡)𝑑𝑡 + 𝜀   (Model 1) 179 

where X is the value of a predictor variable at time t (NDVI and/or NDWI, in our case), while β 180 

is the instantaneous effect (slope) of that variable on y. One way of estimating β is to present the 181 

parameters (β) and the functional covariates (Xi) as a finite sum of pre-defined basis elements: 182 
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𝛽(𝑡) = ∑ 𝛽𝑘𝜃𝑘(𝑡) = 𝜃′𝑏𝑘 ; 𝑋𝑖(𝑡) = ∑ 𝑐𝑖,𝑘𝜓𝑘(𝑡)𝑘 = 𝐶𝛹. Replacing β and X of model 1 by their new 183 

forms results in model 2—a typical multiple linear regression. 184 

  𝑦 = 𝑓(𝑋, 𝛽) + 𝜀 = 𝐶𝛹𝜃′𝑏 + 𝜀 = 𝑍𝑏 + 𝜀 (Model 2) 185 

We performed the functional linear regression between precision canola yield and remote 186 

sensing time series in R using the fda.usc package (Febrero-Bande & Oviedo de la Fuente, 187 

2012). We tested different types of basis functions for both β and X, and FLR using a B-spline 188 

basis (order of 4 and 4 control points) returned the best yield prediction. 189 

### 2.2.3. Training-testing scenarios and accuracy assessment 190 

We divided the eight canola fields into training fields and testing fields (Figure 1), in order to test 191 

how well an empirical model from a given area performs in another area with no reference data. 192 

Three training-testing scenarios were examined (Figure 1, Table 3). In all scenarios, we 193 

intentionally left CF5 in the testing set, because this field displayed obvious patches of 194 

higher/lower canola yield that would be helpful in evaluating performance of our models. 195 

Table 2. Training-testing scenarios196 

 197 

Performance of both RFR and FLR in mapping precision canola yield was compared using 198 

Mean-absolute-errors (MAE) at scenario-level and through a visual inspection of yield maps and 199 

regression residual maps.  200 

# 3. Results 201 
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## 3.1. Descriptive statistics of precision canola yield 202 

Figure 4 shows the descriptive statistics for precision canola yield (tonnes/ha) measured at the 203 

field-level and scenario-level. There was substantial variation between fields (Figure 4a). The 204 

least productive field (CF3; median value of 2.138 tonnes/ha) had approximately 18% lower 205 

yield than the most productive field (CF5; median value of 2.592 tonnes/ha). Across the three 206 

scenarios, S3 showed the most similar yield distribution between the training and testing fields 207 

(Figure 4b), while in other two scenarios, the testing fields were clearly more productive than the 208 

training fields. This is especially so in S1 where the difference in median yield was 13.7%. 209 

 210 

Figure 4. Distribution of precision canola yield at the (a) field level and (b) scenario level. 211 

## 3.2. Qualitative visual analysis 212 

Visual inspection of CF5 over the growing season (planted: May-15-2019 and harvested: Sep-213 

24-2019; Figure 5a-h) revealed patches where canola productivity was lower (black boxes: L1, 214 

L2, L3) or higher (blue boxes: H1, H2) than other areas of the field. Soil conditions in the field 215 

are partly visible in the pre-planting image, where two patches appear darker than other parts 216 

(blue and black boxes; Figure 5a). Day 43 after the planting (Jun-28-2019), while most of CF5 217 

was still soil-coloured, two patches—one at the top (H1) and another in the middle of field 218 
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(H2)—showed a strong green signal (Figure 5b), while the small patch at the bottom-right corner 219 

(L1) is still shaded in dark soil colour. Two weeks after that (Jul-13-2019), while the canola has 220 

greened up on most of CF5, a few patches still appear greyish (Figure 5c). Although L1 did not 221 

appear clearly in Figure 5c because of cloud cover, it is still easy to see that canola did not grow 222 

well there. Low or high growth patches of CF5 remained on RGB images until after flowering 223 

(flowering: Jul-23-2019, early ripening Aug-02-2019), especially at L1. RGB images at the end 224 

of season did not show differences between low or high growth patches (Figure 5g,h). The 225 

spatial distribution of canola yield (Figure 5i) is clearly reflected in the RGB images (Figure 5a-226 

b), but we also observed a patch of lower yield at the bottom edge of the field (L4) that was not 227 

reflected in the visual inspection. 228 

NDVI and NDWI images over the growing season were also related to canola yield (Figure 6). 229 

Similarities between yield and NDVI/NWDI were clearly visible in early season images (Jun-28-230 

