References
Andrade, M. A., Choi, C. Y., Lansey, K., & Jung, D. (2016). Enhanced artificial neural networks estimating water quality constraints for the optimal water distribution systems design. Journal of Water Resources Planning and Management , 142 (9). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000663
Asher, M. ., Croke, B. F. ., Jakeman, A. ., & Peeters, L. J. . (2015). A review of surrogate models and their application to groundwater modeling. Water Resources Research . https://doi.org/10.1029/eo064i046p00929-04
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., … Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks.ArXiv , 1–40.
Baú, D. A., & Mayer, A. S. (2006). Stochastic management of pump-and-treat strategies using surrogate functions. Advances in Water Resources , 29 (12), 1901–1917. https://doi.org/10.1016/J.ADVWATRES.2006.01.008
Beeneken, T., Erbe, V., Messmer, A., Reder, C., Rohlfing, R., Scheer, M., Schumacher, B., Weilandt, M., Weyand, M., Erbe, V., Messmer, A., Reder, C., Rohlfing, R., & Scheer, M. (2013). Real time control ( RTC ) of urban drainage systems – A discussion of the additional efforts compared to conventionally operated systems . 9006 . https://doi.org/10.1080/1573062X.2013.790980
Beh, E. H. Y., Zheng, F., Dandy, G. C., Maier, H. R., & Kapelan, Z. (2017). Robust optimization of water infrastructure planning under deep uncertainty using metamodels. Environmental Modelling and Software , 93 , 92–105. https://doi.org/10.1016/j.envsoft.2017.03.013
Behzadian, K., Kapelan, Z., Savic, D., & Ardeshir, A. (2009). Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environmental Modelling and Software ,24 (4), 530–541. https://doi.org/10.1016/j.envsoft.2008.09.013
Belghaddar, Y., Chahinian, N., Seriai, A., Begdouri, A., Abdou, R., & Delenne, C. (2021). Graph convolutional networks: Application to database completion of wastewater networks. Water (Switzerland) ,13 (12), 1–19. https://doi.org/10.3390/w13121681
Berkhahn, S., Fuchs, L., & Neuweiler, I. (2019). An ensemble neural network model for real-time prediction of urban floods. Journal of Hydrology , 575 , 743–754. https://doi.org/10.1016/j.jhydrol.2019.05.066
Bermúdez, M., Ntegeka, V., Wolfs, V., & Willems, P. (2018). Development and Comparison of Two Fast Surrogate Models for Urban Pluvial Flood Simulations. Water Resources Management , 32 (8), 2801–2815. https://doi.org/10.1007/s11269-018-1959-8
Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M. F., & Eckersley, P. (2020).Explainable Machine Learning in Deployment . 648–657.
Bi, W., & Dandy, G. C. (2014). Optimization of water distribution systems using online retrained metamodels. Journal of Water Resources Planning and Management , 140 (11). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000419
Broad, D. R., Dandy, G. C., & Maier, H. R. (2005a). Water distribution system optimization using metamodels. Journal of Water Resources Planning and Management , 131 (3), 172–180. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(172)
Broad, D. R., Dandy, G. C., & Maier, H. R. (2005b). Water Distribution System Optimization Using Metamodels. Journal of Water Resources Planning and Management , 131 (3), 172–180. https://doi.org/10.1061/(asce)0733-9496(2005)131:3(172)
Broad, D. R., Dandy, G. C., & Maier, H. R. (2015). A systematic approach to determining metamodel scope for risk-based optimization and its application to water distribution system design. Environmental Modelling and Software , 69 , 382–395. https://doi.org/10.1016/j.envsoft.2014.11.015
Broad, D. R., Maier, H. R., & Dandy, G. C. (2010). Optimal Operation of Complex Water Distribution Systems Using Metamodels. Journal of Water Resources Planning and Management , 136 (4), 433–443. https://doi.org/10.1061/(asce)wr.1943-5452.0000052
