References
Andrade, M. A., Choi, C. Y., Lansey, K., & Jung, D. (2016). Enhanced
artificial neural networks estimating water quality constraints for the
optimal water distribution systems design. Journal of Water
Resources Planning and Management , 142 (9).
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000663
Asher, M. ., Croke, B. F. ., Jakeman, A. ., & Peeters, L. J. . (2015).
A review of surrogate models and their application to groundwater
modeling. Water Resources Research .
https://doi.org/10.1029/eo064i046p00929-04
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A.,
Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A.,
Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G.,
Vaswani, A., Allen, K., Nash, C., Langston, V., … Pascanu, R.
(2018). Relational inductive biases, deep learning, and graph networks.ArXiv , 1–40.
Baú, D. A., & Mayer, A. S. (2006). Stochastic management of
pump-and-treat strategies using surrogate functions. Advances in
Water Resources , 29 (12), 1901–1917.
https://doi.org/10.1016/J.ADVWATRES.2006.01.008
Beeneken, T., Erbe, V., Messmer, A., Reder, C., Rohlfing, R., Scheer,
M., Schumacher, B., Weilandt, M., Weyand, M., Erbe, V., Messmer, A.,
Reder, C., Rohlfing, R., & Scheer, M. (2013). Real time control (
RTC ) of urban drainage systems – A discussion of the additional
efforts compared to conventionally operated systems . 9006 .
https://doi.org/10.1080/1573062X.2013.790980
Beh, E. H. Y., Zheng, F., Dandy, G. C., Maier, H. R., & Kapelan, Z.
(2017). Robust optimization of water infrastructure planning under deep
uncertainty using metamodels. Environmental Modelling and
Software , 93 , 92–105.
https://doi.org/10.1016/j.envsoft.2017.03.013
Behzadian, K., Kapelan, Z., Savic, D., & Ardeshir, A. (2009).
Stochastic sampling design using a multi-objective genetic algorithm and
adaptive neural networks. Environmental Modelling and Software ,24 (4), 530–541. https://doi.org/10.1016/j.envsoft.2008.09.013
Belghaddar, Y., Chahinian, N., Seriai, A., Begdouri, A., Abdou, R., &
Delenne, C. (2021). Graph convolutional networks: Application to
database completion of wastewater networks. Water (Switzerland) ,13 (12), 1–19. https://doi.org/10.3390/w13121681
Berkhahn, S., Fuchs, L., & Neuweiler, I. (2019). An ensemble neural
network model for real-time prediction of urban floods. Journal of
Hydrology , 575 , 743–754.
https://doi.org/10.1016/j.jhydrol.2019.05.066
Bermúdez, M., Ntegeka, V., Wolfs, V., & Willems, P. (2018). Development
and Comparison of Two Fast Surrogate Models for Urban Pluvial Flood
Simulations. Water Resources Management , 32 (8),
2801–2815. https://doi.org/10.1007/s11269-018-1959-8
Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh,
J., Puri, R., Moura, J. M. F., & Eckersley, P. (2020).Explainable Machine Learning in Deployment . 648–657.
Bi, W., & Dandy, G. C. (2014). Optimization of water distribution
systems using online retrained metamodels. Journal of Water
Resources Planning and Management , 140 (11).
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000419
Broad, D. R., Dandy, G. C., & Maier, H. R. (2005a). Water distribution
system optimization using metamodels. Journal of Water Resources
Planning and Management , 131 (3), 172–180.
