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Abstract18

Atmospheric neutral density is a crucial component to accurately predicting and19

tracking the motion of satellites. During periods of elevated solar and geomagnetic ac-20

tivity atmospheric neutral density becomes highly variable and dynamic. This variabil-21

ity and enhanced dynamics make it difficult to accurately model neutral density lead-22

ing to increased errors which propagate from neutral density models through to orbit23

propagation models. In this paper we investigate the dynamics of neutral density dur-24

ing geomagnetic storms. We use a combination of solar and geomagnetic variables to de-25

velop three Random Forest machine learning models of neutral density. These models26

are based on (1) slow solar indices, (2) high cadence solar irradiance, and (3) combined27

high-cadence solar irradiance and geomagnetic indices. During quiet-times all three mod-28

els perform well; however, during geomagnetic storms the combined high cadence solar29

iradiance/geomagnetic model performs significantly better than the models based solely30

on solar activity. Overall, this work demonstrates the importance of including geomag-31

netic activity in the modeling of atmospheric density and serves as a proof of concept32

for using machine learning algorithms to model, and in the future forecast atmospheric33

density for operational use.34

1 Plain Language Summary35

Even though satellites are in space they still experience drag or friction as they fly36

through what little atmosphere there is along their orbit. This drag causes satellite or-37

bits to decay overtime. During periods of enhanced space weather, such as solar flares38

or geomagnetic storms, this drag increases which can make it difficult to track and pre-39

dict the motion of satellites. In this work we develop a new model for atmospheric den-40

sity, they key contributor to satellite drag, utilizing combined solar and geomagnetic data.41

This new model performs better then models based only on solar data especially dur-42

ing geomagnetic storms, periods of extreme space weather. Overall this work highlights43

the importance of near Earth processes in enhancing satellite drag during geomagnetic44

storms.45

2 Introduction46

The Sun-Earth system is a highly dynamic and extremely coupled environment.47

The physical processes coupling and driving the dynamics of the solar wind-magnetosphere-48

ionosphere-thermosphere system can affect critical ground- and space-based technolog-49

ical infrastructure (e.g., Blake et al., 2016; Cassak et al., 2017; Morley, 2020; Licata et50

al., 2020; Bodeau & Baker, 2021; Chakraborty et al., 2022; Klenzing et al., 2023). For51

example, intense ionospheric currents can cripple ground-based power systems (Oughton52

et al., 2018; Cid et al., 2020), highly energetic electrons in the Earth’s radiation belt can53

lead to satellite anomalies and even complete failures (e.g., Green et al., 2017; Berthoud54

& Agass, 2022), ionospheric irregularities can affect GNSS signal propagation and hin-55

der communications and ionosphere-thermosphere heating can increase atmospheric den-56

sity leading to increased satellite drag, shorter satellite lifetimes, and even the complete57

loss of satellite infrastructure (e.g., Carter et al., 2020; Thayer et al., 2021; Fang et al.,58

2022; Carter et al., 2023). Mitigating these effects requires high-fidelity models capable59

of capturing the dynamic processes adversely affecting technological infrastructure (e.g.,60

Y. Zhang et al., 2018; Sutton, 2018; Licata & Mehta, 2022; Ponder et al., 2023). Such61

models can be used in operational environments to aid stakeholders in making key de-62

cisions to protect various technologies and infrastructure.63

Of the processes and impacts described above, accurately modeling atmospheric64

density is particularly interesting to space weather forecasters and stakeholders (e.g., Berger65

et al., 2020). Robust models capable of forecasting the dynamics of atmospheric den-66
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sity increase the fidelity of orbit propagation, allowing for more accurate tracking of satel-67

lites and debris in low-Earth orbits (LEO). As the number of satellites and orbital de-68

bris in LEO continues to grow, such tracking will become increasingly important as it69

is key for identifying potential collisions and defining collision avoidance maneuvers.70

The density of the ionosphere-thermosphere system is driven by a combination of71

external forcing from the Sun (Lilensten et al., 2008) and the magnetosphere (Knipp et72

al., 2004) and internal processes in the lower atmosphere (Liu, 2016). Generally, Extreme73

Ultra Violat (EUV) and Ultra Violet (UV) emissions from the sun are the dominant sources74

of the dynamics of atmospheric density driving variations on time scales of the order of75

several days, a solar rotation, and over a solar cycle, (e.g., Qian & Solomon, 2011). How-76

ever, during geomagnetic storms, energy input and forcing from the magnetosphere are77

the dominant drivers of the dynamics of atmospheric density (e.g., Knipp et al., 2004;78

Zesta & Oliveira, 2019) driving rapid enhancements on time scales from several hours79

(and potentially shorter), which can last for several days (e.g., Liu & Lühr, 2005; Oliveira80

& Zesta, 2019). During periods of quiet solar and geomagnetic activity, internal processes81

such as atmospheric waves can contribute significantly to the dynamics and redistribu-82

tion of atmospheric density (Liu, 2016). Together, solar, magnetospheric, and internal83

forcing drive a complex set of dynamics in the ionosphere-thermosphere system across84

a broad range of temporal scales, spatial scales, and spatial regions including global and85

local variations with latitude, longitude, and altitude. In this work, we focus on quan-86

tifying and modeling the storm-time dynamics of atmospheric density, a key challenge87

for space weather modeling and forecasting.88

During geomagnetic storms, energy input into the ionosphere-thermosphere sys-89

tem in the form of field-aligned currents (e.g., Lühr et al., 2004), particle precipitation90