Brown, R. R., Keath, N., & Wong, T. H. F. (2009). Urban water management in cities: historical, current and future regimes.Water Science and Technology , 59 (5), 847–855. https://doi.org/10.2166/wst.2009.029
Chiang, Y.-M., Chang, L.-C., Tsai, M.-J., Wang, Y.-F., & Chang, F.-J. (2010). Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. Hydrology and Earth System Sciences , 14 (7), 1309–1319. https://doi.org/10.5194/hess-14-1309-2010
DARPA. (2016). Perspective on AI . https://www.darpa.mil/about-us/darpa-perspective-on-ai
Dempsey, P., Eadon, A., & Morris, G. (1997). Simpol: A simplified urban pollution modelling tool. Water Science and Technology ,36 (8–9), 83–88. https://doi.org/10.1016/S0273-1223(97)00615-X
Deuerlein, J. W. (2008). Decomposition Model of a General Water Supply Network Graph . 134 (6), 822–832. https://doi.org/10.1061/(ASCE)0733-9429(2008)134
Dini, M., & Tabesh, M. (2017). Water distribution network quality model calibration: A case study-Ahar. Water Science and Technology: Water Supply , 17 (3), 759–770. https://doi.org/10.2166/ws.2016.166
Dini, M., & Tabesh, M. (2019). Optimal renovation planning of water distribution networks considering hydraulic and quality reliability indices. Urban Water Journal , 16 (4), 249–258. https://doi.org/10.1080/1573062X.2019.1669185
Doorn, N. (2021). Artificial intelligence in the water domain: Opportunities for responsible use. Science of the Total Environment , 755 , 142561. https://doi.org/10.1016/j.scitotenv.2020.142561
Dosilovic, F. K., Brcic, M., & Hlupic, N. (2018). Explainable artificial intelligence: A survey. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings , 210–215. https://doi.org/10.23919/MIPRO.2018.8400040
Du, S., Li, T., Yang, Y., & Horng, S. (2020). Neurocomputing Multivariate time series forecasting via attention-based encoder – decoder framework. Neurocomputing , 388 , 269–279. https://doi.org/10.1016/j.neucom.2019.12.118
Fernandez, G., Livermore, L., Park, C., Kim, N. H., & Haftka, R. (2017). Review of multi-fidelity models . March .
Fu, G., Kapelan, Z., Kasprzyk, J. R., & Reed, P. (2013). Optimal Design of Water Distribution Systems Using Many-Objective Visual Analytics.Journal of Water Resources Planning and Management ,139 (6), 624–633. https://doi.org/10.1061/(asce)wr.1943-5452.0000311
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2021). A Survey of Uncertainty in Deep Neural Networks . 1–41. http://arxiv.org/abs/2107.03342
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT Press.
Hadjimichael, A., Comas, J., & Corominas, L. (2016). Do machine learning methods used in data mining enhance the potential of decision support systems? A review for the urban water sector. AI Communications , 29 (6), 747–756. https://doi.org/10.3233/AIC-160714
Hang, I., Li, T., Fong, S., & Wong, R. K. (2020). Knowledge-Based Systems Predicting concentration levels of air pollutants by transfer learning and recurrent neural network ✩. Knowledge-Based Systems ,192 , 105622. https://doi.org/10.1016/j.knosys.2020.105622
Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management , 30 (5), 1685–1699. https://doi.org/10.1007/s11269-016-1245-6
Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S., & Klambauer, G. (2021). MC-LSTM: Mass-Conserving LSTM . http://arxiv.org/abs/2101.05186
Huang, C.-L., Hsu, N.-S., Wei, C.-C., & Luo, W.-J. (2015). Optimal spatial design of capacity and quantity of rainwater harvesting systems for urban flood mitigation. Water (Switzerland) , 7 (9), 5173–5202. https://doi.org/10.3390/w7095173
IPCC. (2021). IPCC: Climate Change 2021: The Physical Science Basis. InCambridge University Press. In Press.https://www.ipcc.ch/report/ar6/wg1/
IWA. (2021). Digital Water - Operational digital twins in the urban water sector: case studies .