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(172)
Broad, D. R., Dandy, G. C., & Maier, H. R. (2005b). Water Distribution
System Optimization Using Metamodels. Journal of Water Resources
Planning and Management , 131 (3), 172–180.
https://doi.org/10.1061/(asce)0733-9496(2005)131:3(172)
Broad, D. R., Dandy, G. C., & Maier, H. R. (2015). A systematic
approach to determining metamodel scope for risk-based optimization and
its application to water distribution system design. Environmental
Modelling and Software , 69 , 382–395.
https://doi.org/10.1016/j.envsoft.2014.11.015
Broad, D. R., Maier, H. R., & Dandy, G. C. (2010). Optimal Operation of
Complex Water Distribution Systems Using Metamodels. Journal of
Water Resources Planning and Management , 136 (4), 433–443.
https://doi.org/10.1061/(asce)wr.1943-5452.0000052
Brown, R. R., Keath, N., & Wong, T. H. F. (2009). Urban water
management in cities: historical, current and future regimes.Water Science and Technology , 59 (5), 847–855.
https://doi.org/10.2166/wst.2009.029
Chiang, Y.-M., Chang, L.-C., Tsai, M.-J., Wang, Y.-F., & Chang, F.-J.
(2010). Dynamic neural networks for real-time water level predictions of
sewerage systems-covering gauged and ungauged sites. Hydrology and
Earth System Sciences , 14 (7), 1309–1319.
https://doi.org/10.5194/hess-14-1309-2010
DARPA. (2016). Perspective on AI .
https://www.darpa.mil/about-us/darpa-perspective-on-ai
Dempsey, P., Eadon, A., & Morris, G. (1997). Simpol: A simplified urban
pollution modelling tool. Water Science and Technology ,36 (8–9), 83–88. https://doi.org/10.1016/S0273-1223(97)00615-X
Deuerlein, J. W. (2008). Decomposition Model of a General Water
Supply Network Graph . 134 (6), 822–832.
https://doi.org/10.1061/(ASCE)0733-9429(2008)134
Dini, M., & Tabesh, M. (2017). Water distribution network quality model
calibration: A case study-Ahar. Water Science and Technology:
Water Supply , 17 (3), 759–770.
https://doi.org/10.2166/ws.2016.166
Dini, M., & Tabesh, M. (2019). Optimal renovation planning of water
distribution networks considering hydraulic and quality reliability
indices. Urban Water Journal , 16 (4), 249–258.
https://doi.org/10.1080/1573062X.2019.1669185
Doorn, N. (2021). Artificial intelligence in the water domain:
Opportunities for responsible use. Science of the Total
Environment , 755 , 142561.
https://doi.org/10.1016/j.scitotenv.2020.142561
Dosilovic, F. K., Brcic, M., & Hlupic, N. (2018). Explainable
artificial intelligence: A survey. 2018 41st International
Convention on Information and Communication Technology, Electronics and
Microelectronics, MIPRO 2018 - Proceedings , 210–215.
https://doi.org/10.23919/MIPRO.2018.8400040
Du, S., Li, T., Yang, Y., & Horng, S. (2020). Neurocomputing
Multivariate time series forecasting via attention-based encoder –
decoder framework. Neurocomputing , 388 , 269–279.
https://doi.org/10.1016/j.neucom.2019.12.118
Fernandez, G., Livermore, L., Park, C., Kim, N. H., & Haftka, R.
(2017). Review of multi-fidelity models . March .
Fu, G., Kapelan, Z., Kasprzyk, J. R., & Reed, P. (2013). Optimal Design
of Water Distribution Systems Using Many-Objective Visual Analytics.Journal of Water Resources Planning and Management ,139 (6), 624–633.
https://doi.org/10.1061/(asce)wr.1943-5452.0000311
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J.,
Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W.,
Bamler, R., & Zhu, X. X. (2021). A Survey of Uncertainty in Deep
Neural Networks . 1–41. http://arxiv.org/abs/2107.03342
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning . MIT Press.
