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Key Points:

• Machine Learning surrogate models have been widely employed for a va-
riety of applications concerning urban water networks.

• New research should focus on machine learning metamodels that account
for inductive biases, robustness, and transferability.

• Further research should focus on complex problems involving uncertainty
and multi-objective optimisation, as well as improved benchmarking.

Abstract

Surrogate models replace computationally expensive simulations of physically-
based models to obtain accurate results at a fraction of the time. These surro-
gate models, also known as metamodels, have been employed for analysis, con-
trol, and optimisation of water distribution and urban drainage systems. With
the advent of machine learning (ML), water engineers have increasingly resorted
to these data-driven techniques to develop metamodels of urban water networks.
In this manuscript, we review 31 recent papers on ML-based metamodeling of ur-
ban water networks to outline the state-of-the-art of the field, identify outstand-
ing gaps, and propose future research directions. For each paper, we critically
examined the purpose of the metamodel, the metamodel characteristics, and the
applied case study. The review shows that current metamodels suffer several
drawbacks, including i) the curse of dimensionality, hindering implementation
for large case studies; ii) black-box deterministic nature, limiting explainability
and applicability; and iii) rigid architecture, preventing generalization across
multiple case studies. We argue that researchers should tackle these issues by
resorting to recent advancements in ML concerning inductive biases, robustness,
and transferability. The recently developed Graph Neural Network architecture,
which extends deep learning methods to graph data structures, is a preferred
candidate for advancing surrogate modelling in urban water networks. Further-
more, we foresee increasing efforts for complex applications where metamodels
may play a fundamental role, such as uncertainty analysis and multi-objective
optimisation. Lastly, the development and comparison of ML-based metamodel
can benefit from the availability of new benchmark datasets for urban drainage
systems and realistic complex networks.

Plain Language Summary
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Analysis and improvement of urban water networks requires hydrodynamic mod-
els. Since these models are computationally expensive, researchers and engineers
often resort to fast alternatives known as surrogate models. With the rise of
artificial intelligence, machine learning methods have been increasingly used for
surrogate modelling of urban water networks. In this study, we thoroughly
reviewed recent papers on the field to outline the current state-of-the-art and
propose future research directions. While many successful applications already
exist, we found that these models have three main limiting factors: i) they need
large amounts of data, ii) they are not explainable, and iii) they are too spe-
cific to each case. We argue that researchers can overcome these limitations by
considering recent advancements in artificial intelligence and implement model-
ing techniques that better leverage the structure of the underlying data. Other
promising direction include developing comprehensive benchmark databases and
leveraging surrogate models for more complex applications.

1 Introduction

Urban water networks (UWNs) comprise drinking water distribution and urban
drainage systems (WDS and UDS). The former are responsible for supplying
drinking water to cities and the latter for evacuating wastewater and stormwa-
ter runoff. These infrastructures are a fundamental part of the city and are
directly linked to its development (Brown et al., 2009). Each of these systems
faces challenges to improve and maintain quality service in a dynamic urban
environment under a widening range of climatic conditions; especially, in a
climate-changing situation. Designing, optimising, and intervening in these sys-
tems requires approximating their hydraulic behaviour. Several models have
been developed in the past years for simulating UWNs. Traditional modelling
approaches are either based on accurate description of the physical processes or
rely on simplified conceptual approaches; nonetheless, the former usually entail
computationally expensive calculations while the latter lack fidelity. Applica-
tions such as optimisation, real-time modelling, and uncertainty analysis need
an efficient model for evaluating the performance of a system multiple times
or as fast as possible. Consequently, they require short execution times while
maintaining a sufficient level of detail.

1.1 Surrogate modelling

Water modellers have resorted to surrogate models (SMs) to replace compu-
tationally costly models. Following the classification given by Razavi et al.
(2012b), SMs, also known as metamodels or reduced-order models, can be catego-
rized as Lower-fidelity Physically-based surrogates (LFPB) or response surface
(RS) surrogates. On one hand, LFPB metamodels modify the original model
to reduce its computational effort. These models simplify the original model by
lowering the resolution (e.g., larger time-steps) of the output or replacing com-
putationally costly components with faster alternatives or complements (e.g.,
kriging, linear regression, neural networks (Fernandez et al., 2017)). On the
other hand, RS surrogates avoid using the original model and replace it alto-
gether with a faster-to-run alternative. In this branch of SMs, the original model
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is perceived as an input-output function and the metamodel is used to mimic
the output surface as best as possible. Some of the algorithms for approximat-
ing response surfaces are polynomial interpolation, kriging, and more recently,
machine learning (ML) algorithms. The following paragraphs summarize the ad-
vantages and disadvantages of LFPB and RS metamodels according to Razavi
et al. (2012b).

Lower-fidelity Physically-based surrogates (LFPB), also known as multifidelity
based surrogates or “coarse” models, include techniques such as network simpli-
fication (Dempsey et al., 1997; Paluszczyszyn et al., 2013; Ulanicki et al., 1996),
and skeletonization (Shamir et al., 2008). Compared against RS metamodels,
LFPB surrogates are expected to better emulate the unexplored regions of the
explanatory variable (input) space (i.e., regions far from the previously evalu-
ated points with the high-fidelity model) and, as such, perform more reliably
in extrapolation. As for their drawbacks, LFPB models rely on the assumption
that high-fidelity and low-fidelity models share the basic features and are corre-
lated in some way. If this assumption is not satisfied, the surrogate modelling
framework would not work, or provide minimal gains. Moreover, mapping the
outputs from low resolution to the original resolution is not a trivial task, and
may add complexity or uncertainty to the estimations.

Response surface (RS) surrogates, also known as statistical and black-box mod-
els, include techniques such as polynomials (Schultz et al., 2004), kriging (Baú
& Mayer, 2006), and neural networks (Behzadian et al., 2009). Some of their
advantages include the possibility of maintaining the fidelity of the original
model, being model-independent (i.e., not requiring access to the components,
such as code or equations of the original model), and easier implementation
with respect to LFPB surrogates. Nonetheless, they can be hard to train for
high-dimensional problems, which may require extreme computational costs to
create large enough databases to train the metamodels. Moreover, RS meta-
models require scrupulous validation to minimize the chance of over-fitting and
maximize their ability to extrapolate.

1.2 Machine learning methods

ML methods are part of artificial intelligence (AI) which is a broad term for tools
that mimic cognitive human capabilities. The use of AI has rapidly increased in
recent years. The number of peer-reviewed publications across all fields between
2000 and 2019 has grown around 12 times (D. Zhang et al., 2021) and with them,
multiple algorithms, architectures, and tools have been created. Fields in which
ML methods have shown outstanding results include computer vision, speech
recognition, and language processing. Most of these applications use supervised
learning, which identifies a branch of ML that is similar to RS metamodelling.
Supervised ML employs a set of input-output examples, also known as the
labelled training dataset, to calibrate a model by minimizing the error between
the model predictions and the values assumed as ground truth. This set of
algorithms usually increase their performance at a given task as the amount of
labelled examples grows larger. Due to their successes, supervised ML methods,
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and in particular deep learning (DL) and artificial neural networks (ANNs),
are widely employed for surrogate modelling across many fields of science and
engineering (Liu et al., 2021; Peng et al., 2020; Wu et al., 2020). Although
scientific studies on ML applications for water resources date back to over two
decades ago (Maier & Dandy, 2000), Hadjimichael et al. (2016) noted that this
trend is not necessarily witnessed in the urban water sector.

1.3 Previous studies - Surrogate Modelling in Urban Water Networks

Previous studies have reviewed the application of metamodels in water resources.
Razavi et al. (2012b) outline taxonomies, practical details, and advances of
these SMs in water resources along with recommendations for future research.
Among the multiple insights of this work, they highlight the non-trivial effort
to choose the right metamodel approach to the problem at hand and advo-
cate for further research on these methods, especially in their assessment and
validation. Furthermore, in the same year, Razavi et al. (2012a) numerically as-
sessed metamodeling strategies in computationally intensive optimization, show-
ing that metamodeling is not always a reliable approach, especially for complex
response surfaces. The authors also warned about the inappropriateness of neu-
ral network models when having a limited computational budget. Later, Broad
et al., (2015) presented a formalized qualitative process to determine the most
suitable scope for a metamodel based on the evaluation of a fitness function
to maximize fidelity. Hadjimichael et al. (2016) reviewed the application of
AI methods to UWS management and their integration with decision support
systems. While valuable, these published reviews give low emphasis to SMs for
UWNs, and do not account for the recent growth in machine learning-based
surrogate models (MLSMs) driven by the rapid advancements in AI.

This study aims to fill this gap by assessing the current state of MLSMs for
UWNs in order to propose future directions based on identified outstanding
issues and recent developments in ML. To achieve this purpose, we applied the
review methodology described in Section 2 to review 31 published applications
of metamodels for water networks. The results of the review are reported and
discussed in Section 3, while major current gaps are detailed in Section 4. We
propose future research directions in Section 5 and provide conclusions in Section
6.

2 Materials and Methods

We conducted a semi-systematic (Snyder, 2019) review of MLSM applications
for UWNs to synthesize the state-of-the-art of the field. The review integrates
the multiple applications of metamodels across water network applications, and
explores them in a transversal manner. First, we searched journal papers in
which MLSMs were applied to UWNs. Second, we determined a set of criteria
to assess the relevant characteristics when applying these metamodels to UWNs’
problems.

2.1 Search methodology
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We reviewed journal papers published in the last two decades (2001-2021) that
use MLSMs for WDSs and UDSs. We established two main search criteria:
surrogate modelling and water networks. Since both topics have a multiplicity
of names, each of them was represented by a set of keywords. For surrogate
modelling, the search terms were: “Surrogate model*”, “Metamodel*”, “Re-
sponse surface”, “model emulation”, and “hybrid model”. In the case of water
networks, the search terms referred to both water distribution and drainage
systems along with popular software for their analysis, “Water distribution”,
“Water supply”, “Drinking water”, “Urban drainage”, “Wastewater”, “Sewer”,
“Sewerage”, “EPANET”, “WaterCAD”, “SWMM”, “SOBEK”, and “Urban wa-
ter”.

