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Abstract13

Gyres are prominent surface structures in the global ocean circulation that often14

interact with the sea floor in a complex manner. Diagnostic methods, such as the depth-15

integrated vorticity budget, are needed to assess exactly how such model circulations in-16

teract with the bathymetry. Terms in the vorticity budget can be integrated over the17

area enclosed by streamlines to identify forces that spin gyres up and down. In this ar-18

ticle we diagnose the depth-integrated vorticity budgets of both idealized gyres and the19

Weddell Gyre in a realistic global model. It is shown that spurious forces play a signif-20

icant role in the dynamics of all gyres presented and that they are a direct consequence21

of the Arakawa C-grid discretization and the z-coordinate representation of the sea floor.22

The spurious forces include a numerical beta effect and interactions with the sea floor23

which originate from the discrete Coriolis force when calculated with the following schemes:24

the energy conserving scheme (ENE); the enstrophy conserving scheme (ENS); and the25

energy and enstrophy conserving scheme (EEN). Previous studies have shown that bot-26

tom pressure torques provide the main interaction between the depth-integrated flow and27

the sea floor. Bottom pressure torques are significant, but spurious interactions with bot-28

tom topography are similar in size. Possible methods for reducing the identified spuri-29

ous topographic forces are discussed. Spurious topographic forces can be alleviated by30

using either a B-grid in the horizontal plane or a terrain-following vertical coordinate.31

Plain Language Summary32

Gyres are large scale circulations in the world ocean that often interact with the33

sea floor. It is important to develop a method to assess how the representation of the34

sea floor in models affects gyre circulations. By calculating how model forces generate35

vorticity (the tendency to rotate) in the flow, we are able to determine the forces act-36

ing with and against the gyre circulation. We apply this method to results from a sim-37

plified double gyre model and the Weddell Gyre in a realistic global model. We show that38

spurious forces which emerge from the layout of the model grid play an important role39

in the presented gyre circulations. The spurious forces originate from the calculation of40

the Coriolis acceleration in the model. In previous studies, it has been argued that gyre41

circulations interact with the sea floor primarily by forming pressure gradients; here we42

show that contributions from pressure gradients are significant, but the spurious forces43

are similar in size and also emerge from interactions with the sea floor. We discuss pos-44

sible approaches to reduce the identified spurious forces by considering alternative grid45

layouts. The spurious forces can be alleviated by using a B-grid or a terrain-following46

vertical coordinate.47

1 Introduction48

Accurately representing the sea floor has always been a challenge for the ocean mod-49

elling community. Quantifying the full influence of the sea floor on model circulations50

is important for both future model development and the interpretation of results from51

existing models. We present a diagnostic method that reveals how bottom topography52

influences the depth-integrated vorticity budget of general circulation models (GCMs)53

and we identify significant spurious forces that emerge from the discrete Coriolis force54

when calculated on a C-grid (Mesinger & Arakawa, 1976) using z-coordinates.55

The recent article by Stewart et al. (2021) also studied the impact of bottom to-56

pography on vorticity budgets. However, the model used by Stewart et al. (2021) is a57

two layer isopycnal model where the bottom topography is completely contained in the58

lower density layer. In this article we consider models that have a higher vertical res-59

olution and a step-like bathymetry. It is in these more commonly used models that we60

identify a new category of spurious forces.61
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The textbook theory of gyres relies on the idea of a depth-integrated vorticity bud-62

get and gyres can be classified by the leading order terms in the depth-integrated vor-63

ticity equation. For example, the Stommel (1948) gyre is dominated by wind stress curl,64

lateral bottom friction, and the beta effect. In another example, Niiler (1966) analyt-65

ically integrated the vorticity equation over the area enclosed by gyre streamlines to study66

inertial gyres dominated by the wind stress curl, the advection of vorticity, and lateral67

bottom friction.68

GCMs have a primitive momentum equation with an associated vorticity budget.69

By taking the curl of the depth-integrated terms from the primitive momentum equa-70

tion we can calculate the corresponding terms in the model’s depth-integrated vortic-71

ity equation (referred to as vorticity diagnostics hereafter). The vorticity diagnostics can72

then be integrated over the area enclosed by gyre streamlines to reveal the model forces73

responsible for spinning the gyre up and down. In this article we diagnose the vortic-74

ity budget of gyres in two case studies using the NEMO model (Madec et al., 2019). We75

consider a simple double gyre configuration with analytic forcing and idealized geom-76

etry which resembles a North Atlantic basin. We also consider the vorticity budget of77

the Weddell Gyre in a realistic configuration of the global ocean. In both of these case78

studies we identify spurious force profiles with different characteristics. In the light of79

these results, we discuss potential changes to the model discretizations that could mit-80

igate the spurious forces.81

The article is structured as follows. We first discuss the analytic depth-integrated82

vorticity budget in Section 2 as well as the analytic method of contour integration. In83

Section 3 we consider how the depth-integrated vorticity budget behaves on a C-grid with84

step-like bathymetry and how spurious terms emerge from the discrete Coriolis accel-85

eration. Results from the analytically forced double gyre model are presented in Section86

4 and results for the Weddell Gyre are presented in Section 5. A discussion of approaches87

to avoid the spurious forcing terms can be found in Section 6. Closing remarks are given88

in Section 7. In Appendix A we present the discrete forms of the Coriolis acceleration89

for various vorticity schemes. Appendix B presents results from the double gyre model90

using various forms of the discrete Coriolis acceleration. In Appendix C we consider a91

simple example of contour integration on the B-grid. Appendix D presents contour in-92

tegrations of uninterpolated diagnostics from the double gyre model.93

2 The analytic vorticity budget94

2.1 The depth-integrated vorticity equation95

Vorticity diagnostics are an underused tool for interpreting model circulations and96

offer a description of gyre dynamics that complements textbook theory (Vallis, 2017).97

A handful of recent papers have used a vorticity budget to diagnose regional GCM mod-98

els (Schoonover et al., 2016; Bras et al., 2019; Le Corre et al., 2020).99

To obtain a depth-integrated vorticity budget analytically we start from the vector-100

invariant form of the momentum equation:101

∂uh

∂t
= −

[
(∇× u)× u +

1

2
∇ (u · u)

]

h

− f
(
k̂× u

)
h
− 1

ρ0
∇hP + Fu +Du, (1)102

where f is the Coriolis parameter, Fu is top and bottom surface forcing, Du is the lat-103

eral diffusion of momentum, uh is the ‘horizontal’ (parallel to the Earth’s surface) ve-104

locity vector, ∇h is the horizontal gradient operator, and [ · ]h is the horizontal compo-105

nent of a vector. To derive a depth-integrated vorticity equation, we need to depth-integrate106

and take the curl of Equation 1. The order of the two operations and any multiplications107

carried out significantly alters the form and physical meaning of the obtained depth-integrated108

vorticity equation.109
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If we choose to depth-integrate the curl of the momentum equation, the pressure110

gradient vanishes upon taking the curl and bottom vortex stretching represents the in-111

teraction of the geostrophic currents with the sea floor. Both the beta effect and bot-112

tom vortex stretching originate from the Coriolis acceleration in Equation 1. In the model,113

the curl of the single momentum diagnostic associated with the Coriolis acceleration will114

be responsible for two distinct physical processes.115

If we choose to take the curl of the depth-averaged momentum equation then sea116

floor interactions are represented by the JEBAR term (Joint Effect of Baroclinicity and117

Relief). Cane et al. (1998) and Drijfhout et al. (2013) have questioned the relevance of118

JEBAR by presenting simple examples in which there is no flow immediately above the119

bathymetry. In these examples there is trivially no interaction between the flow and the120

bathymetry, but there is a non-zero JEBAR term.121

Throughout this paper we consider the vorticity equation obtained by taking the122

curl of the depth-integrated momentum equation:123

∂ζ

∂t
= − ∇h ·

(
ζu
)

︸ ︷︷ ︸
Advection

− ∇h · (fu)︸ ︷︷ ︸
Planetary Vort.

