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Abstract13

Gyres are prominent surface structures in the global ocean circulation that often14

interact with the sea floor in a complex manner. Diagnostic methods, such as the depth-15

integrated vorticity budget, are needed to assess exactly how such model circulations in-16

teract with the bathymetry. Terms in the vorticity budget can be integrated over the17

area enclosed by streamlines to identify forces that spin gyres up and down. In this ar-18

ticle we diagnose the depth-integrated vorticity budgets of both idealized gyres and the19

Weddell Gyre in a realistic global model. It is shown that spurious forces play a signif-20

icant role in the dynamics of all gyres presented and that they are a direct consequence21

of the Arakawa C-grid discretization and the z-coordinate representation of the sea floor.22

The spurious forces include a numerical beta effect and interactions with the sea floor23

which originate from the discrete Coriolis force when calculated with the following schemes:24

the energy conserving scheme (ENE); the enstrophy conserving scheme (ENS); and the25

energy and enstrophy conserving scheme (EEN). Previous studies have shown that bot-26

tom pressure torques provide the main interaction between the depth-integrated flow and27

the sea floor. Bottom pressure torques are significant, but spurious interactions with bot-28

tom topography are similar in size. Possible methods for reducing the identified spuri-29

ous topographic forces are discussed. Spurious topographic forces can be alleviated by30

using either a B-grid in the horizontal plane or a terrain-following vertical coordinate.31

Plain Language Summary32

Gyres are large scale circulations in the world ocean that often interact with the33

sea floor. It is important to develop a method to assess how the representation of the34

sea floor in models affects gyre circulations. By calculating how model forces generate35

vorticity (the tendency to rotate) in the flow, we are able to determine the forces act-36

ing with and against the gyre circulation. We apply this method to results from a sim-37

plified double gyre model and the Weddell Gyre in a realistic global model. We show that38

spurious forces which emerge from the layout of the model grid play an important role39

in the presented gyre circulations. The spurious forces originate from the calculation of40

the Coriolis acceleration in the model. In previous studies, it has been argued that gyre41

circulations interact with the sea floor primarily by forming pressure gradients; here we42

show that contributions from pressure gradients are significant, but the spurious forces43

are similar in size and also emerge from interactions with the sea floor. We discuss pos-44

sible approaches to reduce the identified spurious forces by considering alternative grid45

layouts. The spurious forces can be alleviated by using a B-grid or a terrain-following46

vertical coordinate.47

1 Introduction48

Accurately representing the sea floor has always been a challenge for the ocean mod-49

elling community. Quantifying the full influence of the sea floor on model circulations50

is important for both future model development and the interpretation of results from51

existing models. We present a diagnostic method that reveals how bottom topography52

influences the depth-integrated vorticity budget of general circulation models (GCMs)53

and we identify significant spurious forces that emerge from the discrete Coriolis force54

when calculated on a C-grid (Mesinger & Arakawa, 1976) using z-coordinates.55

The recent article by Stewart et al. (2021) also studied the impact of bottom to-56

pography on vorticity budgets. However, the model used by Stewart et al. (2021) is a57

two layer isopycnal model where the bottom topography is completely contained in the58

lower density layer. In this article we consider models that have a higher vertical res-59

olution and a step-like bathymetry. It is in these more commonly used models that we60

identify a new category of spurious forces.61
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The textbook theory of gyres relies on the idea of a depth-integrated vorticity bud-62

get and gyres can be classified by the leading order terms in the depth-integrated vor-63

ticity equation. For example, the Stommel (1948) gyre is dominated by wind stress curl,64

lateral bottom friction, and the beta effect. In another example, Niiler (1966) analyt-65

ically integrated the vorticity equation over the area enclosed by gyre streamlines to study66

inertial gyres dominated by the wind stress curl, the advection of vorticity, and lateral67

bottom friction.68

GCMs have a primitive momentum equation with an associated vorticity budget.69

By taking the curl of the depth-integrated terms from the primitive momentum equa-70

tion we can calculate the corresponding terms in the model’s depth-integrated vortic-71

ity equation (referred to as vorticity diagnostics hereafter). The vorticity diagnostics can72

then be integrated over the area enclosed by gyre streamlines to reveal the model forces73

responsible for spinning the gyre up and down. In this article we diagnose the vortic-74

ity budget of gyres in two case studies using the NEMO model (Madec et al., 2019). We75

consider a simple double gyre configuration with analytic forcing and idealized geom-76

etry which resembles a North Atlantic basin. We also consider the vorticity budget of77

the Weddell Gyre in a realistic configuration of the global ocean. In both of these case78

studies we identify spurious force profiles with different characteristics. In the light of79

these results, we discuss potential changes to the model discretizations that could mit-80

igate the spurious forces.81

The article is structured as follows. We first discuss the analytic depth-integrated82

vorticity budget in Section 2 as well as the analytic method of contour integration. In83