2019). While the pattern of low / high growth continued until very late in the canola season (Sep-231 

04-2019) in the NDVI images, we did not see strong correlation between yield and NDWI after 232 

Jul-13-2019, except at L1 and L3. L1 and L3 showed consistently lower values in NDVI and 233 

NDWI over the entire season. 234 
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 235 

Figure 5. Sentinel-2 RGB images over the growing season (a to h) and precision canola yield (i) of CF5. 236 

L1, L2, and L3 indicate low-yield patches, while H1 and H2 indicate high-yielding patches, 237 

demonstrating that spatial patterns in yield are sometimes visually discernible across a time series of 238 

true colour imagery. 239 
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 240 

Figure 6. Snapshots of NDVI and NDWI over the growing season at CF5. 241 

## 3.3. Predicted canola yield: Random Forest Regression vs. Functional Linear Regression 242 

RFR had better prediction accuracy in the training datasets but performed similarly to FLR on 243 

testing datasets (i.e., out-of-field prediction; Table 3). S3 had the lowest prediction error, but 244 

differences between S3 and the other two scenarios were minor. Although RFR clearly 245 

performed better for the training fields, predictions of FLR were slightly more accurate for all 246 

three scenarios, indicating that RFR was likely overfitting. Overall, the testing MAEs on the 247 

testing dataset ranged from 300 to 390 kg/ha, approximately 12.6% to 15.5% of the median yield 248 

in each scenario. FLR models using solely NDVI or NDWI time series were similar, but the 249 
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NDVI time series provided more spatial detail due to the finer resolution of NDVI images (Red 250 

and NIR: 10 m, SWIR1: 20 m). Using both NDVI and NDWI yielded the best predictions in 251 

scenarios S1 and S3. 252 

Table 3. Mean-absolute-errors of RFR and FLR. Both approaches performed similarly on the testing 253 

dataset with MAEs equivalent to 12%-16% of the median yields. 254 

 255 

The results from field CF5 are helpful for explaining our overall results. Figure 7 shows 256 

predicted canola yield maps of CF5 from both RFR and FLR for three scenarios using a heat 257 

map (low yield: Red → high yield: Yellow). All yield maps were able to predict areas with the 258 

lowest yield (L1 and L3). Spatial yield patterns in FLR maps, especially in S3, appear to match 259 

the yield data better than those from RFR as they successfully predicted higher yields in H1 and 260 

H2, and lower yields in L1 to L3. However, none of models were able to predict a patch of lower 261 

yield at the bottom of CF5 (L4). 262 
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Figure 8 shows the spatial distribution of residuals (predicted - actual) in field CF5, showing 263 

distinct areas of negative and positive residuals. Both FLR and RFR predictions overestimated 264 

the actual canola yield in the northern part of the field. Predictions in scenario S3 are less biased 265 

as we see a good balance between the blue-green and the yellow-red colours (Figures 8f, 8i). In 266 

all three scenarios, both RFR and FLR consistently overestimated yield in areas with low actual 267 

values (especially in L4) and underestimated yield in areas with high actual values. Histograms 268 

of residuals (Figure 8d-f, 8j-i) confirm that the predicted yield maps underestimated the actual 269 

canola yield for field CF5. Median yield residuals in scenarios S1 and S2 (-0.2256, -0.3392 and -270 

0.3406, -0.2140 tonnes/ha for FLR and RFR, respectively) were more positively biased than 271 

those in S3 (-0.0942 and -0.0101 tonnes/ha for FLR and RFR, respectively). 272 
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 273 

Figure 7. Spatial pattern of actual vs. predicted canola yield at CF5. L1-L4 (black boxes) indicate low-274 

yield patches, while H1 and H2 (blue boxes) indicate high-yield patches. Both NDVI and NDWI time 275 

series were used in FLR models. 276 
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 277 

Figure 8. Spatial distribution and histogram of residuals at CF5 (predicted - actual). Both NDVI and 278 

NDWI time series were used in FLR models. 279 
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## 3.4. Contribution of remote sensing features in canola yield mapping. 280 

We evaluated the contribution of remote sensing variables in both FLR (Table 4) and RFR 281 

(Table 5) for S3—the most accurate scenario. Those results help to explain findings in the 282 

previous section that patches of low or high growth were identifiable from early season NDVI 283 

images and were still distinguishable late in the season (around the end of the canola ripening 284 

stage). The early season NDWI image (Jul-13-2019) also showed a similar pattern with canola 285 

yield.  286 

Among the 5 components of the NDVI b-spline basis, #3 and #4 were the more significant and 287 

larger (in terms of absolute values) than the other three (Table 4), suggesting that satellite 288 

observations around the peaks of those components were most influential for prediction—day 289 