(Deng et al., 2013, e.g.,), and joule heating (e.g., Kim et al., 2006) can lead to rapid changes91

in atmospheric density ranging from 50-800% (Forbes et al., 1996; Liu, 2016; Oliveira92

& Zesta, 2019). During storms, density enhancements are first observed at higher mag-93

netic latitudes, quickly migrating to lower latitudes over a few hours (Zesta & Oliveira,94

2019). They are typically scaled with the storm’s size, such that the largest changes in95

density are observed during the most extreme geomagnetic storms (Oliveira & Zesta, 2019).96

In general, existing thermospheric models have difficulty capturing the dynamic spatiotem-97

poral evolution of atmospheric density during geomagnetic storms. This is partly because98

the models’ cadence and spatial resolution are insufficient to capture storm-time ther-99

mospheric dynamics (e.g., Bruinsma et al., 2018). Recent model developments incorpo-100

rating higher cadence solar and geomagnetic inputs have helped address this; however,101

additional research and model development are required to accurately simulate storm-102

time atmospheric density and, more importantly, accurately forecast atmospheric den-103

sity for use in operational space weather.104

In this work, we investigate the solar and geomagnetic drivers of atmospheric den-105

sity changes during geomagnetic storms (storm-time) and geomagnetic quiet periods (quiet-106

time). Building on this, we develop three Random Forest machine learning models of at-107

mospheric density, one using low-cadence solar indices, a second using high-cadence so-108

lar spectra, and a third using combined high-cadence solar spectra and geomagnetic in-109

dices. During quiet-times all three models perform well; however, during geomagnetic110

storms the combined high-cadence solar/geomagnetic model performs significantly bet-111

ter than the models based solely on solar activity. Overall, this work demonstrates the112

importance of accurately capturing geomagnetic activity in the modeling of atmospheric113

density and serves as a proof of concept for using machine learning algorithms for hind-114

casting, nowcasting, and eventually forecasting atmospheric density for operational use.115

In the subsequent sections, we detail the data sets used to study and quantify the116

drivers of storm- and quiet-time atmospheric density. We then detail the analysis of the117

relation of solar indices, solar irradiance, and geomagnetic activity to atmospheric den-118

sity during storms and quiet times. Following this, we describe the development of three119
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Random Forest models, the quantification of the performance of each model, as well as120

the relative importance of each feature used within each model. The three models are121

then compared during four increasingly active periods of geomagnetic activity and the122

model errors are quantified as a function of storm-time and geomagnetic activity. These123

results are summarized, and we conclude with future work and directions for extending124

the machine learning models developed here.125

3 Data Sets126

In this work, we use a combination of in-situ neutral density measurements from127

the dual Gravity Recovery and Climate Experiment (GRACE A and B) and the CHAl-128

lenging Minisatellite Payload (CHAMP) satellites, solar irradiance data from the Flare129

Irradiance Spectral Model 2 (FISM2, Chamberlin et al., 2020; Solomon, 2005), solar in-130

dices used in atmospheric models (Bowman et al., 2008; Tobiska et al., 2008), and so-131

lar wind data and geomagnetic indices from the OMNI dataset (King & Papitashvili, 2005).132

CHAMP was launched in 2000 (Reigber et al., 2002), and shortly after, the dual133

spacecraft GRACE mission was launched in 2002 (Wahr et al., 2004). Both missions were134

launched into near-polar low-Earth circular orbits to altitudes of a radius of 4̃60 km and135

5̃00 km, respectively. This work utilizes neutral densities derived from high-precision ac-136

celerometers onboard each spacecraft (Sutton et al., 2005; Sutton, 2009). The along-track137

density is then normalized to an altitude of 400 km using the empirical global reference138

atmosphere model NRLMSIS-00 (Picone et al., 2002). This normalization allows us to139

remove altitude as an independent variable when characterizing the dynamics of atmo-140

spheric neutral density as a function of solar and geomagnetic activity. The neutral den-141

sity data is available through the University of Colorado Boulder Space Weather Data142

Portal.143

The FISM2 and solar indices are used as proxies for solar energy input to the up-144

per atmosphere, leading to variations in neutral density. The FISM2 flare data set is an145

empirical model of solar spectral irradiance from 0.01-190 nm in 0.1 nm spectral bins with146

a 60-second cadence (Chamberlin et al., 2020). Here, we use a reduced FISM2 flare data147

set comprised of 23 spectral bands (Solomon, 2005). These bands are commonly used148

in global time-dependent thermosphere-ionosphere models as they reduce both the di-149

mensionality of model input data and the computational overhead of models without ex-150

cessive loss of model accuracy (Solomon, 2005). The solar indices used in this study are151

the F10, S10, M10, and Y10 indices and their 81-day centered averages. These indices152

are used in the semi-empirical thermosphere model JB2008 and have a 24-hour cadence153