Jia, Y., Zheng, F., Maier, H. R., Ostfeld, A., Creaco, E., Savic, D., Langeveld, J., & Kapelan, Z. (2021). Water quality modeling in sewer networks: Review and future research directions. Water Research ,202 (November 2020), 117419. https://doi.org/10.1016/j.watres.2021.117419
Kapelan, Z. S., Savic, D. A., & Walters, G. A. (2005). Multiobjective design of water distribution systems under uncertainty. Water Resources Research , 41 (11), 1–15. https://doi.org/10.1029/2004WR003787
Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling and Software ,42 , 55–71. https://doi.org/10.1016/j.envsoft.2012.12.007
Keogh, E., & Mueen, A. (2017). Curse of Dimensionality.Encyclopedia of Machine Learning and Data Mining , 314–315. https://doi.org/10.1007/978-1-4899-7687-1_192
Keum, H. J., Han, K. Y., & Kim, H. I. (2020). Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE Journal of Civil Engineering , 24 (9), 2835–2848. https://doi.org/10.1007/s12205-020-1677-7
Kim, H. I., & Han, K. Y. (2020). Urban flood prediction using deep neural network with data augmentation. Water (Switzerland) ,12 (3). https://doi.org/10.3390/w12030899
Kim, H. I., Keum, H. J., & Han, K. Y. (2019). Real-time urban inundation prediction combining hydraulic and probabilistic methods.Water (Switzerland) , 11 (2). https://doi.org/10.3390/w11020293
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal , regional , and local hydrological behaviors via machine learning applied to large-sample datasets . 5089–5110.
Kumar, A., Rizvi, S. A. A., Brooks, B., Vanderveld, A., Wilson, K. H., Kenney, C., Edelstein, S., Finch, A., Maxwell, A., Zuckerbraun, J., & Ghani, R. (2018). Using Machine Learning to Assess the Risk of and Prevent Water Main Breaks . 2657 , 1–9. https://doi.org/10.1145/nnnnnnn.nnnnnnn
Langeveld, J. G., Benedetti, L., Klein, J. J. M. De, Nopens, I., Amerlinck, Y., Nieuwenhuijzen, V., Flameling, T., Zanten, O. Van, Weijers, S., Benedetti, L., Klein, J. J. M. De, Nopens, I., & Amerlinck, Y. (2013). Impact-based integrated real-time control for improvement of the Dommel River water quality . 9006 . https://doi.org/10.1080/1573062X.2013.820332
Latifi, M., Rakhshandehroo, G., Nikoo, M. R., & Sadegh, M. (2019). A game theoretical low impact development optimization model for urban storm water management. Journal of Cleaner Production ,241 . https://doi.org/10.1016/j.jclepro.2019.118323
Liao, W., Bak-Jensen, B., Pillai, J. R., Wang, Y., & Wang, Y. (2021).A Review of Graph Neural Networks and Their Applications in Power Systems . 1–16. http://arxiv.org/abs/2101.10025
Lima, G. M., Brentan, B. M., Manzi, D., & Luvizotto, E. (2018). Metamodel for nodal pressure estimation at near real-time in water distribution systems using artificial neural networks. Journal of Hydroinformatics , 20 (2), 486–496. https://doi.org/10.2166/hydro.2017.036
Liu, X., Tian, S., Tao, F., & Yu, W. (2021). Review article A review of artificial neural networks in the constitutive modeling of composite materials. Composites Part B , 224 (May), 109152. https://doi.org/10.1016/j.compositesb.2021.109152