Section 3 we consider how the depth-integrated vorticity budget behaves on a C-grid with84

step-like bathymetry and how spurious terms emerge from the discrete Coriolis accel-85

eration. Results from the analytically forced double gyre model are presented in Section86

4 and results for the Weddell Gyre are presented in Section 5. A discussion of approaches87

to avoid the spurious forcing terms can be found in Section 6. Closing remarks are given88

in Section 7. In Appendix A we derive the depth-integrated vorticity equation and in89

Appendix B we present the discrete forms of the Coriolis acceleration for various vor-90

ticity schemes. Appendix C presents results from the double gyre model using various91

forms of the discrete Coriolis acceleration. Appendix D presents contour integrations of92

uninterpolated diagnostics from the double gyre model.93

2 The analytic vorticity budget94

2.1 The depth-integrated vorticity equation95

Vorticity diagnostics are an underused tool for interpreting model circulations and96

offer a description of gyre dynamics that complements textbook theory (Vallis, 2017).97

A handful of recent papers have used a vorticity budget to diagnose regional and global98

GCM models (Hughes & de Cuevas, 2001; Yeager, 2015; Schoonover et al., 2016; Le Bras99

et al., 2019; Le Corre et al., 2020).100

To obtain a depth-integrated vorticity budget analytically we start from the vector-101

invariant form of the momentum equation:102

∂uh

∂t
= −

[
(∇× u)× u+

1

2
∇ (u · u)

]
h

− f
(
k̂× u

)
h
− 1

ρ0
∇hP + Fu +Du, (1)103

where f is the Coriolis parameter, uh is the ‘horizontal’ (parallel to the Earth’s surface)104

velocity vector, Fu is the vertical divergence of the vertical diffusive momentum fluxes105

(which relates to the surface momentum fluxes when vertically integrated), Du is the hor-106

izontal divergence of the horizontal diffusive momentum fluxes, ∇h is the horizontal gra-107

dient operator, and [ · ]h is the horizontal component of a vector. To derive a depth-integrated108

vorticity equation, we need to depth-integrate and take the curl of Equation 1. The or-109
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der of the two operations and any multiplications carried out significantly alters the form110

and physical meaning of the obtained depth-integrated vorticity equation.111

If we choose to depth-integrate the curl of the momentum equation, the pressure112

gradient vanishes upon taking the curl and bottom vortex stretching represents the in-113

teraction of the currents with the sea floor. Both the beta effect and bottom vortex stretch-114

ing originate from the Coriolis acceleration in Equation 1. In the model, the curl of the115

single momentum diagnostic associated with the Coriolis acceleration will be responsi-116

ble for two distinct physical processes. Jagannathan et al. (2021) use this form of vor-117

ticity budget to investigate flow interactions with idealized bathymetry. In Section 6.2118

we discuss whether the spurious forces identified in this article emerge in this vorticity119

budget.120

If we choose to take the curl of the depth-averaged momentum equation then sea121

floor interactions are represented by the JEBAR term (Joint Effect of Baroclinicity and122

Relief). Cane et al. (1998) and Drijfhout et al. (2013) have questioned the relevance of123

JEBAR by presenting simple examples in which there is no flow immediately above the124

bathymetry. In these examples there is trivially no interaction between the flow and the125

bathymetry, but there is a non-zero JEBAR term.126

Throughout this paper we consider the vorticity equation obtained by taking the127

curl of the depth-integrated momentum equation:128

∂

∂t
(∇×U) · k̂ = − ∇h · (fU)︸ ︷︷ ︸

Planetary Vort.

+
1

ρ0
(∇Pb ×∇H) · k̂︸ ︷︷ ︸

Bottom pressure torque

+
1

ρ0
(∇× τ top) · k̂︸ ︷︷ ︸

Surface stress curl

129

− 1

ρ0
(∇× τ bot) · k̂︸ ︷︷ ︸

Bottom friction

+ Dζ︸︷︷︸
Lateral diffusion

130

−∇h ·
(
ˆ η(x,y,t)

−H(x,y)

ζu dz

)
−
[
∇×

(
ˆ η(x,y,t)

−H(x,y)