For the search, we employed the SCOPUS database. By intersecting the search
terms, we identified an initial set of 64 papers that were further filtered to only
include ML applications, yielding a total of 31 papers to review. Next, we
searched through the citations of the selected set of papers and other relevant
papers in the field (i.e., Maier et al., 2014; Maier & Dandy, 2000; Razavi et al.,
2012b) for further references. However, the original set already contained the
cited papers. Therefore, the results are equivalent to the keyword search. This
validates the thoroughness of the original search and makes the methodology
more replicable by avoiding arbitrarily selected papers.

This list of papers may not be totally inclusive since some studies do not use the
formal terminology of surrogate modelling, as indicated by Razavi et al. (2012b).
Nevertheless, the purpose of this paper is to depict the recent state-of-the-art,
identify gaps in knowledge and propose future research directions. We believe
that the selected set of papers is sufficient to achieve this goal.

2.2 Analytical methodology

In addition to the search criteria, it was necessary to establish an analytical
framework that allowed to classify, compare, and evaluate the application of the
metamodels across the collected literature. To achieve this, we identified the
most relevant aspects of each paper in three broad categories: i) purpose, ii)
case study, and iii) metamodel.

Purpose includes general information about the application of the metamodel. It
includes the type of network (distribution or drainage) and the application cat-
egory (e.g., optimisation, real-time) as major grouping categories. In addition,
it includes the specific application (e.g., optimisation of operation, real-time for
flood prediction) as a more detailed description for each paper.

Case study contains information on the physical water network used for the
testing and validation of a developed metamodel. This includes the name or
location of the case study, whether it is a real case or a benchmark, and its
size, indicated by the number of pipes or by the area. The size attribute is also
reported as a categorical value ranging from small (S) to large (L), as shown in
Table 1.
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Table 1. Categories of network size based on number of pipes or area

Size Number of pipes in
the simulation model

Area [km2]

Small (S) <100 <5
Medium (M) -250 – 10
Intermediate (I) -500 – 20
Large (L) >500 >20

Metamodel reports details on the computational algorithm (e.g., ANNs, Sup-
port Vector Machines) used to replace the original simulator along with further
details on its architecture (i.e., deviations from a hidden layer ANN). The type
and number of input and output variables are also reported to infer the dimen-
sionality of the SM and the complexity of the RS to approximate. As for the
performance, we report the computational speed-up provided by the metamodel
and the fidelity to the original simulation, usually approximated with an accu-
racy metric. These criteria have been identified as the most relevant ones by
previous related studies (Broad et al., 2015; Razavi et al., 2012b). Nevertheless,
it is possible to consider other factors, such as development time, robustness
and explainability. While assessing these criteria may enrich the analysis, they
are not employed in most of the surveyed papers, and they are thus not included
in this review.

3 Review – Current status of Machine Learning Surrogate Models in Urban
Water networks

The analysis of the surveyed papers show an increase in research activity between
2015 and 2020 with approximately two-thirds of the manuscripts published dur-
ing this period. In terms of application, most of these papers are related to
optimisation. For the case study, there is a noticeable difference between WDSs
and UDSs since the latter networks lack the use of benchmark cases. Regard-
ing the metamodel, the most popular algorithm is the fully connected ANN;
because of this, we report the details of the used metamodel as deviations from
a standard, one hidden layer, fully connected ANN, also referred to as simple
Multi-layer perceptron (MLP). Table 2 summarizes the extracted information of
the reviewed papers arranged in the previously mentioned categories: purpose,
case study, and metamodel.

Table 2. List of reviewed papers and metamodeling approaches.
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

Water
net-
work

Application
cat-
e-
gory

ReferenceApplicationLocationSize:
Pipes
in
model
/
[area
km2]

Classification
by
size

Type Deviations
from
sim-
ple
MLP

Inputs
(Num-
ber)

Outputs
(Num-
ber)

Computational
sav-
ing

Accuracy

Water
dis-
tri-
bu-
tion
sys-
tems

Optimisation(Sayers
et
al.,
2019)

DesignTLN,
GOY,
MOD,
BIN

,
30,
317,
454

S,
S,
I, I

Benchmarkhidden
lay-
ers

Diameters
*

Rating
of
the
net-
work
(1)

Not
re-
ported

Not
re-
ported

(Dini
&
Tabesh,
2019)

Renovation
plan-
ning

TLN
and
Ahar,
Azer-
bai-
jan

and
192

S,
M

Benchmark
and
Real
case

Diameters
*

Nodal
pres-
sure*
and
chlo-
rine
con-
cen-
tra-
tion
*

Not
re-
ported

Not
re-
ported

(Dini
&
Tabesh,
2017)

Model
cal-
i-
bra-
tion

TLN
and
Ahar,
Azer-
bai-
jan

and
192

S,
M

Benchmark
and
Real
case

Observed
resid-
ual
chlo-
rine
*

Wall
De-
cay
co-
effi-
cient
(1)

58x
faster
(98.3%)

Average
er-
ror
(3.85%)
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Andrade
et
al.,
2016)

DesignHAN
and
Mari-
copa,
Ari-
zona

and
1090

S,
L

Benchmark
and
Real
case

Comparison
of
ANNs
vary-
ing
num-
ber
of
in-
puts
and
out-
puts

Diameters
and
Chlo-
rine
dos-
ing
rates

Chlorine
con-
cen-
tra-
tion.
(HAN):
3;
(Mari-
copa):
9

Not
re-
ported

NSE
(~90%)

(Bi
&
Dandy,
2014)

Design(I)
NYT,
(II)
mod-
i-
fied
NYT
and
(III)
Jilin

,
21,
and
34

S,
S,
S

(I)
Bench-
mark,
(II)
mod-
i-
fied
bench-
mark,
and
(III)
syn-
thetic
net-
work

Diameters
and
Chlo-
rine
dos-
ing
rates
(I
&
II:
22;
III:
35)

Pressures
at
some
nodes
(I
&
II:
4;
III:
5)
and
resid-
ual
chlo-
rine
at
one
node
(I
&
II:
1;
III:
7)

(I
&
II)
91%;
(III)
93%,
88%,
and
77%

MSE
(Not
re-
ported,
0.001
as
one
stop-
ping
cri-
te-
ria)
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Broad
et
al.,
2010)

OperationWallan,
Aus-
tralia

;(Sk:
1376)

L
(L)

Real
case

Trigger
lev-
els
(45)
and
Chlo-
rine
rates
(5)

Pressure
Head
at
crit-
ical
node
(1),
Chlo-
rine
resid-
ual
(1),
en-
ergy
value
(1),
or
To-
tal
chlo-
rine
dosed
(1)

% NSE
(~0.6
for
the
full
model,
~0.98
for
skele-
tonized
model)

(Behzadian
et
al.,
2009)

Sensor
place-
ment

Anytown;
Ma-
ha-
lat,
Iran

,
and
1814;(Sk:
217)

S,
L
(M)

Benchmark
and
Real
case

Available
sen-
sors

Sampling
de-
sign
ac-
cu-
racy
(1)

8x
and
25x
faster
(87%
and
96%)

Pareto
sim-
i-
lar-
ity:
93%
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Salomons
et
al.,
2007)

OperationHaifa-
A,
Is-
rael

M Modified
real
case

Pumping
sta-
tus
(13),
Valve
set-
tings
(1),
DMA
de-
mands
(6),
Stor-
age
lev-
els
(9)

Power
con-
sump-
tion
(5),
pres-
sures
(4),
fu-
ture
stor-
age
lev-
els
(9)

25x
faster
(96%)

RMSE
(0.481%)
~5
cm
av-
er-
aged
over
all
tanks

(Martínez
et
al.,
2007)

OperationValencia,
Spain

L Modified
real
case

Pumping
sta-
tus
(6),
Valve
set-
tings
(10),
DMA
de-
mands
(6),
Stor-
age
lev-
els
(2)

Power
con-
sump-
tion
(6),
flow
rates
(3),
pres-
sures
(4),
fu-
ture
stor-
age
lev-
els
(2)

94x
faster
(99%)

RMSE
(1.30%)
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Broad
et
al.,
2005a)

DesignNYT S Benchmark Diameters
and
Chlo-
rine
dos-
ing
rate
(22)

Four
pres-
sure
nodes
(1)
or
Chlo-
rine
con-
cen-
tra-
tion
(1)

700x
faster
(99.85%)

RMSE
(0.05
-
0.250)

Real-
time

(Pasha
&
Lansey,
2014)

Warm
so-
lu-
tions
for
pump
schedul-
ing

Modified
Any-
town

S Modified
Bench-
mark

SVM Pump
com-
bi-
na-
tion,
de-
mand
mul-
ti-
plier,
ini-
tial
tank
lev-
els

Energy
and
fi-
nal
tank
lev-
els

% NSE
(0.99)
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Rao
&
Al-
var-
ruiz,
2007;
Rao
&
Sa-
lomons,
2007)

Real-
time
pump
schedul-
ing

Modified
Any-
Town

S Modified
Bench-
mark

Number
of
op-
er-
at-
ing
pumps
(1),
ag-
gre-
gated
de-
mand
(1),
and
tank
lev-
els
(3)

Power
con-
sump-
tion
(1),
pres-
sures
(3),
new
tank
lev-
els
(3)

-
fold
(90%)

RMSE
(1.65%)

Uncertainty
anal-
ysis

(Yoon
et
al.,
2020)

Seismic
risk
as-
sess-
ment

A-
city,
South
Ko-
rea

S Anonymous
real
case

layers
-
Deep
neu-
ral
net-
work

Components’
state
(218)

Network
per-
for-
mance
(1)

% <5%
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

(Beh
et
al.,
2017)

Planning
un-
der
deep
un-
cer-
tainty

Adelaide,
Aus-
tralia

NA L Real
case

Combination
of 4
MLPs

Supply
aug-
men-
ta-
tion
op-
tions
(9)
and
Un-
cer-
tain
vari-
ables:
Pop-
ula-
tion
and
cli-
mate
change
sce-
nar-
ios
(2)

(I)
PV
of
cost
(II)
PV
of
Green-
house
gases
(III)
Re-
lia-
bil-
ity
(IV)
Vul-
ner-
a-
bil-
ity

>99% Relative
er-
ror
(+-
5%)
NSE
(~0.94,
0.95,
0.78,
and
0.84)
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PurposeCase
study

MetamodelMetamodel
Per-
for-
mance

System
state
es-
ti-
ma-
tion

(Lima
et
al.,
2018)

Nodal
pres-
sure
es-
ti-
ma-
tion
at
near
real-
time

Campos
do
Conde
II
and
Cam-
buí,
Brazil

and
167

M,
M

Real
case

Pressure
in
sen-
sors
Steady
State:
(3)
-
Ex-
tended
(24h):
96.
Cam-
buí:
(4)

Pressure
in
nodes
Steady
State:
(118)
-
Ex-
tended
(24h):
2832.
Cam-
buí:
Steady
(154
and
4)

Not
re-
ported

Relative
er-
ror
(<1%)
and
(<4%)

(Meirelles
et
al.,
2017)

Calibration
with
es-
ti-
mated
pres-
sures

Campos
do
Conde
II,
Brazil
and
C-
Town

and
429

M,
I

Real
case
and
Bench-
mark

Pressure
in
sen-
sors
Steady
State:
(3)
-
Ex-
tended
(24h):
96.
C-
Town:
5
MLPs,
one
per
DMA.