Loquercio, A., Segu, M., & Scaramuzza, D. (2020). A General Framework for Uncertainty Estimation in Deep Learning. IEEE Robotics and Automation Letters , 5 (2), 3153–3160. https://doi.org/10.1109/LRA.2020.2974682
Lund, N. S. V., Falk, A. K. V., Borup, M., Madsen, H., & Mikkelsen, P. S. (2018). Model predictive control of urban drainage systems : A review and perspective towards smart real-time water management.Critical Reviews in Environmental Science and Technology ,48 (3), 279–339. https://doi.org/10.1080/10643389.2018.1455484
Maier, H., & Dandy, G. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling and Software ,15 (1), 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9
Maier, H., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., Dandy, G. C., Gibbs, M. S., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D. P., Vrugt, J. A., Zecchin, A. C., Minsker, B. S., Barbour, E. J., Kuczera, G., Pasha, F., … Reed, P. M. (2014). Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions.Environmental Modelling and Software , 62 , 271–299. https://doi.org/10.1016/j.envsoft.2014.09.013
Martínez, F., Alonso, M., Herna, V., Rao, Z., & Alvisi, S. (2007).Optimizing the operation of the Valencia water- distribution network . 65–78. https://doi.org/10.2166/hydro.2006.018
Meijer, D., Bijnen, M. van, Langeveld, J., Korving, H., Post, J., & Clemens, F. (2018). Identifying critical elements in sewer networks using graph-theory. Water (Switzerland) , 10 (2). https://doi.org/10.3390/w10020136
Meijer, D., Post, J., van der Hoek, J. P., Korving, H., Langeveld, J., & Clemens, F. (2020). Identifying critical elements in drinking water distribution networks using graph theory. Structure and Infrastructure Engineering , 17 (3), 347–360. https://doi.org/10.1080/15732479.2020.1751664
Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto, E. (2017). Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks. Water Resources Management , 31 (13), 4339–4351. https://doi.org/10.1007/s11269-017-1750-2
Modesto De Souza, R. G., Melo Brentan, B., & Meirelles Lima, G. (2021).Optimal architecture for artificial neural networks as pressure estimator . 1–9.
Ng, J. Y., Asce, S. M., Fazlollahi, S., Ph, D., Galelli, S., & Asce, M. (2020). Do Design Storms Yield Robust Drainage Systems ? How Rainfall Duration , Intensity , and Profile Can Affect Drainage Performance . 146 (3), 1–13. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001167
Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online simplification of water distribution network models for optimal scheduling. Journal of Hydroinformatics , 15 (3), 652–665. https://doi.org/10.2166/HYDRO.2013.029
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. 30th International Conference on Machine Learning, ICML 2013 , PART 3 , 2347–2355.
Pasha, M. F. K., & Lansey, K. (2014). Strategies to develop warm solutions for real-time pump scheduling for water distribution systems.Water Resources Management , 28 (12), 3975–3987. https://doi.org/10.1007/s11269-014-0721-0
Paszke, A., Lerer, A., Killeen, T., Antiga, L., Yang, E., Gross, S., Bradbury, J., Massa, F., & Steiner, B. (2019). PyTorch : An Imperative Style , High-Performance Deep Learning Library .NeurIPS .