(Bowman et al., 2008). The indices correspond to different portions of the solar irradi-154

ance spectrum spanning UV to EUV to X-Ray; a detailed description of the indices can155

be found in Tobiska et al. (2008). OMNI data from NASA’s Space Physics Data Facil-156

ity provide solar wind and geomagnetic observations (King & Papitashvili, 2005). These157

observations can be related to physical processes that drive magnetosphere and ionosphere158

dynamics, including geomagnetic storms, substorms, and enhanced precipitation. Here,159

we use OMNI to quantify the solar wind and geomagnetic drivers of elevated neutral at-160

mospheric density during both quiet and storm-time conditions. Finally, we use a database161

of geomagnetic storms between 2002-2012, inclusive, so that the data sets can be sep-162

arated by quiet-time, storm-time, and storm phase (main or recovery). The database of163

storms is developed using the methodology outlined in Murphy et al. (2018, 2020).164

The CHAMP, GRACE, FISM2, solar, and OMNI data have varying cadences and165

time stamps. The CHAMP and GRACE data have a cadence of ∼50s, the solar indices166

and FISM2 flare data have a cadence of 24h and 60s (respectively), and the OMNI data167

has a 5m cadence. These data sets must have similar cadences and timestamps to per-168

form any relational study between atmospheric density and solar and geomagnetic ac-169

tivity. This is typically achieved by interpolating the data sets to a common abscissa.170
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However, interpolation routines perform poorly for data that rapidly vary, in this case,171

the CHAMP and GRACE density data sets. Here, we use a nearest-neighbor approach172

matching the density and solar data sets to the time stamps of the OMNI data. Each173

satellite is independently matched to the driver datasets (solar, FISM2, OMNI), creat-174

ing a total of three databases: GRACE-A, GRACE-B, and CHAMP. The time stamps175

of each database are then tagged as either quiet or storm-times, with storm-time further176

tagged by storm phase using the storm list Murphy et al. (2018, 2020). These databases,177

spanning 2002-2012, are used to investigate the dynamics of neutral density as a func-178

tion of solar and geomagnetic activity and subsequently develop a random forest model179

of neutral density. In developing the random forest models, the GRACE-B database is180

used to train the model, and the GRACE-A and CHAMP databases are used as out-of-181

sample validations.182

4 Atmospheric Density vs Solar and Geomagnetic Activity183

The dynamics of atmospheric neutral density resulting from solar and geomagnetic184

forcing is complex, responding to a combination of solar drivers and varying geomagnetic185

processes, including geomagnetic storms, substorms, field-aligned currents, and energetic186

particle precipitation. In this section, we investigate the dynamics of atmospheric den-187

sity observed by the GRACE-B satellite as a function of quiet and storm-times, solar ir-188

radiance, solar wind activity, and geomagnetic activity. This analysis is used to inform189

the development of a random forest model of neutral atmospheric density and identify190

key features (independent variables) for the model.191

Figure 1 shows the distribution of atmospheric neutral density at GRACE-B as a192

function of quiet-times and storm-times. The top row shows the probability distributions193

(integrates to unity), and the bottom row shows the cumulative distributions; quiet times194

are shown in blue, storm-times in red, main phase in orange, and recovery phase in yel-195

low. Evident in both the probability and cumulative distributions is that atmospheric196

density is enhanced during geomagnetic storms. The probability distributions (a-c) show197

that quiet-time densities are concentrated at lower values with a sharp peak and a rapid198

decay. In contrast, storm-time densities have smaller peaks at low densities and a clear199

enhancement in atmospheric density as compared to quiet times. The cumulative dis-200

tributions (d-e) show the same trend; quiet-time densities rapidly reach the asymptotic201

limit of 1 at significantly lower densities than storm-time and storm phase such that higher202

densities are observed more often during storms than quiet times.203

The green lines on the cumulative distributions (d-e) show the maximum difference204

between the quiet and storm-time distributions. This value can be used in the Kolmogorov-205

Smirnov (KS) test to determine whether two data sets are consistent with being drawn206

from the same distribution. Here, the KS test is used to quantify that the quiet-time den-207

sity distribution is statistically different from the storm-time distribution. In the case208

of storms, the difference between the quiet-time and storm-time and storm phase den-209

sities is large, and the p-value is small. This suggests that the distribution of storm-time210

atmospheric density is statistically and significantly different than the quiet-time distri-211

bution of atmospheric density (for brevity, the values from the KS statistic are not shown).212

Expanding on the analysis shown in Figure 1 we use correlation matrices to inves-213

tigate the solar and geomagnetic drivers of atmospheric density during quiet- and storm-214

times. Figure 2 (a-c) shows the correlation matrices of atmospheric density and solar in-215

dices, atmospheric density and the FISM2 dataset, and atmospheric density and the OMNI216

dataset (y-axis) as a function of all-times, quiet-times, storm-times, storm main phase,217

and storm recovery phase (x-axis). Figure 2 (a) shows that each solar index and its 81-218

day centered average correlate well with atmospheric density. The highest correlations219

are observed during quiet-times (0.80-0.85), while the lowest is during storm-times and220

specifically the main phase of storms (0̃.8). The correlations between atmospheric den-221
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Figure 1. Top, probability distributions of atmospheric density at GRACE-B as a function

of (a) quiet- and storm-times, (b) quiet-times and storm main phase, and (c) quiet times and

storm recovery phase. Bottom, cumulative distributions of atmospheric density as a function of