Pressure
in
nodes
Steady
State:
(118)
-
Ex-
tended
(24h):
2832

Not
re-
ported

Average
er-
ror
(0.15
m)
Max.
Er-
ror
(13.83
m)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

Water
net-
work

Application
cat-
e-
gory

ReferenceApplicationLocationSize
#
Pipes
in
model
/[area
km2]

Classification
by
size

Type Deviations
from
sim-
ple
MLP

Inputs
(Num-
ber)

Outputs
(Num-
ber)

Computational
sav-
ing

Accuracy

Urban
drainage
sys-
tems

Optimisation(Seyedashraf
et
al.,
2021)

DesignBogotá,
Colom-
bia;
Wind-
sor,
Canada

and
122

L,
M

Stormwater
-
Real
cases

Generalized
re-
gres-
sion
- 2
hid-
den
lay-
ers

SUDS
char-
ac-
ter-
is-
tics:
area,
type,
and
lo-
ca-
tion
(20)

Boundary
con-
di-
tion:
In-
flow
(1)

% Mean
er-
ror
(<0.015)
CC
(0.99)

(W.
Zhang
et
al.,
2019)

DesignUrban
catch-
ment
in
China

M Stormwater*
-
Real
case

Ensemble
of
100
MLPs

Tank
length
and
width
(2)

Flood
depth
(1)
or
peak
flow
(1)

- 90
%

NSE
(Be-
tween
0.66
and
0.92
de-
pend-
ing
on
the
rain-
fall
sce-
nario)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

(Raei
et
al.,
2019)

DesignTehran,
Iran

[20
𝑘𝑚2]

I Stormwater*
-
Real
case

hidden
lay-
ers

Area
sizes
of
the
LID,
Im-
per-
vi-
ous-
ness
and
rain-
fall
(3),
TSS/BOD
build-
up
(+1),
TSS/BOD
wash-
off
(+1)

The
vol-
ume
of
runoff
(1)
or
BOD
(1)
or
TSS
(1)

Not
re-
ported

NSE
(0.99)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

(Latifi
et
al.,
2019)

DesignTehran,
Iran

[20
𝑘𝑚2]

I Stormwater*
-
Real
case

Rainfall
value,
6
build-
up
co-
effi-
cients,
6
wash
off
co-
effi-
cients,
6
im-
per-
vi-
ous-
ness
co-
effi-
cients,
and
32
val-
ues
for
area
and
type
of
LIDs
(51)

Runoff
vol-
ume,
BOD,
TSS
(3)

Not
re-
ported

Not
men-
tioned
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

(Huang
et
al.,
2015)

DesignZhong-
He
dis-
trict,
Tai-
wan

[20.29
𝑘𝑚2]

L Stormwater*
-
Real
case

Catchment
pre-
cip-
ita-
tion,
Full
pipe
per-
cent-
age
of
wa-
ter
flow
in 3
points,
the
quan-
tity
and
ca-
pac-
ity
of
rain
bar-
rels
in
four
re-
gions
(12)

Water
level/flooding
at t
+ 1
(1)

Not
re-
ported

MAE
(<15%)
CC
(>0.94
~0.97)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

Real-
time

(Kim
&
Han,
2020)

Flood
pre-
dic-
tion

Seoul,
Ko-
rea

[3.19
𝑘𝑚2

*]

M Stormwater*
-
Real
case

hidden
lay-
ers

Total
rain-
fall,
Max.
Rain-
fall
in 1
- 3
hours,
rain-
fall
in-
ten-
sity,
statis-
tics
(SD,
Skew-
ness,
kur-
to-
sis),
inter-
event
time
(9)

Total
ac-
cu-
mu-
la-
tive
over-
flow
(1)

~99% Mean
rel-
a-
tive
er-
rors
be-
tween
2%
-
62%

(Keum
et
al.,
2020)

Flood
pre-
dic-
tion

Seoul,
South
Ko-
rea

[7.4
𝑘𝑚2]

M Stormwater*
-
Real
case

ANFISRainfall(t-
1),
Vol-
ume
(t-
1),
Build-
ing
cov-
er-
age
ra-
tio

Volume
(t)

% NSE
(0.959)*
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

(Kim
et
al.,
2019)

Flood
pre-
dic-
tion

Gangnam
area,
Ko-
rea

[7.4
𝑘𝑚2]

M Stormwater*
-
Real
case

SVNARX
and
SOFM

Accumulative
rain-
fall

Overflow
at
nodes
(103)

% NSE
(0.6
-
0.94)

(She
&
You,
2019)

Outflow
pre-
dic-
tion

Tianjin,
China

/
[0.1314
𝑘𝑚2]

S Real
case
with
syn-
thetic
data

Radial
Ba-
sis
func-
tion
and
NARX

Rainfall
in-
ten-
si-
ties
(6)

Drainage
out-
fall
(1)

Not
re-
ported

SSE
(0.273)

(Berkhahn
et
al.,
2019)

Flood
pre-
dic-
tion

Anonymousand
299

L, I Stormwater*
-
Mod-
ifi-
ca-
tions
of
real
cases

- 4
hid-
den
lay-
ers

Precipitation
in-
ten-
si-
ties
ev-
ery
5
min-
utes
(24
for
a
2h
rain
event)

The
max-
i-
mum
wa-
ter
level
at
dif-
fer-
ent
wa-
ter
cells

NA RMSE
(<0.35
cm)

(Chiang
et
al.,
2010)

Flood
pre-
dic-
tion

Yu-
Cheng,
Tai-
wan

[16.45
𝑘𝑚2]

I Stormwater*
-
Real
case

RNN
with
1
hid-
den
layer,
3
neu-
rons

Registered
wa-
ter
level
and
pre-
cip-
ita-
tion
at
time
t
(4)

Water
level
at
time
t+n
(1)

NA NSE
(>0.97),
CC
(>0.93),
NRMSE
(<0.26)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

LFPB
com-
ple-
ment

(Bermúdez
et
al.,
2018)

Surface
flood
vol-
ume
es-
ti-
ma-
tion

Ghent,
Bel-
gium

/
[27.50
𝑘𝑚2]

L %
Com-
bined
-
Real
case

Ensemble
of
ANNs

Rainfall-
runoff
vol-
umes
ag-
gre-
gated
over
10
and
30
min
win-
dows
and
vol-
ume
in
the
un-
der-
ground
sys-
tem
of
the
clos-
est
stor-
age
cell
(3)

Presence
of
flood-
ing
(1)
and
mag-
ni-
tude
(1)

104x
faster*

NSE
(~0.9)
but
vari-
able

(Wolfs
&
Willems,
2017)

Sewer
wa-
ter
quan-
tity
sim-
ula-
tion

Ghent,
Bel-
gium

/
[27.50
𝑘𝑚2]

L %
Com-
bined
-
Real
case

Volumes
be-
tween
two
sub-
catchments
(2)

Flow
(1)

106x
faster*

NSE
(0.95
in
av-
er-
age)
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PurposeCase
study

MetamodelMetamodel
per-
for-
mance

(Vojinovic
et
al.,
2003)

Wet
weather
flow
pre-
dic-
tion

Catchment
in
Auck-
land,
New
Zealand

[1.07
𝑘𝑚2]

S Combined
and
Sep-
a-
rated
-
Real
case

Radial
Ba-
sis
func-
tion

Error,
rain-
fall,
model
out-
put
(1 -
3)

Error
es-
ti-
ma-
tion
of
flow
(1)

NA Improvements
of
15 -
26%

Notes: * denotes information not explicitly mentioned in the paper; ‘Sk’ denotes
a skeletonized network.

Acronymns: Small (S), Medium (M), Intermediate (I), Large (L); Correlation
coefficient (CC). Mean squared error (MSE). Nash Sutcliff Efficiency (NSE).
Root mean squared error (RMSE). Mean absolute error (MAE). Squared sum
of error (SSE).

3.1 Metamodel Purpose

Figure 1 shows that the two main application categories for metamodels are opti-
misation (48%) and real-time applications (32%), with several examples for both
WDSs and UDSs. Metamodels have been also used, although to a lesser extent,
for conducting uncertainty analyses, system state estimation, and to comple-
ment LFPB surrogates. The last one refers to the use of an RS method (e.g.,
linear approximations, polynomials, ANNs) to complement an LFPB metamodel
by replacing a slow component or fine-tuning the outputs for better accuracy,
e.g., surrogating water exchange between sub-catchments with ANNs (Wolfs
& Willems, 2017), or correcting the predictions of a hydrodynamic model of
wastewater flows (Vojinovic et al., 2003). In all cases, metamodels are used to
reduce the computational efforts required for the hydraulic simulation of these
complex systems, which may severely compromise the feasibility of the applica-
tions.