+
1

ρ0
(∇Pb ×∇H) · k̂

︸ ︷︷ ︸
Bottom pressure torque

124

+
1

ρ0
(∇× τ surf) · k̂

︸ ︷︷ ︸
Surface stress curl

− 1

ρ0
(∇× τ bot) · k̂

︸ ︷︷ ︸
Bottom friction

+ Dζ︸︷︷︸
Lateral diffusion

, (2)125

where ζ is the vertical component of the vorticity, τ surf is the surface stress due to wind126

and sea ice, τ bot is the bottom stress due to friction at the sea floor, Dζ is the lateral127

diffusion of depth-integrated relative vorticity (= ∇ × Du · k̂), and Pb is the pressure128

at the sea floor. Variables with a bar represent a depth-integrated quantity:129

u =

∫ η(x,y,t)

−H(x,y)

uh dz, (3)

where η is the free surface height, H is the depth of the sea floor, x is the zonal coor-130

dinate, and y is the meridional coordinate.131

The terms on the right-hand side of Equation 2 are the following: the advection132

of relative vorticity; the planetary vorticity term; the bottom pressure torque; the sur-133

face stress curl; the curl of bottom friction; and the lateral diffusion of relative vortic-134

ity. The planetary vorticity term in Equation 2 contains contributions from the evolv-135

ing free surface as ∇h · u = −∂η/∂t. In an equilibrated state, the free surface evolu-136

tion is small, and hence we assume ∇h · (fu) ≈ βv where β represents the linear vari-137

ation of f with latitude and v is the meridional component of the depth-integrated ve-138

locity. This formulation is practical as topographic interactions emerge from pressure139

gradients in the form of the bottom pressure torque and beta effects emerge from the140

curl of the Coriolis acceleration; the Coriolis acceleration is responsible for one physi-141

cally meaningful term in the analytic vorticity budget. Equation 2 is also used in Stewart142

et al. (2021).143

As a consequence of Stokes’ theorem, the area integral of a term from Equation 2144

is directly related to the line integral of the depth-integrated forces along the area edge.145

This is particularly useful when considering area integrals of terms from the vorticity equa-146

tion and is discussed further in the next sub-section.147

2.2 Contour integration method148

All terms in the depth-integrated vorticity equation can be expressed as the curl149

of a depth-integrated acceleration in the momentum equation:150

Ω =
(
∇×M

)
· k̂, (4)
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where Ω is a term in the depth-integrated vorticity equation and M is a term in the depth-151

integrated momentum equation. If we integrate Ω over the area enclosed by a depth-integrated152

streamline, we can interpret the integral using Stokes’ theorem:153

I(ψ) = ±
∫∫

Aψ

Ω dA = ±
∮

Γψ

M · dl, (5)154

where Aψ is the area enclosed by a depth-integrated streamline and Γψ is the anticlock-155

wise path along the same streamline. The criteria for selecting the sign in Equation 5156

is defined later in this paragraph. The integral I(ψ) can be interpreted as the work done157

per unit mass by the force associated with M on a fluid column in one circulation of Γψ.158

For a gyre circulating in a clockwise direction, the direction of circulation would be op-159

posite to the conventional anticlockwise direction of Γψ. So that the reader does not have160

to constantly consider the direction of the flow relative to Γψ we select the sign in Equa-161

tion 5 so a positive value of I(ψ) corresponds to a force that is spinning the gyre up.162

Analytically, we would expect the planetary vorticity term to vanish upon integra-
tion as a consequence of the divergence theorem:

∫∫

Aψ

∇ · (fu) dA =

∮

Γψ

fu · n̂ dl = 0, (6)

where n̂ is the horizontal vector which is normal to the streamline and the depth-integrated163

velocity. The Coriolis force can still play a role in shaping the streamlines of the circu-164

lation but ultimately has no influence on the integrated budget. Although the advection165

term, ∇h·
(
uζ
)
, has a similar form, we do not expect the same zero integral for the ad-166

vection term as uζ is not parallel to u in general.167

This method has been used in models before. Schoonover et al. (2016) integrated168

vorticity diagnostics over a limited number of streamlines in the North Atlantic and con-169

cluded that wind stress curl is largely balanced by bottom pressure torques. Stewart et170

al. (2021) also used this method in an isopycnal model and concluded that wind stress171

curl is not balanced by bottom pressure torques in general. Stewart et al. (2021) discuss172

how the integrating area affects the resultant vorticity balances and in their model the173

wind stress curl is only balanced by bottom pressure torques when integrated over lat-174

itude bands. It should be noted that Schoonover et al. (2016) and Stewart et al. (2021)175

use terrain-following coordinates in their models but in this article we study the vortic-176

ity budget of a z-coordinate model. In Section 6.3 we discuss how the vorticity budget177

can be affected by the choice of vertical coordinate and how terrain-following coordinates178

can mitigate spurious Coriolis forces related to the topography.179

3 The vorticity budget on a C-grid180

3.1 The discrete depth-integrated vorticity equation181

In NEMO, and many other contemporary ocean GCMs, the discretized model vari-182

ables are distributed on the C-grid (Mesinger & Arakawa, 1976). The geometry of the183

C-grid is shown in Figure 1: T points hold scalar information including the divergence184

of the flow; the U and V points hold the horizontal components of vector quantities in-185

cluding the horizontal velocity, surface stresses, and accelerations in the momentum equa-186

tion (M). Values closely related to vorticity are found on F points, this includes the rel-187

ative vorticity, the Coriolis parameter, the streamfunction, and terms in the depth-integrated188

vorticity equation (Ω). Vertical velocities are located on W points that are directly above189

and below T points as shown in Figure 1.190

Every point in the C-grid has an associated cell with a vertical thickness and hor-191

izontal width. Throughout this article e3t is the T cell vertical thickness and e1t, e2t are192

the T cell widths in the i and j direction respectively. The same convention is used for193
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Fij

i

j
Wijk : wi

j

k

Uijk : u,Mu

Vijk : v,Mv

Tijk : ∇ · u
ψ, ζ, f,Ω

Figure 1. The distribution of variables on the C-grid in both a three dimensional (left) and

horizontal (right) view. The T , U , V , F , and W points are shown alongside important values

that are centred on these points. The variable w is the vertical velocity and Mu, Mv are the x

and y components of a term in the momentum equation. Note that k increases downwards whilst

z increases upward to match the NEMO model convention.

U , V , and F cells also. It should be noted that the values of the F cell thicknesses in194

this article depend on the scheme used to calculate the Coriolis acceleration (see Sec-195

tion 3.2).196

The GCM configurations discussed in this paper use a primitive momentum equa-197

tion that is a discrete equivalent to the vector invariant momentum equation (Madec et198

al., 2019). Momentum diagnostics can be combined to represent terms in the analytic199

momentum equation (Equation 1). The curl of the depth-integrated momentum diag-200

nostics is taken to form a closed discrete vorticity budget that is valid in an unsteady201

state as the time derivative diagnostic is included. The resultant vorticity diagnostics202

should closely resemble the terms in the depth-integrated vorticity equation (Equation203

2); however, the planetary vorticity diagnostic deviates from the planetary vorticity term204

in several significant ways.205

3.2 The discrete Coriolis acceleration206

The Coriolis acceleration is a product of the Coriolis parameter, f , and the veloc-207

ity u. Here f and u are located at different points on the C-grid so there are many pos-208

sible schemes for calculating their cross product and the choice of scheme affects the quan-209

tities that are conserved in the model flow. Mainstream schemes use multi-point and thickness-210

weighted averaging of f and u (Madec et al., 2019). A general form of the discrete Cori-211

olis acceleration under these schemes is:212

CORx
i,j,k =

N∑

n=1

1

N

1

e1u
i,j

(
f(an)

e3f
k (bn)

)
Ṽk(cn),

CORy
i,j,k =

N∑

n=1

−1

N

1

e2v
i,j

(
f(an)

e3f
k (bn)

)
Ũk(cn), (7)
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where an, bn, and cn are the horizontal locations of three neighbouring points (not nec-213

essarily different) for the nth term of the sum. The terms Ṽ = ve1ve3v and Ũ = ue2ue3u
214

are volume fluxes; N is the number of terms in the average; and CORx (CORy) is the215

x (y) component of the Coriolis acceleration.216

In this article we consider three popular schemes for calculating the Coriolis ac-217

celeration. The energy conserving scheme (ENE) (Sadourny, 1975) conserves total hor-218

izontal kinetic energy and uses a four point average (N=4). The enstrophy conserving219

scheme (ENS) (Sadourny, 1975) conserves potential enstrophy and has eight terms (N=8).220