Hadjimichael, A., Comas, J., & Corominas, L. (2016). Do machine
learning methods used in data mining enhance the potential of decision
support systems? A review for the urban water sector. AI
Communications , 29 (6), 747–756.
https://doi.org/10.3233/AIC-160714
Hang, I., Li, T., Fong, S., & Wong, R. K. (2020). Knowledge-Based
Systems Predicting concentration levels of air pollutants by transfer
learning and recurrent neural network ✩. Knowledge-Based Systems ,192 , 105622. https://doi.org/10.1016/j.knosys.2020.105622
Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic
Framework for Assessing the Resilience of Sectorised Water Distribution
Networks. Water Resources Management , 30 (5), 1685–1699.
https://doi.org/10.1007/s11269-016-1245-6
Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M.,
Nearing, G., Hochreiter, S., & Klambauer, G. (2021). MC-LSTM:
Mass-Conserving LSTM . http://arxiv.org/abs/2101.05186
Huang, C.-L., Hsu, N.-S., Wei, C.-C., & Luo, W.-J. (2015). Optimal
spatial design of capacity and quantity of rainwater harvesting systems
for urban flood mitigation. Water (Switzerland) , 7 (9),
5173–5202. https://doi.org/10.3390/w7095173
IPCC. (2021). IPCC: Climate Change 2021: The Physical Science Basis. InCambridge University Press. In Press.https://www.ipcc.ch/report/ar6/wg1/
IWA. (2021). Digital Water - Operational digital twins in the
urban water sector: case studies .
Jia, Y., Zheng, F., Maier, H. R., Ostfeld, A., Creaco, E., Savic, D.,
Langeveld, J., & Kapelan, Z. (2021). Water quality modeling in sewer
networks: Review and future research directions. Water Research ,202 (November 2020), 117419.
https://doi.org/10.1016/j.watres.2021.117419
Kapelan, Z. S., Savic, D. A., & Walters, G. A. (2005). Multiobjective
design of water distribution systems under uncertainty. Water
Resources Research , 41 (11), 1–15.
https://doi.org/10.1029/2004WR003787
Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013).
Many objective robust decision making for complex environmental systems
undergoing change. Environmental Modelling and Software ,42 , 55–71. https://doi.org/10.1016/j.envsoft.2012.12.007
Keogh, E., & Mueen, A. (2017). Curse of Dimensionality.Encyclopedia of Machine Learning and Data Mining , 314–315.
https://doi.org/10.1007/978-1-4899-7687-1_192
Keum, H. J., Han, K. Y., & Kim, H. I. (2020). Real-Time Flood Disaster
Prediction System by Applying Machine Learning Technique. KSCE
Journal of Civil Engineering , 24 (9), 2835–2848.
https://doi.org/10.1007/s12205-020-1677-7
Kim, H. I., & Han, K. Y. (2020). Urban flood prediction using deep
neural network with data augmentation. Water (Switzerland) ,12 (3). https://doi.org/10.3390/w12030899
Kim, H. I., Keum, H. J., & Han, K. Y. (2019). Real-time urban
inundation prediction combining hydraulic and probabilistic methods.Water (Switzerland) , 11 (2).
https://doi.org/10.3390/w11020293
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., &
Nearing, G. (2019). Towards learning universal , regional , and
local hydrological behaviors via machine learning applied to
large-sample datasets . 5089–5110.
Kumar, A., Rizvi, S. A. A., Brooks, B., Vanderveld, A., Wilson, K. H.,
Kenney, C., Edelstein, S., Finch, A., Maxwell, A., Zuckerbraun, J., &
Ghani, R. (2018). Using Machine Learning to Assess the Risk of and
Prevent Water Main Breaks . 2657 , 1–9.
https://doi.org/10.1145/nnnnnnn.nnnnnnn
Langeveld, J. G., Benedetti, L., Klein, J. J. M. De, Nopens, I.,
Amerlinck, Y., Nieuwenhuijzen, V., Flameling, T., Zanten, O. Van,
Weijers, S., Benedetti, L., Klein, J. J. M. De, Nopens, I., &
Amerlinck, Y. (2013). Impact-based integrated real-time control
for improvement of the Dommel River water quality . 9006 .