22



Figure 1 Types of applications that use machine learning metamodels for Water
Distribution Systems (WDS) and Urban Drainage Systems (UDS)

Optimisation usually employs population-based algorithms (e.g., genetic algo-
rithms, particle swarm, ant colony optimisation, among others) which require
multiple runs. These algorithms create an initial population, and they improve
the obtained solutions through continuous iteration. Usually, these algorithms
employ mechanisms inspired on genetics, such as crossover and mutation for
finding (near) optimal solutions. Evolutionary algorithms are the most well-
established metaheuristic for solving water resources problems (Maier et al.,
2014); nonetheless, they tend to be highly computationally intensive.

Optimisation can be used to formulate and solve multiple UWN problems. This
explains the high number of metamodeling publications dedicated to this topic.
A popular use of MLSMs for optimisation in UWNs is for the (re)design of
the networks. For example, applications that use MLSMs include changes in
pipe diameters and chlorine dosing rates (Andrade et al., 2016; Bi & Dandy,
2014; Broad et al., 2005a; Sayers et al., 2019) or operation of storage tanks and
pumps (Broad et al., 2010; Martínez et al., 2007; Salomons et al., 2007). The
goal for design is to select which new system components to install or identify
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existing ones to substitute. For operation, the aim is to find an optimal policy
on how to operate the existing components. Regardless of the task, the goal is to
maximize the performance of the system described by the objective function(s)
and a number of constraints (e.g., physical, regulatory, economic, among others).
In addition, other problems such as water quality model calibration (Dini &
Tabesh, 2017), renovation planning (Dini & Tabesh, 2019), and sensor placement
(Behzadian et al., 2009) have resorted to metamodels.

Although MLSMs accelerate optimisation algorithms, they come with a series
of drawbacks. First of all, these models need training data (simulation exam-
ples) to calibrate their internal parameters (e.g., the weights and biases in a
neural network) to replicate the RS. Generating a sufficiently large training
dataset can be a time-consuming process, and data sufficiency depends on the
complexity of the input-output mapping and it can not be known a priori. Sec-
ondly, the training process is another optimisation process in itself, with its
own hyperparameters (e.g., learning rate, number of training epochs, parameter
initialization, among others depending on the optimiser) and its convergence to
a desired performance is not guaranteed. Furthermore, errors of approximation
in the RS can mislead the optimisation to suboptimal or unfeasible solutions
as noted by Broad et al. (2005b), especially in zones near the boundaries or
outside the training range.

When comparing water distribution with drainage systems, it is clear that the
applications of optimisation in UDSs are less diverse. The reviewed papers
focus on the optimisation of stormwater sewers’ design with Low Impact Devel-
opment (LID) management (Latifi et al., 2019; Raei et al., 2019; Seyedashraf
et al., 2021) or for flood mitigation (Huang et al., 2015; W. Zhang et al., 2019).
Meanwhile, WDS optimisation is more varied, with applications to operation,
calibration, sensor placement, and long-term planning. This difference partially
depends on the stochastic nature of the rainfall events driving the functioning
of combined and stormwater sewers, which in turn favour real-time control over
the optimisation of the operations, typical of WDS. Also, the research done on
MLSMs for optimisation in UDSs is rather recent (2015 or later) compared to
WDS (from 2005). Applications in UDSs that typically do not use metamodels
can benefit from the experience of tackling similar problems in the context of
WDSs. Examples include sensor placement (Sambito et al., 2020), calibration
(Tscheikner-Gratl et al., 2016), and optimisation of operation (van Bijnen et al.,
2017).

In contrast to off-line optimisation, real-time applications require accurate an-
swers with limited computational time. Real-time operation uses the current
state of the system to modify its behaviour and improve its functioning in future
time steps. In the case of UDSs, they are usually designed to retain stormwater
for a certain period, to avoid combined sewer and stormwater outflows (Rosin
et al., 2021; She & You, 2019) or to reduce flooding (Berkhahn et al., 2019;
Chiang et al., 2010; Keum et al., 2020; Kim et al., 2019; Kim & Han, 2020).
Whereas, in WDSs, the objective is to deliver high-quality drinking water while
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minimizing pumping costs (Pasha & Lansey, 2014; Rao & Alvarruiz, 2007; Rao
& Salomons, 2007).

In the case of WDSs, the reviewed real-time applications concern optimisations,
in which MLSMs are essential to reduce the computational time for evalu-
ating the fitness function used by an evolutionary algorithm. Consequently,
these applications suffer from the drawbacks already mentioned for optimisa-
tion with MLSMs. Real-time applications for UDS concern Real-Time Control
(RTC), where operation and validation relies on real data (Beeneken et al., 2013;
Langeveld et al., 2013; Lund et al., 2018). This is an issue since the usual tar-
gets are infrequent events, i.e., outflows and flooding; therefore, the availability
of records may be scarce or non-existent.

The third application in order of frequency is uncertainty analysis of the UWNs’
performance. These analyses are usually carried out via multiple simulations to
test the response of the system to multiple possible scenarios or uncertain input
conditions, leveraging the computational efficiency of SMs. In WDSs, ANNs
have been used to replace computationally expensive models for accelerating
Monte Carlo analyses. For example, Yoon et al. (2020) performed a seismic
risk assessment of a water distribution network considering earthquakes of dif-
ferent magnitudes and epicentres. In UDSs, Beh et al., (2017) used metamodels
to directly estimate reliability and vulnerability metrics. In this case, resorting
to MLSMs was crucial for the feasibility of the study. Otherwise, the explicit
robustness assessment would have been impossible in practice. Creating a meta-
model for uncertainty analysis entails having a model with explicit robustness as
output, or generating a training dataset with multiple runs per example. How-
ever, the former is rarely the case and the latter consumes a large quantity of
computational budget.

Other works tested the ability of ANNs to estimate the state of the system at
ungauged points with measurements from a limited amount of sensors. Lima
et al. (2018) and Meirelles et al. (2017) used recorded pressure at strategically
located sensors and an ANN to estimate the pressure of all the nodes in a
WDS. SMs for state estimation not only decreases the degrees of freedom for
the addressed calibration problem but, according to the authors, they could
also be used to detect anomalies and predict the current state of the network in
real-time. Nevertheless, in these studies, the pressure in all the nodes is known
since the MLSM is trained on simulations. For applications depending on sensor
data, only a few nodes would be known and it would not be possible to estimate
the error for the ungauged nodes. One alternative to handle this issue is to
use some sensors for training and others for testing. This way, it is possible
to estimate the error at the unseen nodes. However, this process reduces the
training data available, and it is not clear how representative the testing sensors
are with respect to the remaining ungauged nodes. This may lead to unjustified
trust in the model and consequent errors.

Metamodels for UDSs have also been used to complement LFPB surrogates, ei-
ther to approximate some parts of the model (e.g., the most time-consuming) or
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to correct the predictions produced by a model. Wolfs & Willems (2017) created
a modular approach in which they replaced the hydraulic simulation of drainage
flow between subcatchments with an ANN, this was part of a bigger framework
in which the goal was to simulate outgoing discharges for a given rainfall event.
Similarly, Bermúdez et al. (2018) employed an ensemble of ANNs to accelerate
a component of an LFPB model, used to estimate the occurrence and magnitude
of flooding. On the other hand, Vojinovic et al. (2003) used MOUSE (MOdel
for Urban Sewers), a hydrodynamic process model, to estimate flows within
wastewater pipes during wet weather periods and trained a neural network to
compensate for the output errors (residuals), leading to an overall increase in
accuracy. Even though this hybrid approach bridges both metamodeling prac-
tices, the LPFB metamodel inherits the RS problems, e.g., database creation
and training difficulties.

In summary, SMs in water networks have been primarily used for optimisation
and real-time applications due to their ability to quickly evaluate outputs while
remaining sufficiently accurate. This avoids running computationally expensive
hydrodynamic models. Nevertheless, the use of these metamodels is not bound
to these two applications. They can replace the original model for uncertainty
analyses and state estimation, or help the original model by correcting outputs
or approximating computationally expensive components.

3.2 Case studies

Figure 2 shows the number of case studies analysed in the reviewed literature.
In WDSs, each paper usually presents two or more networks. Since the papers
introduce new problem formulations or methodologies, the authors apply them
to different networks to prove that the methods work independently of the choice
of the system. Studies in optimisation usually follow a common pattern where
preliminary trials are done on small benchmark networks before proceeding with
implementation in bigger real case scenarios. This pattern is repeated in all the
cases, whether it is on the same paper or in sequential papers, as in the case of
the POWADIMA project by Martínez et al., 2007; Rao & Alvarruiz, 2007; and
Salomons et al., 2007. In the cases of real-time applications, the networks were
usually modified benchmarks of medium size. For applications in uncertainty
analysis and state estimation, the networks were real cases of large size. The
reviewed papers for UDSs, in contrast to WDS, present only applications with
real networks, some of them with modifications (e.g., Berkhahn et al., 2019; She
& You, 2019).
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Figure 2. Case study type distribution for Water Distribution Systems (WDS)
and Urban Drainage Systems (UDS)

On UDSs, in terms of size, most of the papers do not report the number of pipes.
Consequently, the extent of the system was often assessed by the reported area.
This suggests that when MLSMs are used, the water network is set aside and
only the relation input-output is considered. The extent of the case study (num-
ber of pipes or area) is a proxy of the complexity of the case studies which is the
relevant dimension. Nevertheless, some applications can involve medium-sized
networks but with high complexity (e.g., different control elements, multiple
objectives, changing scenarios, among others). Besides the particular character-
istics of each network and application, the metamodeling process was the same
regardless of the size of the network. However, the required time for creating
the database and training the model increases with the complexity of the case
study. So far, the procedure does not vary as a function of the complexity of
the case study; nonetheless, considering modifications to the training process or
the metamodels based on the complexity of the case study could yield better
approximations to the RSs.

Since each system has a different area and number of pipes, we proposed the
categorization in Table 1. The ratio between the number of small networks and
the rest is noticeably bigger in WDSs than in UDSs due to the use of benchmarks
to test the methodologies. Even though the use of metamodels is justified in
larger networks, its use decreases as the size increases.