Finally the energy and enstrophy conserving scheme (EEN) (Arakawa & Lamb, 1981)221

conserves both horizontal kinetic energy and potential enstrophy and uses a twelve point222

average (N=12). The explicit forms of the ENE, ENS, and EEN schemes for the Cori-223

olis acceleration are given in Appendix A. The results in Section 4 and 5 use the EEN224

scheme; however, in Section 6.1 we argue that all three schemes produce similar spuri-225

ous forces. This argument is more concise when we use a form of the Coriolis acceler-226

ation that is general to the ENE, ENS, and EEN schemes.227

We identify deviations from the analytic value of the Coriolis acceleration by con-228

sidering linear variations of f and e3f near the U and V points. Expansions around the229

U and V points are used for CORx and CORy respectively:230

f(r) = fui,j + β ·
(
r− rui,j

)
= fvi,j + β ·

(
r− rvi,j

)
, (8)231

e3f
k (r) =

1

α(r)

[
e3u
i,j,k + µ ·

(
r− rui,j

)]
=

1

α(r)

[
e3v
i,j,k + µ ·

(
r− rvi,j

)]
, (9)232

where fu (fv) is the value of the Coriolis parameter centred on the U (V ) point; β is233

a vector describing the local horizontal gradient of f ; µ is a vector describing the local234

horizontal gradient of F cell thicknesses; r is a general horizontal point; rui,j (rvi,j) is the235

horizontal location of the U (V ) point with the coordinate (i, j). We assume that the236

local domain for calculating the Coriolis force is small enough for a linear approxima-237

tion of the Coriolis parameter and the bathymetry to be valid. We do not assume the238

same for α(r) ∼ 1 which represents sudden changes in e3f that only occur in the EEN239

scheme. In the EEN scheme:240

e3f
i,j,k =

1

4

(
e3t
i,j,k + e3t

i+1,j,k + e3t
i,j+1,k + e3t

i+1,j+1,k

)
, (10)241

where masked T cell thicknesses are set to zero. Equation 10 can produce sudden changes242

in F cell thicknesses near bathymetry. Sudden changes in e3f are unique to the EEN scheme243

so α = 1 in the ENS and ENE cases. The ENS and ENE schemes have an alternative244

definition of e3f found in Appendix A.245

By combining Equations 7, 8, and 9 we can derive a general decomposition of the246

Coriolis acceleration:247

CORx
i,j,k =

N∑

n=1

fui,j
N

Ṽbn,k
(e1ue3u)i,j,k

[
1 +

β

fui,j
·
(
an − rui,j

)

︸ ︷︷ ︸
Num. beta

+ [α(bn)− 1]− α(bn)µ ·
(
bn − rui,j,k

)
︸ ︷︷ ︸

Topographic

+ [α(bn)− 1]
β

fvi,j
·
(
an − rui,j

)

︸ ︷︷ ︸
Coupled beta-topo

]
, (11)

CORy
i,j,k =

N∑

n=1

−fvi,j
N

Ũbn,k

(e2ve3v)i,j,k

[
1 +

β

fvi,j
·
(
an − rvi,j

)

︸ ︷︷ ︸
Num. beta

+ [α(bn)− 1]− α(bn)µ ·
(
bn − rvi,j,k

)
︸ ︷︷ ︸

Topographic

+ [α(bn)− 1]
β

fvi,j
·
(
an − rvi,j

)

︸ ︷︷ ︸
Coupled beta-topo

]
. (12)
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The Coriolis acceleration has a zeroth order contribution centred on the U or V248

point. The unmasked (see Section 3.3) zeroth order term matches the analytic form of249

the Coriolis acceleration as it is the analytic value of f centred on the U point (V point)250

multiplied by the point-averaged value of v (−u) centred on the U point (V point).251

The remaining terms are first order departures from the analytic value of the Cori-252

olis acceleration. The first order contributions are: a numerical beta effect caused by de-253

viations of the point-averaged f from its analytic value at the U or V point; a topographic254

effect caused by variations in F cell thicknesses; and a coupled beta-topographic effect255

caused by the combined effect of sudden changes in cell thicknesses and the previously256

mentioned numerical beta effect. Note that if α = 1 (true for ENS and ENE) then the257

beta-topographic effect vanishes.258

The depth-integrated Coriolis acceleration is:259

COR
x

i,j =

kxmax(i,j)∑

k=1

e3u
i,j,kCORx

i,j,k, (13)260

COR
y

i,j =

kymax(i,j)∑

k=1

e3v
i,j,kCORy

i,j,k, (14)261

where kxmax and kymax are the highest unmasked indices in the column and they may vary262

with horizontal index when z-coordinates are used. The depth-integrated Coriolis ac-263

celeration is therefore also sensitive to steps in the bathymetry. This is discussed in the264

next sub-section.265

3.3 The influence of model level steps on the Coriolis acceleration266

In this section, we present a toy configuration that highlights how model levels can267

influence the discrete Coriolis acceleration. The configuration is shown in Figure 2. The268

configuration has two model levels, three U -grid points in the i direction, two in the j269

direction, and a rigid lid. The points in the upper level are surrounded by unmasked points,270

we assume the grid is regular, and cell widths are the same in the i and j direction. We271

also assume an f -plane so f does not vary.272

The configuration has a step bathymetry and a current running alongside it. The273

current has no y component so v = 0 everywhere and therefore CORx = 0 at all points.274

The lower limb of the current decelerates by an amount U1 and as a consequence of in-275

compressibility a vertical velocity is induced which accelerates the upper current by U1.276

Under these assumptions, the discrete Coriolis acceleration does not vary between277

the ENE, ENS, and EEN schemes and is:278

CORy
i,j,k =

f

4
[ui,j,k + ui−1,j,k + ui,j+1,k + ui−1,j+1,k] , (15)279

which is effectively f multiplied by the four point average of u.280

In the upper layer, the Coriolis accelerations, located on the V points marked by281

red triangles in Figure 2, are:282

CORy
1,1,k=1 = fU0, (16)283

CORy
2,1,k=1 =

f

4
(4U0 + U1) . (17)284

In the lower layer, the Coriolis accelerations are set to zero as they lie on masked V points.285

The V points are masked to prevent accelerations into the topography that would vi-286

olate the no penetration boundary condition. The depth-integrated Coriolis accelerations287

–8–
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U0 U0 U0

U0 U0 U0 + U1

f
4 (4U0 + U1)fU0

U0 U0 U0 − U1

0 (masked) 0 (masked)

U0 U0 U0

2U0 2U0 2U0

f
4 (4U0 + U1)fU0

k = 1 (Upper) k = 2 (Lower)

Depth-integrated fields / ∆z

U0 U0 U0

2U0

2U0

2U0

Depth-integrated fields / ∆z

Depth-int

vorticity

generated

i = 1 i = 2 i = 1 i = 2

j = 1

j = 2

j = 1

j = 2

Figure 2. A toy model demonstrating how model levels influence the discrete Coriolis ac-

celeration. A horizontal plan is shown for the upper and lower level as well as a view of the

depth-integrated fields divided through by the cell thickness ∆z. Single arrows represent pre-

scribed velocities; double arrows represent calculated Coriolis accelerations; and shaded cells

represent bottom topography. Accelerations on the lower level are masked to prevent the velocity

field from evolving into a flow that would violate the no penetration boundary condition. The

central F point is marked by a cross and is where the depth-integrated vorticity is generated.
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are:288

COR
y

1,1 = CORy
1,1,k=1 ∆z, (18)289

COR
y

2,1 = CORy
2,1,k=1 ∆z, (19)290

where ∆z is the constant cell thickness. It should be noted that U1 vanishes when cal-291

culating the depth-integrated velocities but remains in the depth-integrated acceleration.292

The depth-integrated Coriolis acceleration depends on more than the depth-integrated293

velocities.294

When we take the curl of the depth-integrated accelerations, we can see how a depth-295

integrated vorticity is generated:296

1

∆x

[
COR

y

2,1 − COR
y

1,1

]
=

1

4

∆z

∆x
fU1, (20)297

where ∆x is the constant cell width. Note that this value is located on the central F point298

shown in Figure 2.299

The masking of the Coriolis accelerations on the lower level introduces a spurious300

force which exactly opposes the Coriolis force near topography. Pressure gradients are301

ambiguous on V points near bathymetry, so an explicit force balance cannot be resolved.302

The spurious forcing that emerges from the masking can be considered as an inferred303

response of the pressure field to the Coriolis acceleration near the topography. There are304

two possible interpretations of the result in Equation 20. We can think of the result as305

either the curl of an inferred pressure gradient near the bathymetry or as a form of vor-306

tex stretching that takes place on F points near model level steps (Bell, 1999).307