https://doi.org/10.1080/1573062X.2013.820332
Latifi, M., Rakhshandehroo, G., Nikoo, M. R., & Sadegh, M. (2019). A
game theoretical low impact development optimization model for urban
storm water management. Journal of Cleaner Production ,241 . https://doi.org/10.1016/j.jclepro.2019.118323
Liao, W., Bak-Jensen, B., Pillai, J. R., Wang, Y., & Wang, Y. (2021).A Review of Graph Neural Networks and Their Applications in Power
Systems . 1–16. http://arxiv.org/abs/2101.10025
Lima, G. M., Brentan, B. M., Manzi, D., & Luvizotto, E. (2018).
Metamodel for nodal pressure estimation at near real-time in water
distribution systems using artificial neural networks. Journal of
Hydroinformatics , 20 (2), 486–496.
https://doi.org/10.2166/hydro.2017.036
Liu, X., Tian, S., Tao, F., & Yu, W. (2021). Review article A review of
artificial neural networks in the constitutive modeling of composite
materials. Composites Part B , 224 (May), 109152.
https://doi.org/10.1016/j.compositesb.2021.109152
Loquercio, A., Segu, M., & Scaramuzza, D. (2020). A General Framework
for Uncertainty Estimation in Deep Learning. IEEE Robotics and
Automation Letters , 5 (2), 3153–3160.
https://doi.org/10.1109/LRA.2020.2974682
Lund, N. S. V., Falk, A. K. V., Borup, M., Madsen, H., & Mikkelsen, P.
S. (2018). Model predictive control of urban drainage systems : A
review and perspective towards smart real-time water management.Critical Reviews in Environmental Science and Technology ,48 (3), 279–339. https://doi.org/10.1080/10643389.2018.1455484
Maier, H., & Dandy, G. (2000). Neural networks for the prediction and
forecasting of water resources variables: A review of modelling issues
and applications. Environmental Modelling and Software ,15 (1), 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9
Maier, H., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha,
M. C., Dandy, G. C., Gibbs, M. S., Keedwell, E., Marchi, A., Ostfeld,
A., Savic, D., Solomatine, D. P., Vrugt, J. A., Zecchin, A. C., Minsker,
B. S., Barbour, E. J., Kuczera, G., Pasha, F., … Reed, P. M.
(2014). Evolutionary algorithms and other metaheuristics in water
resources: Current status, research challenges and future directions.Environmental Modelling and Software , 62 , 271–299.
https://doi.org/10.1016/j.envsoft.2014.09.013
Martínez, F., Alonso, M., Herna, V., Rao, Z., & Alvisi, S. (2007).Optimizing the operation of the Valencia water- distribution
network . 65–78. https://doi.org/10.2166/hydro.2006.018
Meijer, D., Bijnen, M. van, Langeveld, J., Korving, H., Post, J., &
Clemens, F. (2018). Identifying critical elements in sewer networks
using graph-theory. Water (Switzerland) , 10 (2).
https://doi.org/10.3390/w10020136
Meijer, D., Post, J., van der Hoek, J. P., Korving, H., Langeveld, J.,
& Clemens, F. (2020). Identifying critical elements in drinking water
distribution networks using graph theory. Structure and
Infrastructure Engineering , 17 (3), 347–360.
https://doi.org/10.1080/15732479.2020.1751664
Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto, E.
(2017). Calibration Model for Water Distribution Network Using Pressures
Estimated by Artificial Neural Networks. Water Resources
Management , 31 (13), 4339–4351.
https://doi.org/10.1007/s11269-017-1750-2
Modesto De Souza, R. G., Melo Brentan, B., & Meirelles Lima, G. (2021).Optimal architecture for artificial neural networks as pressure
estimator . 1–9.
Ng, J. Y., Asce, S. M., Fazlollahi, S., Ph, D., Galelli, S., & Asce, M.