1

2
∇h

(
u2
h

)
+ w

∂uh
∂z

dz

)]
· k̂︸ ︷︷ ︸

Advection

. (2)131

Here ζ is the vertical component of the vorticity, τ top is the surface stress due to wind132

and sea ice, τ bot is the bottom stress due to friction at the sea floor, Dζ is the lateral133

diffusion of depth-integrated relative vorticity, η is the free surface height, H is the depth134

of the sea floor, and Pb is the pressure at the sea floor. In Equation 2 we omit the con-135

tribution from free surface undulations as we assume the time evolution of the free sur-136

face is small and we omit atmospheric pressure torques as we are assuming there are no137

atmospheric pressure gradients above the ocean. The derivation of Equation 2 (includ-138

ing the omitted terms) is presented in Appendix A.139

The terms on the right-hand side of Equation 2 are the following: the advection140

of planetary vorticity; the bottom pressure torque; the surface stress curl; the curl of bot-141

tom friction; the lateral diffusion of relative vorticity; and the advection of relative vor-142

ticity. The planetary vorticity term in Equation 2 contains contributions from the evolv-143

ing free surface and surface water fluxes as ∇h ·U = −∂η/∂t + Q/ρ0, where Q is the144

surface water flux due to evaporation, precipitation, and run-off. In an equilibrated state,145

the free surface evolution is small and the divergence caused by realistic water fluxes is146

negligible. Hence, we assume ∇h · (fU) ≈ βV where β represents the linear variation147

of f with latitude and V is the meridional component of the depth-integrated velocity.148

This formulation is practical as topographic interactions emerge from pressure gradients149

in the form of the bottom pressure torque and beta effects emerge from the curl of the150

Coriolis acceleration; the Coriolis acceleration is responsible for one physically meaning-151

ful term in the analytic vorticity budget. Equation 2 is also used in Stewart et al. (2021).152
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Jackson et al. (2006) conclude that the leading order balance between bottom pres-153

sure torques and the planetary vorticity term in Equation 2 is crucial for steering jets154

and western boundary currents over bottom topography. They continue to argue that155

the form of the topographic steering determines if bottom friction is able to modify the156

geometry of the current.157

As a consequence of Stokes’ theorem, the area integral of a term from Equation 2158

is directly related to the line integral of the depth-integrated forces along the area edge.159

This is particularly useful when considering area integrals of terms from the vorticity equa-160

tion and is discussed further in the next sub-section.161

2.2 Contour integration method162

All terms in the depth-integrated vorticity equation can be expressed as the curl163

of a depth-integrated acceleration in the momentum equation:164

Ω = (∇×M) · k̂, (3)

where Ω is a term in the depth-integrated vorticity equation and M is a term in the depth-165

integrated momentum equation. If we integrate Ω over the area enclosed by a depth-integrated166

streamline, we can interpret the integral using Stokes’ theorem:167

I(ψ) = ±
¨

Aψ

Ω dA = ±
‰

Γψ

M · dl, (4)168

where Aψ is the area enclosed by a depth-integrated streamline and Γψ is the anticlock-169

wise path along the same streamline. The criteria for selecting the sign in Equation 4170

is defined later in this paragraph. The depth-integrated stream function, ψ, only exists171

if the flow is steady and ∇h ·U = 0. If a long time-average of a varying flow is taken172

and the surface water fluxes are sufficiently small, a quasi-streamline can be calculated173

which approximately follows the circulation. The integral ρ0I(ψ) can be interpreted as174

the work done per unit area by the force associated with M on a fluid column in one cir-175

culation of Γψ. For a gyre circulating in a clockwise direction, the direction of circula-176

tion would be opposite to the conventional anticlockwise direction of Γψ. So that the reader177

does not have to constantly consider the direction of the flow relative to Γψ we select the178

sign in Equation 4 so a positive value of I(ψ) corresponds to a force that is spinning the179

gyre up.180

Analytically, we would expect the planetary vorticity term to vanish upon integra-
tion as a consequence of the divergence theorem:

¨

Aψ

∇h · (fU) dA =

‰

Γψ

fU · n̂ dl = 0, (5)

where n̂ is the horizontal vector which is normal to the streamline and the depth-integrated181

velocity. The Coriolis force can still play a role in shaping the streamlines of the circu-182

lation but ultimately has no influence on the integrated budget. Although the divergent183

part of the advection term, ∇h·
(´
ζu dz

)
, has a similar form, we do not expect the same184

zero integral for this term as the depth-integrated product of ζ and u is not parallel to185