3.4 Decomposing the planetary vorticity term308

The planetary vorticity diagnostic is sensitive to variations in the Coriolis param-309

eter, cell thicknesses, model level steps, and the divergence of the depth-integrated flow.310

The magnitude of these contributions may vary significantly between configurations so311

a general method for decomposing the planetary vorticity diagnostic is valuable. In or-312

der to effectively decompose the Coriolis acceleration, it is useful to perform variations313

of NEMO’s calculation of the Coriolis acceleration under three different assumptions. In314

one calculation we impose cell thicknesses that do not vary horizontally; in another cal-315

culation we impose a constant Coriolis parameter; and in the final calculation we impose316

cell thicknesses that do not vary horizontally and a constant Coriolis parameter.317

We then take the curl of the three depth-integrated accelerations to calculate three318

variations of the planetary vorticity diagnostic. The planetary vorticity diagnostics un-319

der all three assumptions include zeroth order contributions from model level changes320

and divergences in the depth-integrated flow (f∇h·u). The divergence of the flow over321

four T cells is also calculated separately. These three variations of the planetary diag-322

nostic, the divergence contribution, and the complete planetary vorticity diagnostic are323

linearly combined to calculate five components of the planetary vorticity diagnostic:324

• the divergence of the depth-integrated flow;325

• the beta effect;326

• the influence of model level steps;327

• the influence of partial cells;328

• the coupled beta-topographic effect.329

From the analytic form ∇h·(fu), we would expect contributions from the diver-330

gence and the beta effect but the remaining contributions are purely numeric. The beta331

effect component contains a real part that arises from spatial variations of the analytic332

value of f and a numerical part that arises from the difference between the point-averaged333

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ΓF

AF

Γ3F

A3F

Ωi,j = 1
AF

∫∫
AF
∇×M · k̂ dA

Ωi,j = 1
AF
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∇×M · k̂ dA

I3F =
∮

Γ3F
M · dl

Ωi,j

Figure 3. The application of Stokes’ theorem on a C-grid. The vorticity diagnostic Ω is equiv-

alent to the normalized line integral of M around a single F cell of area AF . The area integral of

Ω over a collection of F cells (e.g. A3F ) is equivalent to the line integral of M along the perime-

ter (e.g. Γ3F ).

value of f and its analytic value. The coupled beta-topographic component contains higher334

order terms as it is calculated by finding the difference between the complete planetary335

vorticity diagnostic and the sum of the four other components; therefore, the five com-336

ponents add up to the complete planetary vorticity diagnostic by construction.337

3.5 Contour integration on a C-grid338

Calculating the curl on a C-grid is consistent with Stokes’ law applied to an F cell,339

and integrating ∇×M ·k over several adjacent F cells is equivalent to a line integral340

of M around them (see Figure 3). As the streamfunction ψ is defined on F points we341

can argue that the area enclosed by a streamline is a collection of F cells and that the342

area integral of vorticity diagnostics is the work done by model forces in one circulation343

around them.344

Analytically, the planetary vorticity term vanishes upon contour integration. In this345

section we determine whether this mathematical identity carries over to the C-grid by346

considering the simple configuration shown in Figure 4. We consider a depth-integrated347

flow on a C-grid made up of four F cells in the i direction and three in the j direction.348

The grid is regular and cell widths in the i and j direction are the same. There are no349

topographic effects as the system has no partial cells or masked points. The outer edge350

of the domain is a rectangular streamline, ψext, which no flow can pass through. The in-351

terior flow follows the inside edge of ψext and has a base velocity of U0. A recirculation352

on the left intensifies the interior flow by an amount U1. The velocity field is incompress-353
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Figure 4. A simple flow where the planetary vorticity diagnostic does not integrate to zero

when integrated within streamlines. The box is a rectangular streamline of value ψext and no

flow is permitted to pass through it. The depth-integrated flow is prescribed and incompressible.

The grid point values of the depth-integrated velocity are given on the left and an illustration of

the background flow and recirculation are given on the right.

ible and summarized below:354

u1,j = u4,j = 0,

u2,3 = −u2,2 = U0 + U1,

u3,3 = −u3,2 = U0,

vi,1 = vi,3 = 0,

v2,2 = U0 + U1,

v3,2 = −U1,

v4,2 = −U0,

where we assume U0, U1 > 0. In this case the circulation is clockwise so the interior355

values of the streamfunction will be larger than ψext. The minimum interior value of the356

streamfunction is ψint. The area enclosed by a streamline ψ where ψext < ψ < ψint357

is made up of the two interior F cells at (2, 2) and (3, 2). Using the form of the depth-358

integrated planetary vorticity diagnostic, PVO, for the EEN scheme (derived and pre-359

sented in Equation A12 in Appendix A) we can determine the value of the area integral:360

I (ψ) = (∆x)
2 [

PVO1,1 + PVO2,1

]
,361

=
U1∆x

12
[(f1,2 − f1,0) + (f2,2 − f2,0)] , (21)362

where PVO is the planetary vorticity diagnostic and ∆x is the constant cell width. Equa-363

tion 21 describes a numerical beta effect that only acts on the recirculation part of the364

flow. The presented example is highly idealized but it simply demonstrates that the plan-365

etary vorticity diagnostic does not generally vanish when integrated within streamlines.366

4 A double gyre model367

4.1 Details of the configuration368

The first experiment in this article is an idealized double gyre configuration based369

on the GYRE PISCES reference configuration in NEMO. The GYRE PISCES reference370

configuration has been used for a wide range of experiments (Lévy et al., 2010, 2015; Rug-371

giero et al., 2015; Perezhogin, 2019). The domain is a closed rectangular basin which is372

3180 km long, 2120 km wide, and is rotated at an angle of 45° relative to the zonal di-373

rection. The basin exists on a beta plane where f varies linearly around its value at ∼374

30°N.375
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Figure 5. (a) Bathymetry of the SLOPED configuration. (b) The wind stress profile for both

the FLAT and SLOPED configuration. The wind stress profile varies seasonally in a sinusoidal

manner between summer and winter extremes that are highlighted.

The model has a regular 122×82 grid that is aligned with the rotated basin. The376

horizontal resolution is equivalent to a 1/4° grid at the equator and the configuration has377

31 model levels. Two forms of bathymetry are used in this section. The FLAT config-378

uration has a fixed depth of 4.5km and no partial cells are used. The SLOPED config-379

uration has a linear slope that extends from the North West side of the basin and spans380

half the basin (see Figure 5a). The maximum depth of the SLOPED configuration is 4.5km381

and the minimum depth is 2km and partial cells are used to represent the slope.382

The circulation is forced by sinusoidal analytic profiles of surface wind stress and383

buoyancy forcing. The wind stress is zonal and only varies with latitude so that the curl384

changes sign at 22°N and 36°N (see Figure 5b). The wind stress profile is designed to spin385

up a subpolar gyre in the north, a subtropical gyre in the south, and a small recircula-386

tion also emeges in the bottom corner. The wind stress and buoyancy forcing varies sea-387

sonally in a sinusoidal manner.388

The model uses a free slip condition on all boundaries except at the bottom where389

a linear friction drag is applied. A simplified linear equation of state is used with a ther-390

mal expansion coefficient of a0 = 2×10−4kg m−3 K−1, and a haline coefficient of b0 =391

7.7×10−4kg m−3 psu−1. Horizontal and biharmonic diffusion of momentum is imple-392

mented with a diffusivity of 5×1010 m4s−1. Biharmonic diffusion of tracers along isopy-393

cnals is implemented with a diffusivity of 109 m4s−1.394

The model is spun up for 60 years and the experiment was run for an additional395

10 years with monthly-mean outputs. A steady state is not required for this diagnostic396

method to work as the time derivative term is present in the vorticity budget. A time397

step of 10 minutes is used for the model integration.398
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The EEN vorticity scheme is used for consistency with all analysis discussed in Sec-399

tion 3 and the results from the Weddell Gyre in Section 5. The EEN method calculates400