(d) quiet- and storm-times, (e) quiet-times and storm main phase, and (f) quiet-times and storm

recovery phase. The green line in the cumulative distributions shows the maximum difference

between each plot’s quiet-time distribution and storm distribution.
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sity and the M10 index are also generally the largest. Of note, the similarity in the cor-222

relations between the day of and 81-day centered average correlations suggest that so-223

lar driving is important for long term variations in atmospheric density on the order of224

several months, as opposed to short term variations on the order of hours and days, time-225

scales associated with geomagnetic storms.226

The correlation between the 23 spectral bands from FISM2 and atmospheric den-227

sity is shown in Figure 2 (b). Here there are clear differences between quiet and storm-228

times for several bands; several shorter wavelengths between 1.300 − 18.950 nm and229

select longer wavelengths 85.550C , 94.440C , 103.850C nm correlate well during quiet230

times, while the 85.550A nm correlates well during quiet and storm intervals. The cor-231

relations in these bands are comparable to those of the solar indices, the largest rang-232

ing from 0.77-0.81 during quiet-times and 0.65-0.73 during storm-times. Compared to233

panel (a), the results in panel (b) suggest that key spectral bands, 1.3, 2.5, and 85.5 nm,234

are important to the dynamics of atmospheric density during both quiet- and storm-times.235

Finally, Figure 2 (c) shows the correlations of atmospheric density with solar wind236

variables and geomagnetic indices. These correlations are lower than those of both the237

solar indices and FISM2 wavebands. However, the correlations peak with auroral activ-238

ity as measured by AE, AU, and AL, and storm activity as measured by Sym-H. The239

correlations in Figure 2 (c) are lowest for solar wind variables, the largest being 0.255240

between solar wind velocity and main phase atmospheric density.241

Taken together, Figures 1 and 2 demonstrate two key points. First, solar activity242

is the key factor controlling the background level of atmospheric neutral density, as demon-243

strated by the high correlations between solar indices and select spectral bands from the244

FISM2 database. Second, storm-time atmospheric neutral density has a different distri-245

bution than quiet times with increased higher density values and proportionally fewer246

lower density values. Previous research has suggested that the difference between storm-247

time and quiet-time densities is likely the result of increased geomagnetic activity lead-248

ing to enhanced joule heating, field-aligned currents, and auroral precipitation during249

geomagnetic storms (Knipp et al., 2004). These results are used to develop and compare250

three random forest atmospheric density models. The goal is to develop a high-cadence251

model of an atmospheric density capable of capturing both quiet- and storm-time dy-252

namics.253

5 Atmospheric Density and Random Forests254

Machine learning has proven to be a vital resource in Heliophysics. It has been used255

to develop models of magnetospheric dynamics (Bortnik et al., 2018; Li et al., 2023), in256

space weather forecasting (Hua et al., 2022; Iong et al., 2022), and as a tool for scien-257

tific discovery (Camporeale et al., 2022). Here, we utilize Random Forests, an ensem-258

ble machine-learning algorithm based on Decision Trees. In short, Decision Trees cre-259

ate a model that predicts the value of a target, in this case, atmospheric density, by learn-260

ing simple decision rules inferred from the data features or independent variables, here261

solar indices and FISM2 and OMNI data. A Random Forest trains several Decision Trees,262

averaging the target from each Tree to obtain a single ensemble target.263

Random Forests are particularly useful in model development and model compar-264

isons as there are several methods to investigate and quantify the relative importance265

of features within a model. Here, we use the mean decrease in accuracy (MDA, also re-266

ferred to as permutation importance). The MDA measures the average decrease in ac-267

curacy when a feature vector is randomly shuffled. Randomly shuffling a feature decreases268

model accuracy, the larger the decrease in accuracy of the model the more important the269

feature is. In this methodology, a Random Forest model’s accuracy can be measured by270

one or several metrics such as correlation (r) or mean squared error (Morley et al., 2018).271
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Figure 2. Correlation matrices for atmospheric density and (a) solar indices, (b) the FISM2

dataset and (c) solar wind data and geomagnetic indices (y-axis) as a function of all-time, quiet-

time, storm-time and storm main and recovery phases (x-axis). The color and number indicate

the absolute value of the correlation.
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The square of the correlation coefficient, median absolute error, mean absolute error, and272

mean absolute percent error were used to measure model performance (below we present273

a subset of these results). The MDA determines the overall importance of features in the274

final models; in the MDA analysis, the square of the correlation coefficient (r2) is used275

to measure feature importance.276

In this work, we develop three random forest models: one using solar indices, one277

using FISM2 data, and a final model combining FISM2 and OMNI data. We determine278

the most important features for each model and compare the overall accuracy using the279

metrics described in the previous paragraph. However, before developing the three Ran-280

dom Forest models, a subset of data is used to determine the nominal hyperparameters281

or model settings. This optimization helps reduce the chance of overfitting in the mod-282

els and ensures that the models generalize well, that is they work well on not only the283

training data but the test and out of sample (or validation) data as well. In Random Forests,284

the model hyperparameters include the number of trees in the forest, the number of bins285