3.3. Metamodelling Methods

Regardless of the water network type and metamodel applications, the preferred
method for metamodeling is the ANN. ANNs are computational models based
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on the complex interaction of multiple individual components (i.e., units or
neurons). Each unit performs the same procedure: receiving information, exe-
cuting an operation (usually a linear transformation of the inputs), applying a
non-linear transformation to the result (e.g., hyperbolic tangent, sigmoid, recti-
fied linear unit), and sending the information to the next connected units. Each
of the units has trainable parameters that determine the relative weight of each
of the inputs. Units are arranged in layers; each ANN has at least one input
layer and one output layer, where the inputs are presented to the network and
the computed outputs are collected, respectively. Between these layers, there
are one or more hidden layers, where most of the information processing takes
place. ANNs learn to approximate the input-output relationships in the data
by tuning the trainable parameters (i.e., unit’s weights and biases) during the
backpropagation learning process, which is usually carried via gradient descent
and by computing the partial derivatives of the hidden layers using the chain
rule of derivation. For a complete review of ANNs, the reader is redirected to
Goodfellow et al. (2016) for a general resource and Shen (2018) for a specific
review for water resources scientists.

The analysis of the literature shows that the MultiLayer Perceptron (MLP) is
the most widely used MLSM. The MLP is a specific ANN architecture that
consists of a series of layers in which all the units of a layer are connected
to all the neurons in the previous and next layer; hence it is also known as
the fully connected ANN. Most of the reviewed studies in this paper used this
architecture with one hidden layer; mainly due to its simplicity, high speed, and
accuracy. Still, the ANNs can be customized to increase the accuracy of certain
applications. This practice of creating deep networks, i.e., with more layers and
units per layer, is part of modern deep learning (Goodfellow et al., 2016).

In WDSs, there are two cases of variations on the number of layers: Sayers et
al. (2019) used two hidden layers for optimisation of design while Yoon et al.
(2020) used 15 layers in their ANN to estimate the network performance after
earthquake events. Deep networks may increase performance but they are more
prone to overfitting, and require more training time and examples. Also, it is not
possible to know the number of layers and units that yield the best performance.
For example, Modesto De Souza et al., (2021) tested multiple architectures of an
MLP for pressure estimation in a WDS. Their results suggest that the optimal
number of layers is two but this can vary for other applications. On the other
hand, UDSs present more variation on the implemented MLPs including varying
the number of hidden layers (Berkhahn et al., 2019; Kim & Han, 2020; Raei et
al., 2019), changing the activation function to a radial basis function (She &
You, 2019; Vojinovic et al., 2003), and adding fuzzy logic (Keum et al., 2020).

As previously stated, MLPs are the most popular MLSM. This is not surprising
due to its ease of implementation and success in multiple applications, as well
as hype from the AI community. However, the MLP, and in general, the ML
methods present several drawbacks. As Razavi et al. (2012a) indicated in their
numerical assessment of metamodelling strategies in computationally intensive
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optimisation, “the likelihood that a metamodel-enabled optimizer outperforms
an optimizer without metamodelling is higher when a very limited computa-
tional budget is available; however, this is not the case when the metamodel
is a neural network. In other words, neural networks are severely handicapped
in limited computational budgets, as their effective training typically requires a
relatively large set of design sites, and thus are not recommended for use in these
situations.”. Therefore, the use of an ANN may even harm the development of
an application. In that same work, the authors show that there are cases for
which it is better to not use a metamodel and go with the original model in-
stead. Consequently, they recommend further research on determining where
it is worth pursuing a metamodeling approach. In recent years, the widespread
availability of parallel computing (e.g., cloud computing and graphics processing
unit) and user-friendly Deep Learning libraries, such as Pytorch (Paszke et al.,
2019), have largely reduced this problem.

Even though using MLPs is the most popular choice from the set of ML tools, it
is not the only one. For example, Pasha & Lansey, (2014) used support vector
machines (SVMs) for improving the real-time estimation of water tank levels
and thus decreasing pump energy consumption in a WDS. In UDSs, Chiang et al.
(2010) implemented an early form of recurrent neural network (RNN) for water
level predictions at gauged and ungauged sites. According to the authors, their
decision of using this architecture was motivated by its increase in performance.
However, the main disadvantages of this architecture lies in training difficulty
(Pascanu et al., 2013) and computational costs (Strubell et al., 2020).

Similarly, Kim et al. (2019) and She & You (2019) leveraged the time structure
in rainfall time series for real-time flood prediction with a nonlinear autoregres-
sive network with exogenous inputs (NARX) neural networks. This architecture
is a feedforward ANN that calculates the next value of a time series as a func-
tion of both past input and output values. In each study, the authors tailored
the model to the conditions of their problem. Kim et al. (2019) added a sec-
ond verification step to account for values that incur serious inundation damage
and She & You (2019) implemented a NARX neural network for the monotonic
parts of a hydrograph (i.e., ascending and descending stages) and a radial basis
function MLP for the non-monotonic interval (i.e., around the peak).

3.3.1 Metamodel inputs and outputs

The inputs to the metamodels in UWN applications are usually decision and
explanatory variables while the outputs can vary based on the scope of the
problem. Based on the inputs used in the reviewed papers, there is not a
single consistent variable across the different applications in any of the water
networks; they are problem-specific. For example, flood prediction in UDSs
relies on rainfall time series, while the design of WDSs relies on inputs such
as pipe diameters and chlorine rating doses. On the other hand, the output of
the metamodels are usually state variables of the UWN or performance metrics.
For example, a metamodel can be developed to estimate a pressure-dependent
metric, such as the resilience Network Resilience Index (NRI) (Prasad & Park,
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2004), or it can output the pressures in a WDS, used to compute the NRI. Other
examples of surrogated components are water level in storage units or pump
energy consumption. Other examples of overall metrics are sampling accuracy
(Behzadian et al., 2009), the economic cost of interventions, greenhouse gases,
reliability, and vulnerability (Beh et al., 2017).

Determining the output and scope of the metamodel entails deciding if the
metamodel should emulate the model or one of the objectives computed after
the hydraulic simulation. The reader is referred to Broad et al. (2015) for
a complete methodology about metamodel scope for risk-based optimisation
and its application to WDS design. In contrast, there are no applications for
objective approximation using MLSMs in UDS.

By inspecting the dimensions (i.e., number) of the inputs and outputs, a con-
verging trend is visible: the number of inputs is higher than the number of
outputs. This is no surprise since most of the studies estimate one or two target
values that summarize the desired state of the network (e.g., overall performance,
minimum chlorine concentration, total flooding volume) with multiple decision
and state variables. Nevertheless, some authors have used fewer variables to
produce more outputs. For example, in WDSs, Lima et al. (2018) and Meirelles
et al. (2017) estimated 118 pressure nodes with only known pressure at 3 nodes,
while Kim et al. (2019) predicted urban floods in multiple nodes with a single
rainfall time series.

On the dimensionality of ANNs, having multiple inputs and outputs allows
accounting for more complexity in the applications; nonetheless, they both come
with downsides. For the input dimensions, Razavi et al. (2012b) argue against
using a large number of explanatory variables (>20) since the minimum number
of training examples can be excessively large. On the other side of the model,
the number of output variables also is recommended to be low. In theory, the
number of output variables is not restricted; moreover, it is one advantage of
ANNs over other RS metamodels as they can act as multi-output emulators.
However, an ANN with multiple outputs will seek to find a compromise between
the errors of all the outputs, which might hurt the overall accuracy of the MLSM.
For this reason, an alternative approach is to train an ANN for each output
variable. Since each objective has a metamodel, the accuracy increases but
also does the training time. As noted by Andrade et al. (2016), considering
one multi-output ANN or multiple ANNs with single output depends on the
problem at hand. The size of the water network is the most important factor
since, for small systems, the results with one or multiple ANNs are equivalent in
performance. In addition, the choice of one model or the other should consider
desired accuracy, available metamodeling time, and required speed of execution.

3.3.2 Metamodel Performance

Regarding the performance of a metamodel, the most important characteristics
are computational speed and prediction accuracy. The computational saving is
reported as a reduction of the time that the application would have taken by
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running the original model. This quantity was reported by nearly half of the
reviewed studies and it was on average higher than 90%, most of the time over
98%. This is a satisfactory indication since the purpose of these SMs is to reduce
the computational burden of intensive applications. Nonetheless, around half of
the studies did not report this saving. Although quantifying the computational
saving is not always easy, it is recommended for future researchers who use
a metamodel to consider such an estimate. Since the design and training time
could be longer than the expected saved time, having an estimate of the potential
saving aids in the decision of making a metamodel.

In terms of prediction accuracy, there are multiple indicators used by the re-
searchers to assess the fidelity of the ML algorithm to the original model. These
common metrics include root mean squared error (RMSE), Nash-Sutcliffe effi-
ciency coefficient (NSE), mean absolute error (MAE), and Pearson correlation
coefficient. This multitude of metrics hinders a straight comparison between
models or applications, but overall it is possible to observe good fittings be-
tween the metamodel and the original model. It is worth noticing that the
metamodel will reflect reality as much as the original model is capable of doing
so. Metamodels are second-level abstractions and therefore may only be as good
as the original model in terms of accuracy.

In addition to the previously mentioned criteria, Razavi et al. (2012b) include
development time, and Asher et al. (2015) add surrogate-introduced uncertainty
as assessment metrics. For these criteria, seven of the reviewed papers calcu-
lated or referred to the time it took to train the models and only five performed
an analysis on the metamodels’ robustness. Given the versatility and multi-
purpose nature of the SMs, there are other performance indicators, e.g., ease
of development, explainability, generalization, or re-trainability. Along these
lines, the reviewed papers disregard these indicators since the development of
the metamodel is specific for each case study and the implementation goes un-
noticed. These indicators are secondary in comparison to computational saving
and accuracy. Both metrics constitute the most relevant metrics used in the
literature, including this review.

4 Current issues in metamodelling

Based on the current status presented in the previous section the following issues
were identified.

4.1. Basic applications

MLSMs have been used to tackle various issues, namely, optimisation, uncer-
tainty analyses, real-time applications, state forecast, and aiding LFPB meta-
models. Although these generally addressed relevant problems, each of the
reviewed papers had a basic framing, i.e., the inputs deal with few design or
input variables (e.g., diameters, chlorine dosage, accumulated rainfall) and the
outputs are usually summary variables (e.g., critical pressure, chlorine residual,
flood volume). This approach is comprehensible for several reasons. First, most
of the time the simplifications still retain sufficient problem information to find
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an adequate solution. Second, it avoids problems related to high dimensional-
ity in the inputs and outputs. Lastly, it allows researchers to introduce their
metamodeling method without interference from excessive complexity.