F cell thicknesses using the method described by Equation 10 and we therefore expect401

sudden changes in the F cell thickness near the domain edge for both the FLAT and SLOPED402

configurations.403

4.2 Methods404

Momentum diagnostics are calculated for every time step and the discrete vortic-405

ity diagnostics are calculated by depth-integrating the momentum diagnostics and tak-406

ing the curl. The resultant diagnostics are time-averaged over the ten year experimen-407

tal period. The extensive time-averaging will influence the advection vorticity diagnos-408

tic as there is an added contribution from the eddy vorticity flux.409

For contour integration, the vorticity diagnostics are then linearly interpolated onto410

a regular 1/12° grid. This is to minimise edge effects when carrying out the contour in-411

tegrals but integrations without interpolation are similar in form (see Appendix D for412

an example). The depth-integrated streamfunction is calculated and also interpolated413

onto a regular 1/12° grid for the contour integration.414

For 1001 values of ψ, closed streamline contours are identified using a marching squares415

algorithm from the scikit-image package (Van Der Walt et al., 2014). Streamlines that416

are near the recirculation gyre (south of 20°N) are ignored in this experiment and for some417

values of ψ no closed streamlines could be found. For each closed streamline found, the418

vorticity diagnostics are integrated over the area enclosed; this is equivalent to calculat-419

ing I(ψ) in Equation 5 over many values of ψ.420

Multiple closed contours can be found for the same value of ψ so an additional con-421

tour constraint is needed to ensure I(ψ) is single-valued. In this experiment we always422

choose the contour that spans the largest area when necessary which minimises the in-423

fluence of small pocket circulations that are not a part of the gyre. Closed streamlines424

that run along the edge of the domain can be hard to identify so a discontinuity in I(ψ)425

near ψ = 0 is expected as the largest detected contours will suddenly become pocket426

circulations as ψ approaches zero.427

4.3 Results428

The depth-integrated streamfunction from the FLAT and SLOPED configurations429

is shown in Figure 6. In both configurations a subtropical and subpolar gyre can clearly430

be identified and a small recirculation gyre can be found in the Southernmost corner.431

The subtropical gyre circulation is clockwise and the subpolar gyre circulation is anti-432

clockwise.433

In the FLAT configuration the subtropical gyre has a transport of 68 Sv and the434

subpolar gyre has a transport of 18 Sv. In the SLOPED configuration the subtropical435

gyre has a transport of 40 Sv and the subpolar gyre has a transport of 13 Sv. We note436

that the sloped bathymetry significant alters the form of the subtropical gyre stream-437

lines.438

The depth-integrated vorticity diagnostics of the FLAT and SLOPED configura-439

tion are shown in Figures 7 and 8 respectively alongside the decomposition of the plan-440

etary vorticity diagnostic introduced in Section 3.4. In the FLAT configuration we note441

that the non-linear advection of vorticity and the planetary vorticity diagnostic have the442

largest grid point values (∼ 10−9 m s−2) near the western boundary currents of both443

gyres. The wind stress curl is one order of magnitude smaller (∼ 10−10 m s−2) but changes444

sign less frequently within the gyre regions. We see that the planetary vorticity diagnos-445

tic is almost entirely a result of the beta effect (Figure 7g and h). We note that the par-446
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Figure 6. The depth-integrated streamfunction of the (a) FLAT and (b) SLOPED configura-

tions. The transports of the subtropical gyre (Tstr) and subpolar gyre (Tspl) are given.

tial cells contribution for the FLAT configuration is non-zero and localized to the edge447

(Figure 7j) where the EEN Coriolis scheme artificially shrinks F cell thicknesses near masked448

points.449

In the SLOPED configuration (Figure 8) the advection and planetary vorticity di-450

agnostics are still large but have an elongated structure similar to the SLOPED stream-451

lines in Figure 6b. The bottom pressure torque is significant and is localized to the sloped452

region (Figure 8b). The planetary vorticity diagnostic has a more complex decomposi-453

tion as the influence of partial cells extends beyond the edge of the domain and model454

level steps also contribute (Figure 8j).455

The integrals of the vorticity diagnostics over areas enclosed by streamlines are shown456

in Figure 9 and Figure 10 for the FLAT and SLOPED configurations respectively as well457

as the integrals of the planetary vorticity diagnostic components. Example streamline458

contours are also shown. In these figures ψ > 0 describes the subtropical gyre and ψ <459

0 describes the subpolar gyre. The subtropical and subpolar gyres circulate in the op-460

posite direction but the sign of the integration results are adjusted so that positive in-461

tegrals correspond to forces that spin the gyres up.462

In the FLAT configuration we see that the subtropical and subpolar gyre are en-463

tirely driven by wind stress curl. At the exterior of the subtropical gyre (small and pos-464

itive values of ψ) the wind stress curl is largely balanced by the advection of relative vor-465

ticity which implies a net import of positive vorticity into the gyre. The imported vor-466

ticity cannot originate from the subpolar gyre as the advection of relative vorticity plays467

no role in spinning the subpolar gyre down. Therefore the imported vorticity must orig-468

inate from the recirculation gyre in the southernmost corner In the subtropical gyre in-469

terior the wind stress curl is largely balanced by the curl of bottom friction, matching470

the balance proposed by Niiler (1966).471
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Figure 9. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

for the FLAT configuration. Positive values correspond to a force that spins the subtropical (ψ >

0) or subpolar (ψ < 0) gyre up. The diagnostics are integrated over areas enclosed by streamlines

to develop a full forcing profile of the gyres. The x axis describes the value of the streamline used

in the integration. Example streamline contours are given. (b) Shows the area integrals of the

planetary vorticity diagnostic and its components.
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(ψ > 0) or subpolar (ψ < 0) gyre up. (b) Shows the area integrals of the planetary vorticity

diagnostic and its components.
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The planetary vorticity diagnostic is significant in both of the FLAT gyres and is472

the dominant drag for the subpolar gyre. At both gyre exteriors (small values of ψ) the473

integrated planetary vorticity diagnostic is a combined effect of the numerical beta ef-474

fect discussed in Section 3.5 and the influence of partial F cells that are artificially cre-475

ated by the EEN scheme. At the interior of both gyres (large values of ψ) the numer-476

ical beta effect is the only component.477

In the SLOPED configuration we see that both the subtropical and subpolar gyre478

are almost entirely driven by wind stress curl. There is no dominant force spinning the479

gyres down. Advection, bottom pressure torques, lateral diffusion, bottom friction, and480

planetary vorticity all make a similar contribution to spinning the gyres down. The plan-481

etary vorticity diagnostic is similarly mixed as both the beta effect and partial cells make482

up the signal. The gyres in the SLOPED configuration appear to be an intermediate case483

between a topographically steered gyre and an advective regime.484

Spurious forces that emerge from the discrete Coriolis acceleration are significant485

in idealised models with and without variable bathymetry and appear to have a large486

influence on gyre circulations. In the next sub-section we see if these forces are also sig-487

nificant in a realistic global model.488

5 The Weddell Gyre489

5.1 Details of the configuration490

We now consider a more realistic configuration based on the NEMO global model491

with realistic forcing and bathymetry. In this experiment, we use an ocean-ice global con-492

figuration that is similar to that described in (Storkey et al., 2018) but based on NEMO493

version 4. The global grid is based on the ‘ORCA’ family of grids within the NEMO frame-494

work (Madec et al., 2019). In this article we only consider the configuration using the495

ORCA025 grid (1/4° horizontal resolution at the equator). Most of the model bathymetry496

for ORCA025 is derived from the ETOPO1 data set (Amante & Eakins, 2009). Bathymetry497

on the Antarctic shelf is based on IBSCO (Arndt et al., 2013) and has been smoothed498

by three applications of a first order Shapiro filter. The bathymetry is represented in z-499

coordinates by partial cells (Bernard et al., 2006). Surface forcing is taken from the CORE2500

surface forcing data set (Large & Yeager, 2009) and includes contributions from sea ice.501

The bathymetry is shown in Figure 11a.502

The model uses a free slip boundary condition with a non-linear drag along the bot-503

tom boundaries and the TEOS-10 equation of state (McDougall & Barker, 2011). Bi-504

harmonic diffusion of momentum is implemented and acts along model level surfaces with505

a diffusivity that varies with local horizontal grid spacing (Willebrand et al., 2001). Lapla-506

cian diffusion of tracers is implemented and acts along isopycnal surfaces with a diffu-507

sivity that also varies with local horizontal grid spacing. The EEN vorticity scheme is508

used again for consistency with analysis in Section 3 and results in Section 4.509

5.2 Methods510

The methods used for calculating the depth-integrated streamfunction, vorticity511

diagnostics, and contour integrals are identical to those described in Section 4.2.512

We study the area including and surrounding the Weddell Gyre in the model (see513

Figure 11) and consider the time-averaged fields over a typical year. The stream func-514

tion is interpolated onto a regular 1/12° grid and closed contours are identified for 201515

values of ψ. As we are studying a one gyre system we choose to only identify contours516

where ψ > 0. This effectively filters out the vorticity budget of the Antarctic Circum-517

polar Current. The sign of the integration results are adjusted so that positive integrals518

correspond to forces that spin the Weddell Gyre up.519
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Figure 11. (a) The bathymetry of the Weddell Gyre region in the global model. (b) Depth-

integrated streamfunction of the Weddell Gyre.