(or leaves) a tree can end up with, the minimum number of samples in a bin before split-286

ting and creating a new bin, and the number of features to consider when making a de-287

cision. To determine the optimal set of hyperparameters, a number of values is defined288

for each hyperparameter, each combination of hyperparameters is then looped through,289

and a Random Forest fits a subset of data and features. The combination of hyperpa-290

rameters, which maximizes model performance, defines the optimal model setup. Here,291

the model hyperparameters are determined using a subset of the FISM2 and OMNI data292

as features, and GRACE-B density, model performance is measured using the mean ab-293

solute error. An excellent example of this framework is described and illustrated in Bentley294

et al. (2020).295

Using the nominal set of hyperparameters, three Random Forest models are trained296

using the (i) solar indices, (ii) FISM2, and (iii) FISM2/OMNI as features. In each model,297

the target data is the GRACE-B neutral density and select features from each dataset.298

These features are determined using the correlation matrices shown in Figure 2 and the299

MDA feature importance. Each model’s features and target data are separated into a300

train/test dataset using a 70/30 random split. Each model is trained on the training data301

set. The MDA is then used to identify and remove features that add little to the model’s302

overall performance. This helps ensure only key features are included and the final model303

is lean (e.g., reduce complexity). The test data set and the out-of-sample GRACE-A and304

CHAMP data sets are used to validate model performance and ensure the model gen-305

eralizes well to inputs it was not trained on, e.g., the model does not overfit to the train-306

ing data. The training and out-of-sample data sets are also used to investigate model307

performance during quiet-times, storm-times, and select case studies. Finally, note that308

all datasets are taken the similar time period, 2002-2012.309

Table 1 shows the final set of features for each of the three models. Magnetic lo-310

cal time (MLT) and latitude are the base features in each model. The solar indices model311

uses the hourly indices (but not the 81-day centered averages), the FISM2 model uses312

four key wavelengths, and the FISM2/OMNI model uses the same wavelengths as the313

FISM2 model along with the Sym-H and AE indices. Figure 3 shows the performance314

of each model as measured by the square of the correlations coefficient (r2) and the mean315

absolute error. The metrics are calculated for the GRACE B train and test data sets and316

GRACE B and CHAMP the out-of-sample data sets.317

Overall, each model performs well with correlations between 0.82-0.96 and errors318

on the order of 0.1 − 0.5 × 10−12km/m3. However, for each metric and data set, the319

combined FISM2/GEO model performs best; it has the highest correlations and lowest320

errors. This is followed by the FISM2 model and then the solar indices model. In terms321

of data sets, unsurprisingly, the train data set performs best, followed by the test and322

GRACE A data sets, which have very similar performances. The out-of-sample CHAMP323

data set has the lowest correlation and largest errors of all data sets, though, for the FISM2/GEO324
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Table 1. Features used in the random forest models

Base Features (all models) Solar Features FISM2 Features FISM2/GEO Features

MLT F10, S10 1.30 nm FISM2 features
cos(2π ×MLT/24) Y10, M10 43.00 nm Sym-H
sin(2π ×MLT/24) F81, S81 85.55 nm AE

latitude Y81, M81 94.40 nm

Figure 3. Metrics for the three random forest models as a function of data set; train, test,

and GRACE A and CHAMP out of sample (OOS). (a) The square of the correlation coefficients.

(b) The mean absolute error.

model, the correlation remains high 0̃.88 as compared to the FISM2 and solar models.325

The mean absolute error is also low 0.1× 10−12km/m3, about an order of magnitude326

smaller than typical values observed during geomagnetic storms (> 0.1×10−11km/m3
327

Figure 1).328

5.1 Feature Importance329

As described in the previous section, the FISM2/OMNI model performs best, fol-330

lowed by the FIMS2 model and then the solar indices model. However, in this study, we331

also aim to quantify how adding features improves model performance, specifically the332

incorporation of geomagnetic data. In this section, we use the MDA to investigate the333

relative importance of model features in the FISM2 and FISM2/GEO models. The so-334

lar model is ignored as the common features are limited; more importantly, though, the335

previous section demonstrated that more accurate models could be developed using FISM2336

and GEO indices.337

Figure 4 shows the MDA values calculated for each feature in the FISM2 and FISM2/OMNI338

models using the out-of-sample CHAMP data set. The out-of-sample data set is used339
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Figure 4. The MDA feature importance for the FISM (top) and FISM /GEO models (bot-

tom). In both panels, the features are ranked from most important (top) to least important

(bottom).

as it provides data that the model has not seen and allows for a more robust determi-340

nation of feature importance. In Figure 4, the MDA of each feature is calculated using341

a k-folds technique. A feature vector is randomly shuffled and used to predict the tar-342

get value in a given model and calculate a measure (or score) of the models’ accuracy.343