(2020). Do Design Storms Yield Robust Drainage Systems ? How
Rainfall Duration , Intensity , and Profile Can Affect Drainage
Performance . 146 (3), 1–13.
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001167
Paluszczyszyn, D., Skworcow, P., & Ulanicki, B. (2013). Online
simplification of water distribution network models for optimal
scheduling. Journal of Hydroinformatics , 15 (3), 652–665.
https://doi.org/10.2166/HYDRO.2013.029
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of
training recurrent neural networks. 30th International Conference
on Machine Learning, ICML 2013 , PART 3 , 2347–2355.
Pasha, M. F. K., & Lansey, K. (2014). Strategies to develop warm
solutions for real-time pump scheduling for water distribution systems.Water Resources Management , 28 (12), 3975–3987.
https://doi.org/10.1007/s11269-014-0721-0
Paszke, A., Lerer, A., Killeen, T., Antiga, L., Yang, E., Gross, S.,
Bradbury, J., Massa, F., & Steiner, B. (2019). PyTorch : An
Imperative Style , High-Performance Deep Learning Library .NeurIPS .
Pedersen, A. N., Pedersen, J. W., Vigueras-Rodriguez, A., Brink-Kjær,
A., Borup, M., & Mikkelsen, P. S. (2021). The Bellinge data set: Open
data and models for community-wide urban drainage systems research.Earth Syst. Sci. Data Discuss. , April , 1–28.
https://doi.org/10.5194/essd-2021-8
Peng, G. C. Y., Alber, M., Buganza, A., William, T., Suvranu, R. C.,
Dura, D. S., Garikipati, K., Karniadakis, G., Lytton, W. W., Perdikaris,
P., Petzold, L., & Kuhl, E. (2020). Multiscale Modeling Meets Machine
Learning : What Can We Learn ? Archives of Computational Methods
in Engineering , 0123456789 .
https://doi.org/10.1007/s11831-020-09405-5
Prasad, T. D., & Park, N.-S. (2004). Multiobjective Genetic Algorithms
for Design of Water Distribution Networks. Journal of Water
Resources Planning and Management , 130 (1), 73–82.
https://doi.org/10.1061/(asce)0733-9496(2004)130:1(73)
Raei, E., Reza Alizadeh, M., Reza Nikoo, M., & Adamowski, J. (2019).
Multi-objective decision-making for green infrastructure planning
(LID-BMPs) in urban storm water management under uncertainty.Journal of Hydrology , 579 .
https://doi.org/10.1016/j.jhydrol.2019.124091
Rao, Z., & Alvarruiz, F. (2007). Use of an artificial neural
network to capture the domain knowledge of a conventional hydraulic
simulation model . 15–24. https://doi.org/10.2166/hydro.2006.014
Rao, Z., & Salomons, E. (2007). Development of a real-time ,
near-optimal control process for water-distribution networks Zhengfu Rao
and Elad Salomons . 25–37. https://doi.org/10.2166/hydro.2006.015
Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo,
E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S.,
Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G.,
Chabridon, V., Duan, Q., Sun, X., … Maier, H. R. (2021). The
Future of Sensitivity Analysis: An essential discipline for systems
modeling and policy support. Environmental Modelling and
Software , 137 (December 2020).
https://doi.org/10.1016/j.envsoft.2020.104954
Razavi, S., Tolson, B. A., & Burn, D. H. (2012a). Numerical assessment
of metamodelling strategies in computationally intensive optimization.Environmental Modelling and Software , 34 , 67–86.
https://doi.org/10.1016/j.envsoft.2011.09.010
Razavi, S., Tolson, B. A., & Burn, D. H. (2012b). Review of surrogate
modeling in water resources. Water Resources Research ,48 (7). https://doi.org/10.1029/2011WR011527
Roscher, R., Bohn, B., Duarte, M., & Garcke, J. (2020). Explainable
Machine Learning for Scientific Insights and Discoveries. IEEE
Access , 8 , 42200–42216.