5.3 Results520

The depth-integrated streamfunction of the Weddell Gyre is shown in Figure 11b521

and it can be seen that the Weddell Gyre has a transport of 60 Sv. The streamlines fol-522

low the isobaths closely suggesting the circulation is largely constrained by the bathymetry.523

The depth-integrated vorticity diagnostics are shown in Figure 12. The combined524

effect of the wind stress and stress due to sea ice are shown in Figure 12e. With real-525

istic topography and forcing, the grid point values of depth-integrated vorticity diagnos-526

tics are very noisy with the exception of the surface stress curl. This highlights how im-527

portant the integrating area is when interpreting vorticity diagnostics. For individual528

grid points we see that the planetary vorticity diagnostic is made up of contributions from529

the beta effect, partial cells, and a significant contribution from model level steps. The530

beta effect is the most coherent of the contributions and is mostly negative in the west-531

ern limb of the gyre where v > 0 and positive in the eastern limb where v < 0. As532

expected, the contribution from model levels steps is localized to areas where the num-533

ber of model levels change.534

Unlike in the double gyre model, bottom friction appears to be small and incoher-535

ent in the Weddell Gyre region and is unlikely to have any significant influence on the536

vorticity budget. The divergence of the depth-integrated budget is also small relative to537

the vorticity budget which suggests that the effect of fresh water input due to precip-538

itation and sea ice is negligible. The total time tendency (Figure 12d) is non-zero in this539

vorticity budget suggesting that the model is not in a completely steady state; however,540

the grid point values are only significant in the Drake Passage and are noisy.541

The integrals of the depth-integrated vorticity diagnostics over areas enclosed by542

streamlines are shown in Figure 13 alongside integrations of the planetary vorticity com-543

ponents. We see that the Weddell Gyre is almost entirely spun up by the wind stress curl.544

The stress due to sea ice (marked by hatching in Figure 13a) and the advection of rel-545

ative vorticity also help to spin the Weddell Gyre up. The advective contribution is caused546

by vorticity exchange at the interface between the Weddell Gyre and the ACC.547
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Figure 12. The depth-integrated vorticity diagnostics for the Weddell Gyre and the compo-

nents of the planetary vorticity diagnostic.
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Figure 13. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

for the Weddell Gyre. Positive values correspond to a force that spins the gyre up. The hatching

marks the sea ice contribution to the surface stress integral. (b) Shows the area integrals of the

planetary vorticity diagnostic and its components.

Bottom pressure torques and lateral diffusion play a notable role in spinning the548

Weddell Gyre down but the planetary vorticity diagnostic is the most significant con-549

tribution. Looking at the decomposition of the planetary vorticity diagnostic we see that550

the signal is mostly determined by changes in model level and the remainder is deter-551

mined by partial cells. This suggests that the Weddell Gyre is almost entirely spun down552

by topography due to the combined effect of bottom pressure torques and the planetary553

vorticity diagnostic, but the majority of the gyre’s interaction with the sea floor is spu-554

rious. This conclusion is true in both the interior and exterior of the gyre.555

6 Discussion556

We have shown that the vorticity dynamics of both highly idealized and realistic557

gyre configurations are greatly influenced by spurious forces that emerge from the dis-558

crete Coriolis force and the step-like representation of bathymetry. In the idealized dou-559

ble gyre configuration (Section 4) the spurious force is a combination of numerical beta560

and topographic effects that are present in both the FLAT and SLOPED configuration.561

In the realistic Weddell Gyre (Section 5) the spurious force is the dominant drag and is562

entirely determined by model level steps and partial cells. In this section we discuss pos-563

sible methods to mitigate these spurious forces.564

6.1 Alternative vorticity schemes565

The results presented in Sections 4 and 5 both use the EEN vorticity scheme and566

it is tempting to dismiss the spurious forces as an artifact of the selected scheme. The567

analysis in Section 3.2 is general for three popular schemes: EEN, ENE, and ENS. The568

methods and decomposition used in this article are applicable under any scheme where569

the Coriolis acceleration can be expressed in the form of Equation 7. Results from the570
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Figure 14. The horizontal distribution of variables on the B-grid. Tracer points (T) and vec-

tor points (V) are shown alongside important values that are centred on these points. Just like in

the C-grid, the vertical velocities are found directly above and below the Tracer point.

SLOPED double gyre configuration using the different schemes are presented in Appendix571

B and the vorticity budgets are qualitatively similar. Spurious topographic forces and572

the numerical beta effect are still significant.573

It therefore seems that switching between the available vorticity schemes will not574

alleviate the spurious signal. It is possible that a new scheme could be formulated which575

is designed to significantly reduce the spurious forces, but that will most likely require576

abandoning the conserved quantities that characterise the existing schemes.577

6.2 The B-grid578

Altering the grid geometry can significantly alter the behaviour of model forces.579

To highlight this we consider how the Coriolis force behaves on the B-grid.580

The B-grid excels at representing geostrophic flows as f , u, and v are located on581

the same vector point. The streamfunction and relative vorticity are located on the tracer582

point as shown in Figure 14.583

On the B-grid the Coriolis acceleration is simply:584

CORx
i,j,k = fi,j vi,j,k, (22)

CORy
i,j,k = −fi,j ui,j,k. (23)

The Coriolis acceleration does not rely on multi-point averaging or thickness weighting585

of f so numerical contributions do not emerge in the grid point acceleration.586

On the B-grid u and v lie on the same point so they share the same mask. This587

means that non-zero Coriolis accelerations are never masked near model level steps and588

the depth-integrated Coriolis acceleration is a function of the depth-integrated veloci-589

ties only:590

COR
x

i,j = fi,j vi,j , (24)

COR
y

i,j = −fi,j ui,j . (25)

We therefore conclude that the spurious force caused by model level steps on the C-grid591

(see Section 3.3) is not present on the B-grid.592

In Appendix C we integrate the curl of the depth-integrated Coriolis acceleration593

over the area enclosed by a rectangular streamline which is analagous to the C-grid in-594

tegration discussed in Section 3.5. The result of the B-grid integral is non-zero showing595
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that
∫∫
Aψ
∇h · (fu) 6= 0 in general. This suggests that a numerical beta effect would596

still be present on the B-grid.597

Using the B-grid would remove all of the spurious topographic forces identified in598

this article. This highlights how a model circulation’s interaction with the sea floor is599

significantly affected by the grid geometry.600

6.3 Terrain following coordinates601

The spurious topographic effects found in this article are a consequence of how bot-602

tom topography is represented in z-coordinates. In the Weddell Gyre especially we see603

how model level steps can create large spurious contributions to the depth-integrated vor-604

ticity budget.605

Terrain-following coordinates (or σ-coordinates) are an alternative form of verti-606

cal coordinate where the vertical resolution adjusts with the bottom topography so that607

the same number of model levels are present in all fluid columns (Song & Haidvogel, 1994).608

σ-coordinates are used in Stewart et al. (2021) and Schoonover et al. (2016) and have609

the advantage of removing spurious terms that emerge from model level steps. The forms610

of the EEN, ENE, and ENS vorticity schemes are unchanged when using terrain-following611

coordinates so the horizontal variations in cell thicknesses could still cause a spurious612

signal.613

Terrain-following coordinates are not used widely in climate models because of the614

difficulty in calculating accurate horizontal pressure gradients (near the equator), advec-615

tion, and isoneutral tracer advection. A full discussion of the current advantages and lim-616

itations of terrain following coordinates can be found in Lemarié et al. (2012).617

7 Summary618

The depth-integrated vorticity budget is a valuable tool for identifying important619

model forces in gyre circulations. Vorticity diagnostics can be integrated over the area620

enclosed by streamlines to identify forces responsible for spinning the gyre up and down.621