200 (flowering stage) for #3 and day 255 (early in the ripening stage) for #4 (Figure 9). Five 290 

components of NDWI were equally significant. In S3, the FLR model using NDVI performed 291 

better than the model using NDWI, meaning that FLR models picked up more information from 292 

the NDVI signal.  293 

We aggregated scores of strongly correlated statistical features: “min” and “10th percentile” into 294 

“low”, “mean” and “50th percentile” into “medium”, “max” and “90th percentile” into “high”. 295 

The RFR models showed that the peak NDVI value and the median NDWI value were the most 296 

important variables for predicting yield (Table 5). Peak NDVI is often observed in the later-297 

season pod-ripening stage. The second most important feature was “medium” value of NDWI, 298 

which was observed around the end of the stem-elongation stage at approximately Jul-16-2019. 299 

Table 4. Summary of FLR model using both NDVI and NDWI time series for S3 scenario. 300 
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 301 

 302 

Figure 9. b-spline basis with order of 4 (a) and NDVI slope as a function of time — β(t) (b) 303 

Table 5. Top 10 most important features of RFR model for S3. 304 

 305 
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# 4. Discussion 306 

It is worth noting that the eight canola fields cover a large area of approximately 360 hectares 307 

(36,137 pixels). However, canola growth dynamics and its corresponding spectral response still 308 

might not be fully captured in a few large and homogeneous training fields.   309 

At the field-scale, our predicted yields had MAEs ranging from 0.30 to 0.39 tonnes/ha, 310 

equivalent to 12.6%-15.5% of the median yields (Table 3). This result is promising for several 311 

reasons. First, we predicted precision yield at a medium spatial resolution (10 m). Secondly, even 312 

though our reference dataset was relatively small (only 8 canola fields), our method was still able 313 

to predict well. Lastly, no ancillary data, such as soil moisture, climatic conditions, crop variety, 314 

or agricultural practices, were integrated into any of our models. Those variables are commonly 315 

used inputs of crop yield mapping (e.g., Prasad et al., 2006; Jeong et al., 2016; Kern et al., 316 

2018). Nevertheless, our MAEs are in the same range as those reported in Mkhabela et al., 2011 317 

(0.08 – 0.4 tonnes/ha), which forecast regional canola yield in the Canadian Prairies based on a 318 

simple regression that used multiple-years of MODIS-derived NDVI to predict yield statistics.  319 

Our prediction accuracy could probably be improved slightly if the training and testing pixels 320 

were selected randomly from the data pool (the training data would contain pixels from all 321 

studied fields). However, our purpose in selecting training or testing datasets was not only to 322 

achieve the highest prediction accuracy but also to create a geographic gradient to test how well 323 

an empirical model from one area performed in another area without reference data.  324 

Our results showed that both RFR and FLR models performed the best in scenario S3 (Table 3). 325 

One possible reason for this was that the similarity in yield distribution between the training and 326 

testing datasets were highest for S3 (Figure 4b). A further examination of CF5 indicated that the 327 

models consistently underestimated canola yield of this field (Figure 8). This outcome is 328 
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reasonable because CF5 is the most productive field (Figure 4a) and the training dataset is likely 329 

not able to capture the complete yield dynamics of the field. In terms of spatial accuracy, we 330 

observed that both RFR and FLR maps successfully captured patches of low or high canola 331 

yields. However, residuals were not spatially homogeneous. Our predicted maps overestimated 332 

values in low-yield areas (L1-L4) and underestimated values in high-yield areas (H1, H2). This 333 

is likely caused by the noisy reference dataset. For example, operating the yield monitor without 334 

crop flowing through the combine will reduce the recorded yield. Additionally, yield monitors 335 

must be cleaned periodically, as debris can accumulate on the sensor surface, causing sensor drift 336 

over time (Producer-cooperator, pers. comm.). Our accuracy assessment focussed on CF5 337 

because this field presented a distinctive pattern of high and low yield patches. Our intention was 338 

to demonstrate that using moderate resolution satellite images, we can capture accurately within-339 

field variations of canola precision yield. 340 

Another aim of this study was to examine two different approaches to using time series data in 341 

yield mapping: statistical features (input to a Random Forest Regression) and functional data 342 

(input to a Functional Linear Regression). While RFR is a robust machine learning algorithm 343 

that is a built-in option on several cloud-computing platforms including Google Earth Engine, 344 

Functional Data Analysis has received relatively little attention in the remote sensing community 345 