Pedersen, A. N., Pedersen, J. W., Vigueras-Rodriguez, A., Brink-Kjær, A., Borup, M., & Mikkelsen, P. S. (2021). The Bellinge data set: Open data and models for community-wide urban drainage systems research.Earth Syst. Sci. Data Discuss. , April , 1–28. https://doi.org/10.5194/essd-2021-8
Peng, G. C. Y., Alber, M., Buganza, A., William, T., Suvranu, R. C., Dura, D. S., Garikipati, K., Karniadakis, G., Lytton, W. W., Perdikaris, P., Petzold, L., & Kuhl, E. (2020). Multiscale Modeling Meets Machine Learning : What Can We Learn ? Archives of Computational Methods in Engineering , 0123456789 . https://doi.org/10.1007/s11831-020-09405-5
Prasad, T. D., & Park, N.-S. (2004). Multiobjective Genetic Algorithms for Design of Water Distribution Networks. Journal of Water Resources Planning and Management , 130 (1), 73–82. https://doi.org/10.1061/(asce)0733-9496(2004)130:1(73)
Raei, E., Reza Alizadeh, M., Reza Nikoo, M., & Adamowski, J. (2019). Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty.Journal of Hydrology , 579 . https://doi.org/10.1016/j.jhydrol.2019.124091
Rao, Z., & Alvarruiz, F. (2007). Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model . 15–24. https://doi.org/10.2166/hydro.2006.014
Rao, Z., & Salomons, E. (2007). Development of a real-time , near-optimal control process for water-distribution networks Zhengfu Rao and Elad Salomons . 25–37. https://doi.org/10.2166/hydro.2006.015
Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., … Maier, H. R. (2021). The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling and Software , 137 (December 2020). https://doi.org/10.1016/j.envsoft.2020.104954
Razavi, S., Tolson, B. A., & Burn, D. H. (2012a). Numerical assessment of metamodelling strategies in computationally intensive optimization.Environmental Modelling and Software , 34 , 67–86. https://doi.org/10.1016/j.envsoft.2011.09.010
Razavi, S., Tolson, B. A., & Burn, D. H. (2012b). Review of surrogate modeling in water resources. Water Resources Research ,48 (7). https://doi.org/10.1029/2011WR011527
Roscher, R., Bohn, B., Duarte, M., & Garcke, J. (2020). Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access , 8 , 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199
Rosin, T. R., Romano, M., Keedwell, E., & Kapelan, Z. (2021). A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows. Water Resources Management , 35 (4), 1273–1289. https://doi.org/10.1007/s11269-021-02780-z
Salomons, E., Goryashko, A., Shamir, U., Rao, Z., & Alvisi, S. (2007).Optimizing the operation of the Haifa-A water-distribution network . 51–64. https://doi.org/10.2166/hydro.2006.017
Sambito, M., Di Cristo, C., Freni, G., & Leopardi, A. (2020). Optimal water quality sensor positioning in urban drainage systems for illicit intrusion identification. Journal of Hydroinformatics ,22 (1), 46–60. https://doi.org/10.2166/hydro.2019.036
Sayers, W., Savic, D., & Kapelan, Z. (2019). Performance of LEMMO with artificial neural networks for water systems optimisation. Urban Water Journal , 16 (1), 21–32. https://doi.org/10.1080/1573062X.2019.1611886
Schultz, M. T., Small, M. J., Farrow, R. S., & Fischbeck, P. S. (2004). State Water Pollution Control Policy Insights from a Reduced-Form Model.Journal of Water Resources Planning and Management ,130 (2), 150–159. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(150)
Seyedashraf, O., Bottacin-Busolin, A., & Harou, J. J. (2021). A Disaggregation-Emulation Approach for Optimization of Large Urban Drainage Systems Water Resources Research . 2017 , 1–18. https://doi.org/10.1029/2020WR029098
Shamir, U., Asce, F., & Salomons, E. (2008). Optimal Real-Time Operation of Urban Water Distribution Systems Using Reduced Models.Journal of Water Resources Planning and Management ,134 (2), 181–185. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(181)
She, L., & You, X.-Y. (2019). A Dynamic Flow Forecast Model for Urban Drainage Using the Coupled Artificial Neural Network. Water Resources Management , 33 (9), 3143–3153. https://doi.org/10.1007/s11269-019-02294-9
Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research , 54 (11), 8558–8593. https://doi.org/10.1029/2018WR022643
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research ,104 (March), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Strubell, E., Ganesh, A., & McCallum, A. (2020). Energy and policy considerations for modern deep learning research. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence , 1 , 1393–13696. https://doi.org/10.1609/aaai.v34i09.7123
Sun, Y., Wang, Y., Fu, K., Wang, Z., Zhang, C., & Ye, J. (2020). Constructing geographic and long-term temporal graph for traffic forecasting. Proceedings - International Conference on Pattern Recognition , 3483–3490. https://doi.org/10.1109/ICPR48806.2021.9412506
Tscheikner-Gratl, F., Zeisl, P., Kinzel, C., Rauch, W., Kleidorfer, M., Leimgruber, J., & Ertl, T. (2016). Lost in calibration: Why people still do not calibrate their models, and why they still should - A case study from urban drainage modelling. Water Science and Technology , 74 (10), 2337–2348. https://doi.org/10.2166/wst.2016.395
Tsiami, L., & Makropoulos, C. (2021). Cyber—physical attack detection in water distribution systems with temporal graph convolutional neural networks. Water (Switzerland) , 13 (9). https://doi.org/10.3390/w13091247
Ulanicki, B., Zehnpfund, A., & Martinez, F. (1996).Simplification of Water Distribution Network Models .September . https://doi.org/10.13140/RG.2.1.4340.8404
UNESCO. (2020). United Nations World Water Development Report 2020: Water and Climate Change .