This is performed k-times for each feature. The MDA is then calculated as the differ-344

ence between the base score and the average of the shuffled scores, MDA=δr2 = r2base−345

r2shuffled. Here, we use the correlation squared as the model score, r2.346

Evident in Figure 4 is that in both the FISM2 and FISM2/OMNI models, the most347

important feature is the 43.00 nm spectral band. Shuffling of this feature reduces r2 by348

nearly 0.6. This is followed by magnetic local time as characterized by cos(MLT ), shuf-349

fling of which reduces r2 by about 0.2 in both models. In the FISM model, this is fol-350

lowed by the remaining spectral bands and sin(MLT ). In the FISM2/GEO model, the351

next important feature is Sym-H, followed by the sin(MLT ), the remaining spectral bands,352

and AE. Note in both models, the satellite latitude (SatLat) contributes very little to353

the overall importance of each model, and in the FISM2/GEO model, AE is the least354

important feature. This suggests that while atmospheric density is highly dependent on355

magnetic local time (e.g., day vs night) and Sym-H, there is less variation with latitude356

and possibly nightside activity (as measured by AE), indicating that global phenomena357

such as geomagnetic storms may play a more important role in enhancing atmospheric358

density than more localized phenomena such as substorms. In the next section, we in-359

vestigate model performance during select case studies and statistically over both quiet-360

and storm times.361
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Figure 5. Select case studies comparing observed density from the out-of-sample CHAMP

data set and that derived from the three random forest models during (a) geomagnetically quiet

period, (c) small geomagnetic storm, (c) moderate geomagnetic storm, and (d) large geomagnetic

storm. From top to bottom, each panel shows (i) Sym-H, (ii) AE, (iii) Champ observed density,

and (iv) model-data comparison. In panel (iv) the densities have been averaged with a 90 minute

rolling window to make comparisons easier and highlight the background change in density dur-

ing each storm. Observed densities are shown in blue, FISM/GEO modeled densities in orange,

FISM modeled densities in green, and solar-modeled densities in red.
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5.2 Case and Statistical Studies362

This section reviews model results during a select quiet period and three increas-363

ingly severe geomagnetic storms (as measured by Sym-H). This is followed by a statis-364

tical investigation of model residuals as a function of quiet- and storm-times. Figure 5365

shows the four case studies (a) a geomagnetically quiet period, (b) a small geomagnetic366

storm, (c) a moderate storm, and (d) a large storm. Each event shows the same four pan-367

els, from top to bottom: (i) Sym-H, (ii) AE, (iii) Champ density normalized to 400 km,368

and (iv) comparison of Champ and the Random forest modeled densities along the Champ369

trajectory. Overall, the observed density is highly variable (panels iii), though it typi-370

cally follows a background trend, especially during storms (b-d). The quiet-time den-371

sities are typically low, < 1012km/m3, and increase with the geomagnetic storm inten-372

sity by a factor of 2 during the small storm and 1̃0 during the large storm. The storm-373

time density enhancements peak during the main phase of each storm as Sym-H decreases374

and AE activity increases. As the storm recovers and Sym-H and AE trend toward zero,375

the density enhancements decay toward quiet-time levels.376

Panel (iv) shows the out-of-sample data-model comparisons. Note that the high377

variability in the density time series makes any visual comparison difficult; thus, the mod-378

eled and observed densities are smoothed with a 90-minute rolling average - the approx-379

imate orbital period for a low Earth orbit satellite. Further, we compare the out-of-sample380

model results and data to get a better idea of the true performance of the three mod-381

els as models perform better on data sets used in training. Evident in panel (iv) is that382

during geomagnetic storms (b-c), the combined solar-geomagnetic model (FISM/GEO383

- orange) performs best, capturing the rapid density enhancement and slow decay den-384

sity as well as the amplitude of the density enhancement (especially during the moder-385

ate and large storm). The two solar models (FISM - green, Solar - red) perform poorly386

during storms as they are unable to capture the background trend in the variation in at-387

mospheric density during storms. During quiet times (a), all three models generally cap-388

ture the background variation.389

Figure 6 shows a statistical analysis of the out-of-sample CHAMP residuals for each390

model as a function of quiet- and storm-times. Panels (a) and (b) show probability dis-391

tributions of the residuals during geomagnetic quiet periods and storms, respectively (note392

panels a and b share a y-axis). During quiet-times (a) all three models perform well, the393

residuals are peaked around zero with similar probability distributions and a slight bias394

toward the models underestimating the actual density (positive residuals). However, dur-395

ing storm-times (b) the FISM/GEO model (green) performs better than the FISM (red)396

and Solar (blue) models. The FISM/GEO model highly peaked around zero, while the397

FISM and Solar models have smaller peaks around zero and larger tails toward larger398

positive and negative residuals. Again, during storms, each model underestimates the399

observed density (shift toward positive residuals).400

Figure 6 (c) and (d) show the storm-time model residuals as a function of geomag-401

netic activity as measured by Sym-H and AE, respectively (note panels c and d share402

a y-axis). Here, the residuals are binned by geomagnetic activity, and the residuals are403

plotted similarly to a box-and-whisker plot: the median is shown by the solid line, and404

the boxes show the inter-quartile range (bottom of the box is the first quartile, and the405

top of the box is the third quartile). These panels very clearly highlight the importance406

of storms and geomagnetic activity in quantifying the dynamics of atmospheric density.407