Although these frames are effective, they could result simplistic for the com-
plexity of water networks. Considering a small set of interventions may discard
types and combinations of interventions (e.g., allowing not only for change in
diameters but also adding pumps or doing both at the same time). Further-
more, other changes in the network or their components, or even interactions
with other city systems could be explored. However, these are rarely considered
since they represent a challenge for traditional RS metamodels; current MLSMs
are very specific to the cases in which they are trained on. Because of this, new
approaches are required, mainly in optimisation and uncertainty analysis.

As seen in section 3, the most popular application for MLSMs is optimisation.
In this application, multiple authors (Beh et al., 2017; Doorn, 2021; Kapelan et
al., 2005; Razavi et al., 2021) have remarked on the importance of considering
new objectives. For example, robustness for designing water systems, especially
under deep uncertainty, requires considering multiple scenarios for which is not
possible to assign a probability or ranking. This analysis is desirable because
water networks are systems with long lifespans of service. Nonetheless, objec-
tives like robustness tend to be more computationally intensive; therefore, their
need for metamodels increases.

A relevant missing layer of complexity is uncertainty analysis, especially for
UDSs. The current practice to design the system is to use a single benchmark
storm and assume it is representative of the future rain events the system will
face. However, two UDSs with similar performance during a design event could
behave very differently for other rainfall patterns. According to Ng et al. (2020),
the final design considering a single strong storm does not guarantee optimal
performance during long mild storms and for a succession of frequent small
events. Naturally, the authors recognize that performing a design considering
multiple events would increase the computational effort but also suggest the
implementation of SMs for dealing with this difficulty.

4.2 Case studies: Lack of benchmarking with complex networks

Benchmark water networks are open access datasets that contain the necessary
information to create models of a system. It consists of the topology of the
network, its components, and depending on the system it could incorporate
leakages, demand patterns, cyber-attacks, rainfall, or surveillance data. Bench-
marks are used as reference points to compare the performance of models and
algorithms. Here, it is necessary to distinguish between synthetic and real data.
Even though the synthetic data allow to implement and compare algorithms,
they may not reflect all the processes that real data can account for.

There is a clear difference between types of infrastructure in the number of used
networks since benchmark networks in UDSs are not as available as in WDSs.
In water distribution, there is a set of water networks called Water Distribution
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System Research database. The ASCE Task Committee on Research Databases
for WDS created this database which is hosted by the University of Kentucky
(2013). There are benchmarks for multiple problems in categories such as net-
work expansion, operation, and design. This allows modellers to easily obtain
data for the development and comparison of algorithms in networks of different
sizes. On the other hand, there is no consolidated set of benchmark networks
for UDSs, let alone an entire structured database. This is attributable to fac-
tors such as the difficulty of taking measurements in sewer environments and,
according to Pedersen et al. (2021), the little interest of utility companies in
making the datasets publicly available. Consequently, all the applications on
UDSs were entirely developed for real cases, which is positive for the bridging
between the theoretical approaches and the practice, but hampers the develop-
ment of algorithms on the systems, due to the difficulty of comparison and the
process of accounting for particularities of each system.

Regarding the size of the case studies, most of the systems in which the MLSMs
were used were medium or small. Metamodels are most useful in problems with
large computational times, that is, in applications with large water networks.
In the case of WDSs, a common practice to test the effectiveness of a method is
developing a metamodel for a small benchmark network and then using the same
steps for creating a metamodel in a big real case. Even though this practice is
reasonable, it assumes the response surface of both networks is comparable or
similar. However, this is not necessarily the case as reported by Andrade et al.
(2016) who noted contrasting accuracies between big and small case studies when
training metamodels. Exploring solution spaces is already an issue when using
metamodels, independent of the network, as reported by Broad et al. (2005),
but large networks represent additional challenges that increase in complexity
in a non-linear manner.

4.3 Machine learning and multi-layer perceptron limitations

Although the MLP is not the only ML technique, it is the most popular one
among MLSMs. Given that its structure allows it to address multiple types
of problems, it has become a one-size-fits-all model. Nevertheless, it presents
multiple issues, namely, the curse of dimensionality, black-box nature, and rigid
structure. These three shortcoming respectively 1) hinder their use for high
dimensionality problems, 2) limit confidence in their approximations, and 3)
prevent the transferability of trained models across different case studies.

4.3.1 Curse of dimensionality - Metamodeling time

The curse of dimensionality indicates that for a certain level of accuracy, there
is an exponential increase in the required amount of data as the dimensions of
a problem increase (Keogh & Mueen, 2017). Naturally, this problem can be
addressed by reducing the number of input dimensions (i.e., fewer explanatory
variables) using prioritization based on experience, knowledge of the task, or
some automatic procedure such as principal component analysis (PCA). How-
ever, as noted by Maier et al. (2014), for real-world problems reducing the
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number of input features may not be a satisfactory solution because it usually
leads to an approximation that could exclude optimal zones and prevent the al-
gorithms to find optimal solutions. Given this situation, searching for solutions
on the algorithmic side may yield better answers.

The SMs have worked adequately so far but future metamodels are likely to
increase in complexity. This is either due to an increase in the complexity of
UWNs or an increase in the number of input (more design choices/explanatory
variables) or output (more objectives) dimensions. Both drivers increase the size
of the metamodels and consequently the number of training examples. Since the
original models are already expensive to run, creating a large training dataset
might be unfeasible in the first place. The metamodeling time would become
the obstacle. This time is usually disregarded since some authors consider it
not relevant compared to the posterior computational gain in the application.
Nevertheless, this time is important in high dimensional search spaces, as noted
by Razavi et al. (2012b), since the number of design samples required to train
the metamodel could be already prohibitively large.

4.3.2 Black box nature - Deterministic and obscure outputs

Two of the most recurrent criticisms of ML models are their lack of uncertainty
estimation and the lack of their transparency, i.e. little or no ability to explain
the results they obtain. Both are overlooked aspects of metamodeling in the
context of UWNs. The MLSMs return a unique answer without uncertainty
bands or possibilities to explain the combination of inputs that drove to the
final outputs. For SMs, these issues are not major concerns; nevertheless, their
inclusion aids the applications in which the SMs are used.

Regarding uncertainty estimation, a few papers (Raei et al., 2019; Rosin et al.,
2021; She & You, 2019; W. Zhang et al., 2019) estimated the effect of including
a metamodel in their respective application. Not accounting for this uncertainty
can lead to bad approximations of the actual response surface and suboptimal
or unfeasible solutions. Authors have dealt with this difficulty by performing
sensitivity analysis (e.g., Raei et al., 2019) or training multiple models in parallel
with slightly different datasets and averaging the outputs of the models. For
example, Rosin et al. (2021) developed a committee of ANNs with this approach.
However, this analysis requires extra considerations which may increase the
metamodeling time. Some guidelines have been given for the pre-treatment
(Broad et al., 2015) and post-treatment (Broad et al., 2005a) of these SMs
but there is still a lack of focus on improving the management of uncertainty
during treatment, i.e., developing a model that directly considers uncertainty.
Algorithms in the branch of robust ML may contribute to aid in the direct
incorporation of metamodel uncertainty quantification whether it comes from
the data (Wong & Kolter, 2019) or the model (Loquercio et al., 2020) .

Although robust learning allows estimating the uncertainty of a result, it cannot
explain why. This is the area of explainable ML. For water networks’ SMs, being
able to explain the results would help to understand the relationship between
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the decision variables and the objective function for the particular network that
is being surrogated. For example, understanding which pipes (or a combination
of them) play a key role in the resilience or flooding in a water network. There
is a growing interest in the AI community towards explainable models to gain
insights (Bhatt et al., 2020), ensure scientific value (Roscher et al., 2020), and
develop trust in the outcomes of ML models (Dosilovic et al., 2018).

4.3.3. Rigid architecture - Specific case use

One disadvantage of MLSMs is the high degree of specialization in the trained
metamodel. As seen before, these metamodels achieve high accuracies in the
data for which they were trained. However, once they are trained, they become
specific and rigid. Their structure limits its use for other tasks in the same
system or similar applications in other water networks. The metamodel can
be run several times on the same water network but doing the same operation
in a different system requires a new metamodel, which should be trained from
scratch. This is not desirable since the training process could consume most of
the computational budget, especially in large case studies.

One solution is to leverage the training process of other models with transfer
learning to decrease the number of examples to train a new model. Situa-
tions for which transfer learning is desirable are changes in the water network
composition, similar system metamodeling, and change in the behaviour of the
surrogated system. Changing components of the system accounts for scenarios
when components (e.g., pipes, pumps, or tanks) are added to or removed from
the system. Even though the system changes, it is still related enough to lever-
age a pre-trained model on that water network. In a similar way, two networks
can share enough resemblance (e.g., a subsystem of another network, two skele-
tonized networks, or two networks with similar topology or geography) that it
makes sense to use an SM from one as a pre-trained SM for the other. Lastly,
when the system changes and the metamodel no longer applies is a challenge,
also known as concept drift, that can be addressed using transfer learning. Here
the two related water networks are the same but in two different periods.

4.4. Gaps in Knowledge

Based on the above critical analyses of metamodels and the issues identified the
following key gaps in knowledge are summarised here:

1. Lack of depth on optimisation of complex objectives and uncertainty analysis
for water networks using MLSMs. There are still additional and more complex
objectives that can be optimised with the aid of MLSMs, for instance, robustness
and interventions under deep uncertainty.

2. Lack of benchmark water networks, especially for UDSs and complex cases.
First, this hinders the development and comparison of algorithms across studies,
and second, these metamodels still lack research on the changes of the response
surface with the increase in the complexity of the water system, especially for
large systems
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3. Current MLSMs’ limitations prevent advanced metamodeling applications.
MLSMs can easily grow in size when the complexity of the response surface
increases, most of the applications do not consider the uncertainty added by the
metamodel, and its structure makes it rigid and not (re)usable for other cases.