(but see  Zhao et al., 2009; Yu et al., 2010; Acar-Denizli et al., 2018). Our results show that 346 

predictive performance of FLR is comparable to or better than RFR. 347 

We note that accuracy of RFR could be improved if we had used all available pixels in the 348 

training datasets. Importantly, this would have come at the cost of computational time. Because 349 

of our smaller dataset, it is difficult to make broad statements about the relative performance of 350 

RFR versus FLR. However, we are cautiously optimistic about the potential of FLR in remote 351 
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sensing (and precision agriculture), and it deserves more consideration for a few reasons. First, 352 

FLR was computationally much faster than RFR and resulted in similar inferences to the widely 353 

used linear regression model. This could permit much more rapid modelling of yield using the 354 

large data sets that will be necessary to capture geographic variation in the yields across broad 355 

geographic areas. Second, all remote sensing time series are functional datasets—data in a form 356 

of function—as they provide spectral responses of an object over time (i.e., are functions of 357 

time). Thus, FLR (and more generally FDA with a scalar response) are from first principles an 358 

ideal tool for the analysis of remote sensing data, because these models can integrate the spectral 359 

state of an object over time and relate this to a single response value. In our study, this response 360 

was the crop yield measured at a pixel, which is likely to be the product of plant health  361 

conditions that vary continuously throughout the growing season, and therefore have the 362 

potential to be captured by a function of the spectral state of that pixel over time. 363 

# 5. Conclusion 364 

Here we presented a simple method to predict precision crop yield using a Sentinel-2 time series 365 

and a reference dataset recorded by a Case IH combine yield monitor. We examined two 366 

methods of using time series images: using statistical features in a Random Forest Regression 367 

and analyzing the spectral time series in a Functional Linear Regression. Results from both 368 

modeling approaches indicated that we can predict precision canola yield quite accurately from 369 

space. Mean-absolute-errors of all scenarios range from 300 to 390 kg/ha, equivalent to 12.6%-370 

15.5% of the corresponding median values. The spatial distribution of crop yield within the field 371 

was also captured in predicted yield maps. Our study is among the first attempts to demonstrate 372 

the capability of the medium-resolution multispectral data in mapping precision crop yield. 373 

Predicted yield maps can likely be improved in future studies by using a larger reference dataset 374 
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or incorporating ancillary data such as soil moisture, climatic conditions, crop variety or 375 

agriculture practices, although this additional data collection burden might not be desirable when 376 

prediction across large geographic areas is the objective. Nonetheless, our findings underline that 377 

using medium-resolution multispectral satellite data in precision agriculture research and 378 

applications is promising. In this study, we also offer a way to leverage a rich dataset from 379 

combine harvester yield monitors to understand crop growth better at both field-level and 380 

regional-level. At the field-level, we can identify patches of low and high yields. This 381 

information is important for optimizing the productivity of farming operations, and could 382 

potentially be used in other applications, such as crop insurance adjustment. At a broader scale, 383 

precision yield maps can be created at the township or regional level to provide vital information 384 

for food security, agricultural management, and policymaking.  385 
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# Appendix 495 

A – NDVI time series filtering 496 

At any particular location (pixel), let X be a vector containing n values of days-of-year (DOYs) 497 

and Y be a vector containing n values of the GEE-retrieved NDVI observed at DOYs in X. 498 

Rule 1: If a large change in NDVI is detected within a searching window of 14 days, a pixel is 499 

considered as cloud contaminated. 500 

We define ∆Y—an n x n matrix containing distances between a particular Y value and all values 501 

in the Y vector (∆Yi = yi – Y with i indicates a value position in X, Y vectors and a row position 502 

in ∆Y). At a random position j, we split ∆Yj into two part: ∆Yj1 — distances between yj and Y 503 

values to the left of j (start → j), and ∆Yj2 — distances between yj and Y values to the right of j 504 

position in Y (j → end).  505 

If min(∆Yj1) < -0.1 & min(∆Yj2) < -0.1 & (min(∆Yj1) + min(∆Yj2)) < -0.3, we conclude that the 506 

NDVI observation at j is contaminated by cloud. 507 

Rule 2: If a very large change in NDVI is detected between three consecutive valid observations 508 

(no matter how far they are from each other in terms of DOY), a pixel is considered as cloud 509 

contaminated. 510 

Let x1, x2, x3 be three consecutive DOYs with GEE-filtered NDVI observations—y1, y2, y3.  511 

If (y1-y2) ≥ 0.15 & (y2-y3) ≤ -0.15 & (y1+y3) ≥ 0.35, we conclude that NDVI at x2 is 512 

contaminated by cloud. 513 