In particular, as geomagnetic activity increases during storms and Sym-H becomes more408

negative and AE more positive, the residuals in the Solar (blue) and FISM (green) mod-409

els rapidly increase with very large interquartile ranges. However, the residuals of the410

combined FISM/GEO model remain low, with the median <1 and upper quartile <2.411

Overall, as storm activity increases, the solar models can have errors up to 8̃ times larger412

than the model that combines both solar and geomagnetic data and, further, has sig-413

nificant spread as a function of geomagnetic activity such that model accuracy decreases414
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Figure 6. Out of sample Champ residuals as a function of quiet-time and storm-times. Pan-

els (a) and (b) show the probability distributions of the residuals during quiet times and storm

times, respectively. Panels (c) and (d) further break down the storm-time residuals as a function

of geomagnetic activity measured by Sym-H and AE. In (c) and (d), the residuals are binned by

geomagnetic activity, and the median of the residuals is plotted as a solid line and the interquar-

tile range (IQR) as a box for each bin. The top of the boxes represents the third quartile, and

the bottom of the boxes represents the first quartile. In panel (c), Sym-H is binned in 10 nT

increments. In panel (d), AE is binned in 100 nT increments. In each panel, the Solar model is

shown in blue, FISM in red, and FISM/GEO in green.
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with increasing geomagnetic activity. These differences agree with the case studies high-415

lighted in Figure 5.416

6 Discusion and Conclusions417

As the number of satellites in low Earth orbit increases, it becomes increasingly418

important to track and predict their orbits accurately. This is especially true with the419

advent of mega-constellations like Starlink, Globalstar, OneWeb, Telesat Lightspeed, and420

Project Kuiper, which are each composed of hundreds to thousands of small satellites.421

Additionally, countries around the world have plans for LEO mega constellations; it is422

expected in the next decade, that nearly 100,000 constellation satellites will be launched423

(J. Zhang et al., 2022), a number which exceeds the total of satellites launched in the424

first half century of the space age by over a factor of 16. While these satellites have im-425

portant societal benefits, including increasing access to high-speed internet in remote ar-426

eas, the increase in LEO satellites has exponentially increased the number of close en-427

counters between satellites, which in-turn increases the chances of collisions. Mitigat-428

ing collisions and monitoring/forecasting close encounters requires accurate knowledge429

and prediction of satellite trajectories.430

Of all the factors controlling satellite trajectories, drag is the key factor in achiev-431

ing high-fidelity orbit determination. The biggest factor in determining satellite drag is432

atmospheric density and its spatial and temporal variations. The dynamics of atmospheric433

density are driven by a combination of external forcing from the Sun (Lilensten et al.,434

2008) and the magnetosphere (Knipp et al., 2004) and internal processes in the lower435

atmosphere (Liu, 2016). During quiet geomagnetic conditions, the dominant source of436

variations in atmospheric density is solar activity; however, during geomagnetic storms,437

energy input from the magnetosphere can lead to rapid changes in atmospheric density438

ranging from 50-800% (Forbes et al., 1996; Liu, 2016; Oliveira & Zesta, 2019). Here we439

investigated the dynamics of atmospheric density observed by GRACE-B during geo-440

magnetic quiet periods (quiet-times) and geomagnetic storms (storm-time) as function441

of solar and geomagnetic activity and developed, tested, and contrasted three Random442

Forest models of atmospheric density based on low-cadence solar spectral irradiance (those443

used in JB2008), high-cadence solar irradiance (from the FISM2 dataset), and combined444

high-cadence solar irradiance and geomagnetic activity (from the Omni dataset). The445

models were validated for train and test data sets and two out-of-sample data sets, GRACE-446

A and CHAMP. The CHAMP out-of-sample data set was further used to test model per-447

formance during select case studies and statistically investigate model residuals during448

storms as a function of geomagnetic activity.449

As described above, atmospheric density can vary considerably during geomagnetic450

storms (Forbes et al., 1996; Liu, 2016; Oliveira & Zesta, 2019). While it is known that451

this is the result of energy input from the magnetosphere, little work exists quantifying452

storm-time atmospheric density and investigating the difference between quiet- and storm-453

times. Recent case studies examining several geomagnetic storms with and without ac-454

companying flares proposed that the flares only contributed a minor amount to the re-455

sulting atmospheric disturbances (Qian et al., 2020). The work presented here examines456

the relative contributions of geomagnetic inputs and solar irradiance over a large statis-457

tical dataset for both storm- and quiet-time conditions. Figure 1, shows the PDF and458

CDF of atmospheric density as a function of storm-times, storm phase, and quiet-times.459