5 Research directions

Based on the identified gaps, three main lines for future research are suggested.
They consider the current and future needs in applications on UWNs as well as
the potential of MLSMs to meet them.

5.1 Advanced applications

The current needs for adaptable water infrastructure are based on drivers such
as growing demographics, urbanization, and climate change. As indicated in the
UN-Water report “Water and Climate Change”, taking adaptation and mitiga-
tion measures benefits water resources management and improves the provision
of water supply and sanitation services. In addition, it contributes to combat
both causes and impacts of climate change while contributing to meeting sev-
eral of the Sustainable Development Goals (UNESCO, 2020). In UWNs, multi-
objective optimisation and uncertainty analysis play a key role in the search for
adaptation measures and decision making, and MLSMs can help improve and
accelerate their implementation.

Optimisation applications will increase in the number and complexity of the
inputs and outputs. Increasing the number of inputs, i.e., decision variables
and design interventions (e.g., nature-based solutions), allows to explore more
alternatives, consider uncertainty, or assess multiple scenarios. On the other
hand, the output of the optimisation is leaning towards complex objectives such
as multi-objective robustness (e.g., Kasprzyk et al., 2013), multiple technical
performance metrics (e.g., Fu et al., 2013), pro-active maintenance (Kumar
et al., 2018), complex water quality indicators (Jia et al., 2021), and human
values (Doorn, 2021). Multi-objective optimisation allows identifying solutions
balancing trade-offs among objectives, for instance, cost and resilience (Wang
et al., 2015). Naturally, when considering more objectives, the computational
load increases, especially when those objectives are computationally expensive
(e.g., robustness). In previous phases of research on optimisation, metamodels
were seen as an aid, but as optimisation gradually evolves to consider additional
and more complex objectives, metamodels become indispensable (e.g., Beh et
al., 2017).

Regarding uncertainty analysis, it is necessary to have fast, reliable, and flex-
ible metamodels that can adapt to the multiple conditions in which the sys-
tems are evaluated and under multiple criteria. Traditionally, simplified models
have been preferred for this task; however, RS metamodels become appealing
alternatives when dealing with more complex objective functions and original
models. Metamodels should play a key role in the development of frameworks
for robustness-driven design. This application has major implications for UDSs,
since no MLSM study focused on uncertainty analysis, even when the evidence
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suggests the criteria for the design of these systems is not necessarily robust
(Ng et al., 2020). Although uncertainty analysis entails an intrinsic increase
in the computational effort, the benefits they bring outweigh the challenges it
represents. According to the IPCC (2021b), UDSs are expected to receive more
intense rainfall events based on climatic projections but considerable uncertainty
remains.

The community should further research combined RS-LPFB applications, to
further integrate MLSMs with physically-based models for accelerating the un-
derlying hydrodynamic engines. Likewise, physically-based models could be
hybridized by incorporating an ML model that corrects the outputs of the orig-
inal model for higher accuracy accounting for the real behaviour of the system.
Looking ahead, ML algorithms could detach from the physically-based model
and replace its functioning with a cheaper version to run based on increasingly
available real-world data (e.g., digital twins for UWNs (IWA, 2021)).

5.2 Benchmarking and large network behaviour

The lack of benchmark models is a gap that was already identified by Maier et
al. (2014) who set the characteristics and recommendations of valuable bench-
marks, including non-trivial real-world problems with a representative range
of decision problems characteristic of the water systems. The review shows
that UDSs lack such benchmarks. To overcome this issue, we recommended to
implement a similar approach to that of the Kentucky database, with applica-
tions such as real-time control, outflow, and flood prediction. For WDSs, it is
appropriate to enlarge the current databases to account for new objectives, inter-
ventions, performance metrics, and real case examples. Regarding metamodels,
the benchmarks should also include a reference model to compare computational
saving and accuracy, with suggested performance metrics, such as NSE, RMSE,
or the number of model executions.

As Goodfellow et al. (2016) indicate, having benchmark databases with real
cases is one of the reasons why deep learning has recently become a crucial tech-
nology in several disciplines. In AI, datasets went from hundreds or thousands
of examples in the early 1980s up to datasets with millions of examples after
2010. Nowadays, thanks to the increase in connectivity and digitalization of
our society, a large amount of ML algorithms can be fed with the information
they require to achieve high accuracy. Since the ML and DL models are de-
pendent on their training sets, their success goes hand in hand with the size
and quality of available datasets, preferable with real information. The UWNs’
research community is moving the first steps in this direction. One example
concerns the UDS of the Bellinge dataset (Pedersen et al., 2021), a suburb to
the city of Odense, Denmark that is now available for “independent testing and
replication of results from future scientific developments and innovation within
urban hydrology and urban drainage system research”. This dataset includes 10
years of asset data (information from manholes and links), sensor data (level,
flow, and power meters), rain data, hydrodynamic models (MIKE urban and
EPA SWMM), and other information. Similar examples are needed to enable
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the exploration of metamodels’ responses in networks of different characteristics
(e.g., size, connectivity, slope).

As for the size of the networks, further research is required to assess the response
surface of large networks. Specifically, new benchmark datasets should also
include complex network cases for their study. These can be large networks
or medium-size cases with high complexity. Considering that the larger the
network the higher the required time to generate and use the training data,
significant efforts are required on this matter. Metamodels could aid in reducing
the computational times that obstruct studying the response surface of large and
complex systems. Nonetheless, new metamodels are required to account for the
complexity of these cases and use as few training scenarios as possible.

5.3 Unexplored advanced metamodeling technologies

ML is the area with the highest growth in academic output in recent years.
However, the field of MLSMs for UWNs has not yet considered the new tools
and algorithms recently developed by researchers in fundamental AI or other
applied disciplines. These advancements include DL architectures that express
assumptions of the data in the ANNs for robust, interpretable, and transferrable
models. This new wave of AI formalizes the attempts to add knowledge about
modelled processes as well as extract knowledge from the results.

5.3.1 Inductive bias – Deep learning: Graph Neural Networks

The curse of dimensionality can be addressed by including inductive biases. Fol-
lowing the work of Battaglia et al. (2018), we define the inductive bias as the
“expression of assumptions about either the data-generating process or the space
of solutions”. Inductive bias can be seen as well in the architecture of the model
by leveraging the inner structure of the data, which could be spatial, tempo-
ral, or relational. Exploiting the structural information of the data can reduce
the number of parameters, and consequently the required training examples by
parameter sharing and sparsity of connections. The data structure gives infor-
mation about the similarity of the data points in a relevant dimension (e.g.,
distance, time, connection). In that sense, similar data can be treated analo-
gously (parameter sharing) and dissimilar data can remain unrelated (sparse
connectivity).

Inductive bias nudges a learning algorithm to prioritize some solutions over
others. This allows finding high-performing solutions more easily than when
it is not considered. Ideally, involving inductive bias improves the search for
solutions without compromising the performance, as long as the right inductive
bias is chosen; otherwise, it can lead to suboptimal performance (Battaglia et al.,
2018). For example, when surrogating the pressure at the nodes of a WDS with a
neural network (e.g., Broad et al., 2005; Meirelles et al., 2017) there are multiple
metamodel solutions, i.e., architectures with specific parameter values that can
approximate the response surface described by the training data. Nevertheless,
when adding inductive bias, the set of possible solutions shrinks to a subset of
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solutions that comply with predefined characteristics, for example, having graph
structure, following physical laws, or agreeing with measurements.

The most common components in DL are fully connected, convolutional, recur-
rent, and, more recently, graph layers. The fully connected layers have a weak
inductive bias, while each of the remaining exploits some relation or invariance
in the data. The convolutional layers typical of convolutional neural networks
(CNNs) leverage the regular structures in grids, such as images, and connects in-
formation according to Euclidean closeness. Recurrent neural networks (RNNs)
consist of recurrent units which consecutively process data sequences, such as
time series, and connects information according to sequential similarity. On
the other hand, graph neural networks (GNNs) extend DL methods to non-
Euclidean data, such as graphs, where entities are connected by relations or, in
graph terminology, nodes connected by edges.

Given their relational inductive bias, GNNs are the most suitable DL architec-
ture for applications in UWNs, since the natural structure of these systems is
a graph. Researchers have already exploited graph theoretical concepts to de-
velop decomposition models of WDNs (Deuerlein, 2008), assess the resilience of
sectorized WDNs (Herrera et al., 2016), as well as identifying critical elements
in UWNs (Meijer et al., 2018, 2020). Furthermore, there are already some appli-
cations of GNNs in UWNs. In WDSs, Tsiami & Makropoulos, (2021) employed
this architecture for cyber-physical attack detection using a graph created from
sensors in the water system. In UDSs, Belghaddar et al. (2021) applied this
method to database completion of wastewater networks.

This architecture operates on the graph domain, which allows it to leverage
the pre-existing network topology of the data. This architecture has gained
considerable attention in the last years due to its ability to include relational
structure from connected entities. Even though GNNs’ outputs continue to be
hardly explainable, there are efforts to generate explanations of their outputs,
e.g., GNNExplainer (Ying et al., 2019). As noted by Battaglia et al., (2018),
“the entities and relations that GNNs operate over often correspond to things
that humans understand (such as physical objects), thus supporting more in-
terpretable analysis and visualization”. In this way, GNNs are not entirely
explainable but they are more explainable than other DL architectures.

It is also possible to use combinations of layers in problems that contain more
than one structure such as in the case of UWNs, which have temporal, spatial,
and topological variability. An example of the application of these graph models
in a civil infrastructure was developed by Sun et al. (2020) who included the
spatial and temporal relations in a road network for traffic forecasting. This in-
frastructure has multiple parallels with UWNs, including its graph connectivity,
spatial-temporal variability, and human interaction. Another similar infrastruc-
ture with more examples can be found in power systems for which GNNs have
been used in key applications such as fault scenario application, time series pre-
diction, power flow calculation, and data generation (Liao et al., 2021). For
a review in depth of GNN architecture, the reader is referred to Zhou et al.
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(2018).