https://doi.org/10.1109/ACCESS.2020.2976199
Rosin, T. R., Romano, M., Keedwell, E., & Kapelan, Z. (2021). A
Committee Evolutionary Neural Network for the Prediction of Combined
Sewer Overflows. Water Resources Management , 35 (4),
1273–1289. https://doi.org/10.1007/s11269-021-02780-z
Salomons, E., Goryashko, A., Shamir, U., Rao, Z., & Alvisi, S. (2007).Optimizing the operation of the Haifa-A water-distribution
network . 51–64. https://doi.org/10.2166/hydro.2006.017
Sambito, M., Di Cristo, C., Freni, G., & Leopardi, A. (2020). Optimal
water quality sensor positioning in urban drainage systems for illicit
intrusion identification. Journal of Hydroinformatics ,22 (1), 46–60. https://doi.org/10.2166/hydro.2019.036
Sayers, W., Savic, D., & Kapelan, Z. (2019). Performance of LEMMO with
artificial neural networks for water systems optimisation. Urban
Water Journal , 16 (1), 21–32.
https://doi.org/10.1080/1573062X.2019.1611886
Schultz, M. T., Small, M. J., Farrow, R. S., & Fischbeck, P. S. (2004).
State Water Pollution Control Policy Insights from a Reduced-Form Model.Journal of Water Resources Planning and Management ,130 (2), 150–159.
https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(150)
Seyedashraf, O., Bottacin-Busolin, A., & Harou, J. J. (2021). A
Disaggregation-Emulation Approach for Optimization of Large Urban
Drainage Systems Water Resources Research . 2017 , 1–18.
https://doi.org/10.1029/2020WR029098
Shamir, U., Asce, F., & Salomons, E. (2008). Optimal Real-Time
Operation of Urban Water Distribution Systems Using Reduced Models.Journal of Water Resources Planning and Management ,134 (2), 181–185.
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(181)
She, L., & You, X.-Y. (2019). A Dynamic Flow Forecast Model for Urban
Drainage Using the Coupled Artificial Neural Network. Water
Resources Management , 33 (9), 3143–3153.
https://doi.org/10.1007/s11269-019-02294-9
Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research
and Its Relevance for Water Resources Scientists. Water Resources
Research , 54 (11), 8558–8593.
https://doi.org/10.1029/2018WR022643
Snyder, H. (2019). Literature review as a research methodology: An
overview and guidelines. Journal of Business Research ,104 (March), 333–339.
https://doi.org/10.1016/j.jbusres.2019.07.039
Strubell, E., Ganesh, A., & McCallum, A. (2020). Energy and policy
considerations for modern deep learning research. AAAI 2020 - 34th
AAAI Conference on Artificial Intelligence , 1 , 1393–13696.
https://doi.org/10.1609/aaai.v34i09.7123
Sun, Y., Wang, Y., Fu, K., Wang, Z., Zhang, C., & Ye, J. (2020).
Constructing geographic and long-term temporal graph for traffic
forecasting. Proceedings - International Conference on Pattern
Recognition , 3483–3490. https://doi.org/10.1109/ICPR48806.2021.9412506
Tscheikner-Gratl, F., Zeisl, P., Kinzel, C., Rauch, W., Kleidorfer, M.,
Leimgruber, J., & Ertl, T. (2016). Lost in calibration: Why people
still do not calibrate their models, and why they still should - A case
study from urban drainage modelling. Water Science and
Technology , 74 (10), 2337–2348.
https://doi.org/10.2166/wst.2016.395
Tsiami, L., & Makropoulos, C. (2021). Cyber—physical attack detection
in water distribution systems with temporal graph convolutional neural
networks. Water (Switzerland) , 13 (9).
https://doi.org/10.3390/w13091247
Ulanicki, B., Zehnpfund, A., & Martinez, F. (1996).Simplification of Water Distribution Network Models .September . https://doi.org/10.13140/RG.2.1.4340.8404
UNESCO. (2020). United Nations World Water Development Report
2020: Water and Climate Change .