By considering how the vorticity budget is represented on a C-grid with step-like bathymetry622

we identified spurious forces that emerge from the representation of bottom topography623

and the discrete Coriolis acceleration. Model level steps and partial cells produce two624

distinct spurious topographic forces. A numerical beta effect emerges from the required625

multi-point averaging of the Coriolis parameter and remains when integrated over the626

area enclosed by gyre streamlines.627

We first studied the vorticity budget of an idealized double gyre configuration with628

analytic geometry, forcing, and two bathymetry options. The FLAT variant has a con-629

stant depth and the SLOPED variant has a linear slope that extends over half the do-630

main. The subtropical gyre of the FLAT configuration is non-linear at the exterior (wind631

stress curl balanced by advection) and is in a Stommel (1948) regime in the interior (wind632

stress curl balanced by friction). The FLAT subpolar gyre is spun up by wind stress curl633

and mostly spun down by spurious forces found in the planetary vorticity diagnostic. Spu-634

rious forces are significant in both FLAT gyres and are a consequence of the numerical635

beta effect and partial F cells that are artificially introduced by the EEN vorticity scheme.636

Artificial partial F cells would not be present in the ENS or ENE vorticity schemes.637

The vorticity budget of the SLOPED gyres features bottom pressure torques and638

an increased influence of partial cells on the planetary vorticity diagnostic. The SLOPED639

subtropical gyre is an intermediate case between a topographically steered gyre and a640

non-linear circulation. The SLOPED subpolar gyre is driven by wind stress curl but spun641

down by the combined effect of bottom pressure torques and spurious interactions with642
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the topography via partial F cells. This first case study highlighted how spurious terms643

can dominate a vorticity budget in simple configurations with and without variable bathymetry.644

The second case study was the Weddell Gyre in a global model where the forcing645

and geometry are more realistic. By studying the vorticity budget of the Weddell Gyre646

we conclude that the model circulation is mostly spun up by wind stress curl and spun647

down by the combined effect of bottom pressure torques and spurious interactions with648

the topography. The largest of the topographic forces spinning the Weddell Gyre down649

is the spurious force caused by model level steps.650

Switching to alternative vorticity schemes is not effective at reducing spurious con-651

tributions to the vorticity budget. By presenting a general form of the discrete Corio-652

lis acceleration we are able to quickly conclude that the numerical beta effect and the653

influence of partial cells will remain under all three vorticity schemes and any other scheme654

that uses this general form. The influence of model level steps is a direct consequence655

of the C-grid geometry when using z-coordinates and is relatively insensitive to the choice656

of vorticity scheme.657

Altering the geometry of the discretisation is an effective method for reducing spu-658

rious topographic forces. The B-grid is better at representing the Coriolis force and it659

is not possible for model level steps or partial cells to influence the Coriolis acceleration.660

Model level steps and their influence on the Coriolis acceleration can be avoided alto-661

gether by using terrain-following coordinates.662

The B-grid and terrain-following coordinates have their own unique limitations and663

it is unclear how much the identified spurious forces corrupt circulation variables such664

as the gyre transport. It is possible that the spurious forces are inadvertently perform-665

ing the role of one or more real ocean processes that are required for accurate simula-666

tions. If a combination of non-spurious forces can fully account for the spurious forces667

found in this article then the identified problem is purely diagnostic in nature. Other-668

wise, any part of the spurious forcing that cannot be accounted for by non-spurious forces669

should be considered as a numerical error. This numerical error could be small but may670

also accumulate under specific conditions and corrupt model circulations. The spurious671

cooling (Hecht, 2010) that occurs when a dispersive advection scheme is used with the672

Gent and McWilliams (1990) eddy parametrization highlights the dangers of ignoring673

numerical errors.674

It is important for the ocean modelling community to continue developing new ways675

of representing bathymetry and we hope that vorticity budgets and the diagnostic method676

presented in this article will provide a valuable tool for assessing and quantifying rep-677

resentations of the sea floor in current and future ocean models.678

Appendix A Explicit forms of the Coriolis schemes679

Here we explicitly state the forms of the discrete Coriolis acceleration in the ENE,680

ENS, and EEN vorticity schemes for a z-coordinate system. In the ENE vorticity scheme681

the x and y components of the Coriolis acceleration are:682

CORx
i,j,k =

1

4e1u
i,j

[
fi,j−1

((
ve1v

)
i,j−1,k

+
(
ve1v

)
i+1,j−1,k

)

+fi,j

((
ve1v

)
i,j,k

+
(
ve1v

)
i+1,j,k

)]
, (A1)

CORy
i,j,k =

1

4e2v
i,j

[
fi−1,j

((
ue2u

)
i−1,j,k

+
(
ue2u

)
i−1,j+1,k

)

+fi,j

((
ue2u

)
i,j,k

+
(
ue2u

)
i,j+1,k

)]
. (A2)
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In the ENS vorticity scheme the x and y components of the Coriolis acceleration are:683

CORx
i,j,k =

1

8e1u
i,j

[(
ve1v

)
i,j−1,k

+
(
ve1v

)
i+1,j−1,k

+
(
ve1v

)
i,j,k

+
(
ve1v

)
i+1,j,k

]
[fi,j−1 + fi,j ] , (A3)

CORy
i,j,k =

−1

8e2v
i,j

[(
ue2u

)
i−1,j−1,k

+
(
ue2u

)
i−1,j+1,k

+
(
ue2u

)
i,j,k

+
(
ue2u

)
i,j+1,k

]
[fi−1,j + fi,j ] . (A4)

We note that each term in the ENE and ENS forms can be written in the general form684

of Equation 7 as ve1v = Ṽ /e3v and ue2u = Ũ/e3u. In the ENE and ENS cases e3f
k (bn) =685

e3v
k (cn) for CORx and e3f

k (bn) = e3u
k (cn) for CORy in Equation 7. In the EEN vor-686

ticity scheme, the x and y components of the Coriolis acceleration are:687

CORx
i,j,k =

1

12e1u
i,j

[
FNEi,j,k

(
ve3ve1v

)
i,j,k

+ FNWi+1,j,k

(
ve3ve1v

)
i+1,j,k

+FSEi,j,k
(
ve3ve1v

)
i,j−1,k

+ FSWi+1,j,k

(
ve3ve1v

)
i+1,j−1,k

]
, (A5)

CORy
i,j,k =

−1

12e2v
i,j

[
FNEi,j,k

(
ue3ue2u

)
i,j,k

+ FNWi,j,k

(
ue3ue2u

)
i−1,j,k

+FSEi,j+1,k

(
ue3ue2u

)
i,j+1,k

+ FSWi,j+1,k

(
ue3ue2u

)
i−1,j+1,k

]
, (A6)

where FNE , FNW , FSE , and FSW are thickness-weighted triads of the Coriolis param-688

eter:689

FNEi,j,k =
(
f̃i,j,k + f̃i−1,j,k + f̃i,j−1,k

)
, (A7)

FNWi,j,k =
(
f̃i,j,k + f̃i−1,j,k + f̃i−1,j−1,k

)
, (A8)

FSEi,j,k =
(
f̃i,j,k + f̃i,j−1,k + f̃i−1,j−1,k

)
, (A9)

FSWi,j,k =
(
f̃i−1,j,k + f̃i,j−1,k + f̃i−1,j−1,k

)
, (A10)

where f̃ = f/e3f using the EEN definition of e3f shown in Equation 10.690

To calculate the planetary vorticity diagnostic we take the curl of the depth-integrated691

Coriolis acceleration (defined in Equations 13 and 14):692

PVOi,j =
1

(e1fe2f )i,j,k

[(
COR

y
e2v
)
i+1,j

−
(

COR
y
e2v
)
i,j

−
(

COR
x
e1u
)
i,j+1

+
(

COR
x
e1u
)
i,j

]
. (A11)

In general the resulting equation of the vorticity diagnostic is very difficult to in-693

terpret. We only present the form of the planetary vorticity diagnostic for the EEN scheme694

on a grid with no partial cells or model level steps as it is used to derive the numerical695

beta effect in Section 3.5:696

PVOi,j =
1

12 (e1fe2f )i,j

[
−fNEi,j+1

(
V e1v

)
i,j+1

− fNWi+1,j+1

(
V e1v

)
i+1,j+1

+fSEi,j
(
V e1v

)
i,j−1

+ fSWi+1,j

(
V e1v

)
i+1,j−1

−fSEi+1,j+1

(
Ue2u

)
i+1,j+1

− fNEi+1,j

(
Ue2u

)
i+1,j

+fSWi,j+1

(
Ue2u

)
i−1,j+1

+ fNWi,j

(
Ue2u

)
i−1,j

− (fi,j+1 − fi,j−1)
((
V e1v

)
i+1,j

+
(
V e1v

)
i,j

)

− (fi+1,j − fi−1,j)
((
Ue2u

)
i,j+1

+
(
Ue2u

)
i,j

)]
. (A12)
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Appendix B Alternative vorticity schemes in the double gyre model697