This architecture presents an opportunity to leverage the present structure of
the data generated in the UWNs to decrease the number of parameters and
consequently the required training data; which enables creating SMs of larger
networks and many and more complex objectives. By conditioning the char-
acteristics of the solutions, the metamodels gain the possibility to generalize
to similar cases. For example, pipe changes in a network configuration could
be better represented with a GNN-based metamodel. This GNN SM could be
able to adjust itself without modifying the underlying structure, which would
probably be required in the case of other metamodels that do not consider this
inductive bias.

5.3.2 Third wave of Artificial Intelligence

The US Defense Advanced Research Projects Agency (DARPA, 2016) separates
the different phases of AI into three waves. The first wave refers to the past
approaches and the birth of AI, the second wave is the current and popular
phase of high-performing black boxes, and lastly, the third wave is proposed for
the future of AI with models leaning towards robustness and explainability.

Robustness refers to the ability to include uncertainty in the calculation of the
outputs of a model, in this way the user not only receives a deterministic answer
but a range of possible values, usually represented by an expected value (e.g.,
mean) and a measure of uncertainty (e.g., variance). According to Gawlikowski
et al. (2021), methods for estimating uncertainty in ANNs can be split into
four types: single deterministic methods, bayesian methods, ensemble methods,
and test-time augmentation methods. Each of these lines offers an estimation
of the degree to which the neural network is certain of the output. This aspect
is relevant when quantifying how likely it is for the metamodel to detach from
the response surface which may cause, depending on the application, to omit
optimal solutions, miss outflows, or underestimate floods. Recommended meth-
ods for implementation on MLSMs include Bayesian neural networks (e.g., Zhu
& Zabaras, 2018) or single deterministic methods, the latter is recommended
based on the low additional computational burden they include.

Research in explainability has also gained popularity in recent years. In the case
of MLSMs, having an explainable model would allow us to better understand
the response surface of the original model or the solution space. An improved
comprehension of the response surface would facilitate obtaining a better insight
on the behaviour of different algorithms (e.g., evolutionary methods); ultimately,
contributing to what type of heuristic is best suitable in each application in water
network which is a topic in which we have still very little understanding of (Maier
et al., 2014). On the other hand, solution space explanation would allow gaining
insight about which and components in the real system affect its performance,
but most importantly, how they affect it. This could drive the interventions in
the physical water network to improve its performance. Recommended models
for implementation in this category are GNNs, as already reported by Tsiami &
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Makropoulos (2021), who were able to perform a removal analysis to quantify the
contribution of each considered component (e.g., valves, tanks, and pumps) of
the physical water network to the model’s performance. Since GNNs’ structure
resemble the underlying system, it is possible to relate events on the metamodel
to the actual system.

5.3.3 Transferrable AI models

The reviewed studies in this paper presented a methodology for training a meta-
model to surrogate a computationally expensive model. Although the method-
ology is transferrable, meaning the steps can be followed and repeated to obtain
a similar metamodel in another case study, the metamodel itself cannot be
transferred to a new case study. This implies that all the metamodeling time
spent on training is specific for every case. Through transferrable models, the
authors may develop not only methodologies but also pre-trained SMs, which
can be adapted to other cases lowering the amount of training needed for this
new network.

Having a transferrable model would allow training the metamodel with data
not only from the case study at hand but also from other, real and synthetic
cases. For example, the benchmark datasets discussed previously. This increase
in available information to train on is expected to improve the performance of
the metamodel or even allow it to exist for cases in which data is scarce, for
example, very computationally expensive UWNs in which training examples are
costly. Once again, inductive bias plays a role, since the assumptions added to
the algorithm delimit a smaller solution space, the ML models can be used as
pre-trained solutions for other tasks. In the AI domain, this practice is referred
to as transfer learning. Transfer learning is mainly implemented for specialized
deep learning methods, i.e., architectures with strong inductive bias. It has been
successfully implemented for applications such as diagnosis of medical images
using CNNs (Vogado et al., 2018), prediction of air pollutants using RNNs
(Hang et al., 2020), and bioinformatics as well as social-network classification
tasks with GNNs (Verma & Zhang, 2019), among others (Weiss et al., 2016).

For transferrable SMs in UWNs, GNNs seem to be the natural option based on
the agreement between the structure of the real system and the inductive bias
corresponding to the GNNs. In an analogous way that CNNs learn filters that
are independent of the input (i.e., images), GNNs learn filters that can be used
across cases (e.g., water networks). Adding the structure and physics to the
metamodel allows including more domain knowledge in the ANN that improves
generalization capabilities. A relevant example of a model like this is the mass
conserving RNN for rainfall-runoff modelling developed by Hoedt et al. (2021)
in which the parameters used in the model resemble the mass conservation prin-
ciple, which increased the accuracy and improved the model’s interpretability.
At the same time, transferability opens the door to new applications, such as
online optimisation of interventions, by learning the effect of changes in the
topology and components of the network.
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Using physical information, such as the knowledge embedded in the hydrody-
namic models, also allows generating hybrid and general models. These models
allow bridging the best of two domains: physical-based and data-driven. On this,
Vojinovic et al. (2003) indicated that “the major advantage of integrating both a
deterministic (numerical) model and a stochastic (data-driven) model over using
the stochastic data-driven model alone is that the already available determinis-
tic model quality is exploited and improved, instead of starting from scratch and
throwing away all knowledge.” Furthermore, combining the domain knowledge
with transferable models opens the possibility of creating general models. This
type of model detaches from the training set in which it was trained so that its
predictions can be applied in unseen scenarios. Following this trend, Kratzert
et al. (2019) developed a recurrent ANN trained on basins from a continental
dataset using meteorological time series data and static catchment attributes,
and they were able to outperform hydrological benchmark models calibrated on
individual catchments. The analogous application in UWNs would be an ML-
based hydrodynamic model trained on a set of distribution or drainage systems
which can generalize to independent unknown water networks. Such “DeEP-
ANET” or “DeepSWMM” models can be developed by leveraging the inductive
bias of GNNs, and accounting for the time dimension with recurrent layers or
by resorting to an encoder-decoder architecture (Du et al., 2020).

6 Conclusions

This work reviews the current state of the application of MLSMs in urban
water networks and proposes promising forward directions based on recent and
successful developments in ML.

In terms of purpose, the main uses of MLSM in UWNs are optimisation and
real-time problems. Even though MLSM accelerate optimisation algorithms
by increasing the speed of individual iterations, these algorithms have multiple
disadvantages. The training process can be time-consuming and the required
size of that dataset cannot be known a priori as it depends on the complexity of
the input-output mapping. For case study type, the UWNs in which MLSMs are
applied vary in size and type. For analysing the complexity of the case studies,
we preffered to consider WDSs and UDSs separately. Regarding its use in WDSs,
the papers follow a clear pattern: the development and trial are usually made
in medium or small benchmark networks, and the posterior implementation
of the metamodel is done in a large real network. On the other hand, UDSs
do not count with applications on benchmark networks due to their lack of
availability. In terms of the metamodel, except for some applications of SVMs
or RNNs, the vast majority of applications used MLP as SM. This method has
been successfully implemented due to its high accuracy and flexibility regarding
the inputs and outputs that it can map. Nevertheless, the MLSMs present
multiple drawbacks that may even harm the development of an application. It
is advisable to consider if an MLSM is worthwhile before starting its training.

Based on the reviewed literature, the following issues and gaps in knowledge
were identified in terms of limitations of existing MLSMs. These problems
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include limitations on the MLSMs, lack of depth in current applications, and
insufficient benchmarking datasets.

• Regarding metamodels’ limitations, current MLSMs have the following is-
sues: they can easily grow in size when the complexity of the response
surface increases, most of the applications do not consider the uncer-
tainty added by the metamodel, and its structure makes it rigid and not
(re)usable for other cases.

• In terms of applications, optimisation is where most of the SMs are cur-
rently used; nevertheless, there are still additional and more complex ob-
jectives that can be optimised with the aid of MLSMs, for instance, ro-
bustness and interventions under deep uncertainty.

• On case studies, the reviewed papers denote two main issues: first, there
is a lack of UDSs benchmarks, which hinders the development and com-
parison of algorithms across studies, and second, these metamodels still
lack research on the changes of the response surface with the increase in
the complexity of the water system, especially for large systems.

The following research directions are suggested to address the above key gaps
in knowledge:

• Regarding metamodeling methods, further research is required on ad-
vanced metamodeling techniques that include: inductive bias, robustness,
and transferability. The notion of inductive bias allows leveraging prior
information to reduce the required training samples. Examples of this
bias include adding physical laws, coherence with sensor data, or consid-
ering the underlying structure of the data – space, time, or topology– In
this regard, the recently developed GNNs resemble the already existing
architecture of the urban water networks and offer the highest fit to the
data in these systems. Furthermore, the new approach for AI models is
to focus on the robustness and explainability of the models which offer
insight into the applications and opportunities for improvement in the ac-
tual systems. Moreover, implementing the new architectures of ML as
an SM would allow transfer learning, which represents the ability to use
pre-trained models and save computational budget.

• On applications, additional efforts are encouraged in two areas in which
metamodels will increasingly be more required: uncertainty analysis and
multi-objective optimisation, especially when robustness metrics are used
as optimisation objectives. Further research is required on other less de-
veloped applications, namely, real-time predictions, state estimation, and
to a lesser extent, LFPB complements. These applications have been min-
imally explored and most of them have only been used for a specific type
of water network.

• Regarding case study type, it is crucial to develop benchmark UWNs, es-
pecially of UDSs, and complex networks. This data will facilitate training,
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testing, and comparing new metamodels. These new benchmarks could
incorporate information on leakages, demand patterns, cyber-attacks, rain-
fall, or surveillance data as well as performance metrics as reference points
to compare performance.

Exploring the potential of MLSMs for approximating UWNs’ components and
correcting predictions with real data can lead to independent ML models of the
water networks that leverage the physical domain knowledge and the measure-
ments. New MLSMs are encouraged to leverage the inductive bias offered by
the increasing data to help UDS and WDS operators. The new advancements
in ML, especially GNNs, have great potential to advance surrogate modelling
in UWNs. Water network modellers can speed up calculations for larger and
more complex cases, being able to design more robust and overall better urban
water systems.
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