University of Kentucky. (2013). Water Distribution System Research
Database, University of Kentucky .
https://doi.org/https://doi.org/10.13023/kwrri.wdsrd.
van Bijnen, M., Korving, H., Langeveld, J., & Clemens, F. (2017).
Calibration of hydrodynamic model-driven sewer maintenance.Structure and Infrastructure Engineering , 13 (9),
1167–1185. https://doi.org/10.1080/15732479.2016.1247287
Verma, S., & Zhang, Z.-L. (2019). Learning Universal Graph Neural
Network Embeddings With Aid Of Transfer Learning .
Vogado, L. H. S., Veras, R. M. S., Araujo, F. H. D., Silva, R. R. V, &
Aires, R. T. (2018). Engineering Applications of Artificial Intelligence
Leukemia diagnosis in blood slides using transfer learning in CNNs and
SVM for classification. Engineering Applications of Artificial
Intelligence , 72 (October 2017), 415–422.
https://doi.org/10.1016/j.engappai.2018.04.024
Vojinovic, Z., Kecman, V., & Babovic, V. (2003). Hybrid approach for
modeling wet weather response in wastewater systems. Journal of
Water Resources Planning and Management , 129 (6), 511–521.
https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(511)
Wang, Q., Guidolin, M., Savic, D., & Kapelan, Z. (2015). Two-Objective
Design of Benchmark Problems of a Water Distribution System via MOEAs:
Towards the Best-Known Approximation of the True Pareto Front.Journal of Water Resources Planning and Management ,141 (3), 04014060.
https://doi.org/10.1061/(asce)wr.1943-5452.0000460
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer
learning. In Journal of Big Data . Springer International
Publishing. https://doi.org/10.1186/s40537-016-0043-6
Wolfs, V., & Willems, P. (2017). Modular Conceptual Modelling Approach
and Software for Sewer Hydraulic Computations. Water Resources
Management , 31 (1), 283–298.
https://doi.org/10.1007/s11269-016-1524-2
Wong, E., & Kolter, J. Z. (2019). Learning perturbation sets for
robust machine learning . 1–32. https://arxiv.org/pdf/2007.08450.pdf
Wu, L., Zulueta, K., Major, Z., Arriaga, A., & Noels, L. (2020).
Bayesian inference of non-linear multiscale model parameters accelerated
by a Deep Neural Network. Computer Methods in Applied Mechanics
and Engineering , 360 , 112693.
https://doi.org/10.1016/j.cma.2019.112693
Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019).
GNNExplainer: Generating explanations for graph neural networks.Advances in Neural Information Processing Systems ,32 (iii).
Yoon, S., Lee, Y.-J., & Jung, H.-J. (2020). Accelerated monte carlo
analysis of flow-based system reliability through artificial neural
network-based surrogate models. Smart Structures and Systems ,26 (2), 175–184. https://doi.org/10.12989/sss.2020.26.2.175
Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D.,
Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham,
Y., Clark, J., & Perrault, R. (2021). 2021 AI Index Report .
1–222. https://aiindex.stanford.edu/report/
Zhang, W., Li, J., Chen, Y., & Li, Y. (2019). A Surrogate-Based
Optimization Design and Uncertainty Analysis for Urban Flood Mitigation.Water Resources Management , 33 (12), 4201–4214.
https://doi.org/10.1007/s11269-019-02355-z
Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., &
Sun, M. (2018). Graph Neural Networks: A Review of Methods and
Applications . 1–22.
Zhu, Y., & Zabaras, N. (2018). Bayesian deep convolutional encoder –
decoder networks for surrogate modeling and uncertainty quantification.Journal of Computational Physics , 366 , 415–447.
https://doi.org/10.1016/j.jcp.2018.04.018