In this section we present various integrations of the SLOPED double gyre config-698

uration using different vorticity schemes: EEN, ENS, and ENE. All other aspects of the699

experiment are as described in Section 4.1. The results are shown in Figure B1. The vor-700

ticity budget is qualitatively similar between the three cases as well as the decomposi-701

tion of the planetary vorticity diagnostic. It should be noted that the circulations do dif-702

fer as the transports vary and the separation points of the western boundary currents703

change.704

Appendix C Contour integration on a B-grid705

In this section we consider how the planetary vorticity diagnostic on a B-grid be-706

haves when integrated over the area enclosed by a streamline. The example configura-707

tion used is analgous to the C-grid configuration in Section 3.5.708

On a B-grid the relative vorticity is centred on the tracer point. As a result, the709

curl of the depth-integrated Coriolis acceleration depends on values of CORx and CORy
710

on the four surrounding vector points. The resultant form of the planetary vorticity di-711

agnostic is:712

PVOi,j =
−1

(e1te2t)i,j

1

2

[
δi
(
fue2u

)
j

+ δi
(
fue2u

)
j−1

+δj
(
fve1v

)
i
+ δj

(
fve1v

)
i−1

]
, (C1)

where δi and δj are differencing operators that act along the i and j axes respectively:713

δi (Ai,j) = Ai+1,j −Ai,j , (C2)

δj (Ai,j) = Ai,j+1 −Ai,j . (C3)

The streamfunction is centred on B-grid tracer points and the associated incompress-714

ible flow can be calculated using the equations:715

ui,j = − 1

2∆x
[ψi,j+1 − ψi,j + ψi+1,j+1 − ψi+1,j ] (C4)

vi,j =
1

2∆x
[ψi+1,j − ψi,j + ψi+1,j+1 − ψi,j+1] . (C5)

We consider a pen-and paper configuration that is shown in Figure C1. There are716

no topographic effects as we assume the grid has no partial cells or masked points. The717

external values of ψ are arbitrarily set to zero and the internal values are ψ1,1 = 2 (U0 + U1) ∆x718

and ψ2,1 = 2U0∆x where ∆x is the regular cell width. The velocity field is derived from719

ψ to guarantee an incompressible flow. If we integrate the planetary vorticity diagnos-720

tic over the area enclosed by a streamline where 0 < ψ < 2U0∆x then the area inte-721

gral is the sum of PVO over the two internal tracer points:722

I(ψ) = (∆x)
2 [

PVO2,2 + PVO3,2

]

= U1∆x (f2,2 − f2,1) . (C6)

Equation C6 is similar in form and magnitude to the C-grid result (Equation 21) and723

shows that a numerical beta effect can exist on a B-grid.724

Appendix D Contour integration without interpolation725

The interpolation of vorticity diagnostic fields and the streamfunction is discussed726

in Section 4.2. Linear interpolation is used to minimise edge effects in our contour in-727

tegration but is not required. In this section we present results that use uninterpolated728
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Figure B1. Stacked area plots showing the integrals of depth-integrated vorticity diagnos-

tics for the SLOPED configuration using the EEN, ENE, and ENS vorticity schemes. Positive

values correspond to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. A

decomposition of the planetary vorticity diagnostic integrals are given on the RHS (b,d,f).
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Figure C1. A simple flow on a B-grid where the planetary vorticity diagnostic does not in-

tegrate to zero when integrated within streamlines. The box is a rectangular streamline of value

ψ0 = 0. The flow is incompressible and calculated from the prescribed interior values of ψ. The

background circulation is is illustrated by the gray dashed lines and is similar to the flow in

Figure 4.
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Figure D1. Stacked area plots showing the integrals of depth-integrated vorticity diagnos-

tics for the SLOPED configuration without using interpolated fields. Positive values correspond

to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. (b) Shows the area

integrals of the planetary vorticity diagnostic and its components. The vorticity budget and

decomposition are qualitatively similar to that shown in Figure 9.
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fields from the FLAT double gyre configuration. The results are shown in Figure D1 and729

are qualitatively similar to the interpolated results shown in Figure 9. This example is730

selected to demonstrate both the qualitative similarity to interpolated results but also731

the reduced coherence that comes from using non-interpolated data. The non-interpolated732

results from the Weddell Gyre are in fact more coherent than the results shown in Fig-733

ure D1.734

Acknowledgments735

This work was financially supported by the National Environment Research Council NE/S007474/1.736

This work used Monsoon2, a collaborative High-Performance Computing facility funded737

by the Met Office and the Natural Environment Research Council and used JASMIN,738

the UK collaborative data analysis facility. We would like to thank Julian Mak and An-739

drew Coward for their assistance in configuring NEMO on Monsoon2.740

The software used to calculate, integrate, and plot the vorticity budget is available741

from https://github.com/afstyles/VorticityContourAnalysisForNemo/tree/1e8cc28/. The742

model integrations can be found on Zenodo (Styles et al., 2021).743

The global configuration used in this article uses NEMO version 4.0.4 with the fol-744

lowing merged branches:745

• branches/UKMO/NEMO 4.0.4 mirror @ 14075,746

• branches/UKMO/NEMO 4.0.4 GO8 package @ 14474,747

• branches/UKMO/NEMO 4.0.4 GO6 mixing @ 14099,748

• branches/UKMO/NEMO 4.0.4 old tidal mixing @ 14096,749

• branches/UKMO/NEMO 4.0.4 momentum trends @ 15194.750

The double gyre configuration uses NEMO version 4.0.1 and any modified source code751

is archived on Zenodo (Styles et al., 2021). The versions of NEMO and the mentioned752

branches can be found at https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/.753

References754

Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: pro-755

cedures, data sources and analysis. NOAA Technical Memorandum NESDIS756

NGDC-24 .757

Arakawa, A., & Lamb, V. R. (1981). A potential enstrophy and energy conserving758

scheme for the shallow water equations. Monthly Weather Review , 109 (1), 18–759

36.760

Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby,761

B., . . . Wigley, R. (2013, jun). The International Bathymetric Chart of the762

Southern Ocean (IBCSO) Version 1.0-A new bathymetric compilation covering763

circum-Antarctic waters. Geophysical Research Letters, 40 (12), 3111–3117.764

doi: 10.1002/grl.50413765

Bell, M. J. (1999). Vortex stretching and bottom torques in the Bryan-Cox ocean766

circulation model. Journal of Geophysical Research: Oceans. doi: 10.1029/767

1999jc900064768

Bernard, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer,769

J., . . . De Cuevas, B. (2006). Impact of partial steps and momentum advection770

schemes in a global ocean circulation model at eddy-permitting resolution.771

Ocean Dynamics, 56 (5-6), 543–567. doi: 10.1007/s10236-006-0082-1772

Bras, I. A. A. L., Sonnewald, M., & Toole, J. M. (2019, nov). A barotropic vortic-773

ity budget for the subtropical north atlantic based on observations. Journal of774

Physical Oceanography , 49 (11), 2781–2797. doi: 10.1175/JPO-D-19-0111.1775

Cane, M. A., Kamenkovich, V. M., & Krupitsky, A. (1998). On the utility and776

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

disutility of JEBAR. Journal of Physical Oceanography . doi: 10.1175/1520777

-0485(1998)028〈0519:OTUADO〉2.0.CO;2778

Drijfhout, S. S., Marshall, D. P., & Dijkstra, H. A. (2013). Conceptual Models of779

the Wind-Driven and Thermohaline Circulation. In G. Siedler, S. M. Griffies,780

J. Gould, & J. A. Church (Eds.), Ocean circulation and climate (Vol. 103, pp.781

257–282). Academic Press. doi: 10.1016/B978-0-12-391851-2.00011-8782

Gent, P. R., & McWilliams, J. C. (1990). Isopycnal Mixing in Ocean Circulation783

Models. Journal of Physical Oceanography . doi: 10.1175/1520-0485(1990)784

020〈0150:imiocm〉2.0.co;2785

Hecht, M. W. (2010, jan). Cautionary tales of persistent accumulation of numerical786

error: Dispersive centered advection. Ocean Modelling , 35 (3), 270–276. doi: 10787

.1016/j.ocemod.2010.07.005788

Large, W. G., & Yeager, S. G. (2009, aug). The global climatology of an interannu-789

ally varying air - Sea flux data set. Climate Dynamics, 33 (2-3), 341–364. doi:790

10.1007/s00382-008-0441-3791
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