University of Kentucky. (2013). Water Distribution System Research Database, University of Kentucky . https://doi.org/https://doi.org/10.13023/kwrri.wdsrd.
van Bijnen, M., Korving, H., Langeveld, J., & Clemens, F. (2017). Calibration of hydrodynamic model-driven sewer maintenance.Structure and Infrastructure Engineering , 13 (9), 1167–1185. https://doi.org/10.1080/15732479.2016.1247287
Verma, S., & Zhang, Z.-L. (2019). Learning Universal Graph Neural Network Embeddings With Aid Of Transfer Learning .
Vogado, L. H. S., Veras, R. M. S., Araujo, F. H. D., Silva, R. R. V, & Aires, R. T. (2018). Engineering Applications of Artificial Intelligence Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Engineering Applications of Artificial Intelligence , 72 (October 2017), 415–422. https://doi.org/10.1016/j.engappai.2018.04.024
Vojinovic, Z., Kecman, V., & Babovic, V. (2003). Hybrid approach for modeling wet weather response in wastewater systems. Journal of Water Resources Planning and Management , 129 (6), 511–521. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(511)
Wang, Q., Guidolin, M., Savic, D., & Kapelan, Z. (2015). Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front.Journal of Water Resources Planning and Management ,141 (3), 04014060. https://doi.org/10.1061/(asce)wr.1943-5452.0000460
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. In Journal of Big Data . Springer International Publishing. https://doi.org/10.1186/s40537-016-0043-6
Wolfs, V., & Willems, P. (2017). Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations. Water Resources Management , 31 (1), 283–298. https://doi.org/10.1007/s11269-016-1524-2
Wong, E., & Kolter, J. Z. (2019). Learning perturbation sets for robust machine learning . 1–32. https://arxiv.org/pdf/2007.08450.pdf
Wu, L., Zulueta, K., Major, Z., Arriaga, A., & Noels, L. (2020). Bayesian inference of non-linear multiscale model parameters accelerated by a Deep Neural Network. Computer Methods in Applied Mechanics and Engineering , 360 , 112693. https://doi.org/10.1016/j.cma.2019.112693
Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). GNNExplainer: Generating explanations for graph neural networks.Advances in Neural Information Processing Systems ,32 (iii).
Yoon, S., Lee, Y.-J., & Jung, H.-J. (2020). Accelerated monte carlo analysis of flow-based system reliability through artificial neural network-based surrogate models. Smart Structures and Systems ,26 (2), 175–184. https://doi.org/10.12989/sss.2020.26.2.175
Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham, Y., Clark, J., & Perrault, R. (2021). 2021 AI Index Report . 1–222. https://aiindex.stanford.edu/report/
Zhang, W., Li, J., Chen, Y., & Li, Y. (2019). A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation.Water Resources Management , 33 (12), 4201–4214. https://doi.org/10.1007/s11269-019-02355-z
Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2018). Graph Neural Networks: A Review of Methods and Applications . 1–22.
Zhu, Y., & Zabaras, N. (2018). Bayesian deep convolutional encoder – decoder networks for surrogate modeling and uncertainty quantification.Journal of Computational Physics , 366 , 415–447. https://doi.org/10.1016/j.jcp.2018.04.018