Figure 2 shows the correlations between the low-cadence solar irradiance indices (a), the460

higher-cadence FISM2 irradiance data set (b), and solar wind and geomagnetic activ-461

ity (c) with atmospheric density. Taken together, Figures 1 and 2 demonstrate that while462

solar driving is a key factor in the baseline or long term dynamics of atmospheric den-463

sity, fast changes and magnetospheric processes are a vital component storm-time at-464

mospheric dynamics as evidenced by the correlations of atmospheric density during storms465

with the high cadence FISM2 and OMNI data sets.466
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To explore this in more detail and develop a clearer understanding of the dynam-467

ics and drivers of storm-time atmospheric density, and more importantly, develop a ro-468

bust model of atmospheric density capable of capturing storm-time dynamics we sub-469

sequently developed Random Forest machine learning models of neutral density. Three470

models were developed which shared base features (column 1 of Table 1) but were trained471

on the low-cadence solar wind irradiance indices, that high-cadence FISM2 solar irra-472

diance bands, and a final model which combines features from the FISM2 solar irradi-473

ance bands and OMNI geomagnetic data. The features from each model were selected474

based on the correlations shown in Figure 2 and feature importance as measured by the475

mean decrease in accuracy (MDA). The selected features for each model are summarized476

in columns 2-4 of Table 1, respectively. The models were compared using accepted and477

appropriate metrics on the train and test data sets (Grace-B observations) and two out-478

of-sample data-sets, GRACE-A and CHAMP. In all cases the model combining high-cadence479

data from the FISM2 and OMNI datasets performed best, followed by the FISM2 model,480

and then by slow cadence solar indices model (c.f., Figure 3). Figure 4, further inves-481

tigated the relative importance of model features in the two high-cadence models (FISM482

and FISM/Geo) using the mean decrease in accuracy (MDA). This analysis helps to quan-483

tify the relative importance of solar and geomagnetic drivers of atmospheric density dy-484

namics. In both high-cadence models, the 43.00 nm solar irradiance waveband is the most485

important feature, followed by position; however, in the FISM/Geo model the third most486

important feature is Sym-H, often a measure of the strength of geomagnetic storms. This487

supports the conclusion that magnetospheric processes are a fundamental driver of storm-488

time atmospheric dynamics.489

The metrics and MDA analysis in Figures 3 and 4 provide important insight into490

density dynamics; however, it is important to note that neither of these separated the491

data into quiet- or storm-times. In order to understand and quantify the importance of492

magnetospheric forcing in atmospheric dynamics, Figures 5 and 6 present an analysis493

of select case studies and a detailed investigation of model residuals for each of the three494

models as a function of quiet-times, storm-times, and geomagnetic activity and using only495

the out-of-sample CHAMP data. In the select case studies presented in Figure 5 all three496

models do well during quiet times (panel a); however, as geomagnetic activity increases,497

both solar models do poorly while the FISM/Geo model does very well, capturing the498

shape and time scale of the enhancement though slightly underestimating the peak. Fig-499

ure 6 further quantifies the residuals (observations-predictions) as a function of quiet-500

times (a), storm-times (b), and geomagnetic activity (c and d). Similar to the case stud-501

ies all three models do well during quiet-times while the FISM/Geo model does best dur-502

ing storm-times. Most interestingly, panels (c) and (d) demonstrate that as geomagnetic503

activity increases the errors (or residuals) in the two solar models increase at an almost504

exponential rate. In contrast, the errors in the FISM/Geo model remain flat. Overall,505

Figures 5 and 6, very clearly demonstrate the importance of magnetospheric forcing dur-506

ing storms in atmospheric density, and highlight the necessity of including and consid-507

ering magnetospheric dynamics in atmospheric models.508

As noted prior, several studies have demonstrated the variation of atmospheric den-509

sity during storms. Thus, it is not surprising that the solar models are not able to cap-510

ture the dynamics of atmospheric density during storms. What is important to note is511

that is that during storms the initial enhancement of density is rapid (¡24 hours), and512

the decay can occur over several days. In order to capture such dynamics it is imper-513

ative to user higher cadence data sets such as the FISM2 and OMNI datasets, slower ob-514

servations, especially those on the order of days will be unable to capture such variations515

in the atmospheric density. These enhancements and decay timescales have important516

implications when quantifying the performance of models, those here, as well as mod-517

els in general. If one considers only storm-times or storm phase one can incorrectly as-518

sert that in general model errors are small and well behaved, for example, when calcu-519

lating the mean or median error (e.g., Figure 6 b). However, if you consider the full time520
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history during storms (Figure 5) or errors as a function of geomagnetic activity (Figure521

6 c and d), it becomes very clear that solar indices alone are not able to capture the storm-522

time dynamics of atmospheric density. This is quite surprising and very clearly illustrated523

in Figure 6. Errors computed on the out-of-sample data increase nearly exponentially524

with geomagnetic activity in the solar models. In contrast, the errors in the combined525

solar-geomagnetic model remain flat as a function of geomagnetic activity.526

Overall, the work in this paper has demonstrated and quantified the importance527

of magnetospheric process and geomagnetic activity in storm-time atmospheric density528

dynamics. Future work will investigate the two-dimensional distribution and variation529

in atmospheric density during storms as simulated by the FISM/Geo model, introduc-530

ing additional datasets and features in the FISM/Geo model to improve performance,531

expanding the FISM/Geo model to include altitude, and finally working toward tran-532

sitioning this novel research model to operations and developing outputs of use to key533

stakeholders.534
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