U in general.186

This method has been used in models before. Schoonover et al. (2016) integrated187

vorticity diagnostics over a limited number of streamlines in the North Atlantic and con-188

cluded that the wind stress curl is largely balanced by bottom pressure torques. Stewart189

et al. (2021) also used this method in an isopycnal model and concluded that wind stress190

curl is not balanced by bottom pressure torques in general. Stewart et al. (2021) discuss191

how the integrating area affects the resultant vorticity balances and in their model the192

wind stress curl is only balanced by bottom pressure torques when integrated over lat-193
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itude bands. Jackson et al. (2006) note that in their idealized models the vorticity in-194

put from bottom friction mostly disappears when integrated over latitude bands but can195

be significant when integrated over the area enclosed by streamlines.196

In Gula et al. (2015), terms in the barotropic vorticity budget are integrated over197

an entire subdomain covering the South Atlantic Bight to study the interaction between198

the Gulf Stream and the continental shelf. Flow through the boundaries of the nested199

model is permitted so we would not expect the planetary vorticity term to vanish upon200

integration. These integrations show a leading order balance between the planetary vor-201

ticity term and bottom pressure torques and suggest that bottom pressure torques are202

the dominant mechanism for removing the planetary vorticity imported into the subdo-203

main by the Gulf Stream.204

It should be noted that Schoonover et al. (2016), Stewart et al. (2021), Jackson et205

al. (2006), and Gula et al. (2015) all use a terrain-following coordinate in their models206

but in this article we study the vorticity budget of a z-coordinate model. In Section 6.4207

we discuss how the vorticity budget can be affected by the choice of vertical coordinate208

and how terrain-following coordinates can mitigate spurious Coriolis forces related to the209

topography.210

3 The vorticity budget on a C-grid211

3.1 The discrete depth-integrated vorticity equation212

In many contemporary ocean GCMs, the discretized model variables are distributed213

on the C-grid (Mesinger & Arakawa, 1976). The geometry of the C-grid is shown in Fig-214

ure 1: T points hold scalar information including the divergence of the flow; the U and215

V points hold the horizontal components of vector quantities including the horizontal216

velocity, surface stresses, and accelerations in the momentum equation. Values closely217

related to vorticity are found on F points, this includes the relative vorticity, the stream-218

function, and terms in the depth-integrated vorticity equation (Ω). Vertical velocities219

are located on W points that are directly above and below T points as shown in Figure220

1. The Coriolis parameter can be evaluated at any point on the C grid but F point val-221

ues are used for calculating the Coriolis acceleration in most models that use a vector222

invariant momentum equation because the relative and planetary vorticity are then eval-223

uated at the same point (see Section 3.2). In this article, fi,j refers to the value of the224

Coriolis parameter centred on the F point and fui,j (f
v
i,j) refers to the Coriolis param-225

eter centred on the U (V ) point as shown in Figure 1.226

Every point in the C-grid has an associated cell with a vertical thickness and hor-227

izontal width. Throughout this article e3t is the T cell vertical thickness and e1t, e2t are228

the T cell widths in the i and j direction respectively. The same convention is used for229

U , V , and F cells also. It should be noted that the values of the F cell thicknesses in230

this article depend on the scheme used to calculate the Coriolis acceleration (see Sec-231

tion 3.2).232

The GCM configurations discussed in this paper use a primitive momentum equa-233

tion that is a discrete equivalent to the vector invariant momentum equation (Madec et234

al., 2019). Momentum diagnostics can be combined to represent terms in the analytic235

momentum equation (Equation 1). The curl of the depth-integrated momentum diag-236

nostics is taken to form a closed discrete vorticity budget that is valid in an unsteady237

state as the time derivative diagnostic is included. The resultant vorticity diagnostics238

should closely resemble the terms in the depth-integrated vorticity equation (Equation239

2); however, the planetary vorticity diagnostic deviates from the planetary vorticity term240

in several significant ways.241
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Fijk

i

j
Wijk : w

Uijk : u, fu,Mu

Vijk : v, fv,Mv

Tijk : ∇ · u
ψ, ζ, f,Ω

i

j

k

Figure 1. The distribution of variables on the C-grid in both a three dimensional (left) and

horizontal (right) view. The T , U , V , F , and W points are shown alongside important values

that are centred on these points. The T , U , V , and F points at the coordinate (i,j,k) lie on the

four corners of the gray square. The variable w is the vertical velocity and Mu, Mv are the x and

y components of a term in the momentum equation. Note that k increases downwards.

3.2 The discrete Coriolis acceleration242

The Coriolis acceleration is a product of the Coriolis parameter, f , and the hor-243

izontal velocity uh. There are many possible schemes for calculating their product and244

the choice of scheme affects the quantities that are conserved in the model flow.245

Consider the following discrete Coriolis acceleration:246

CORxi,j,k =
1

4

1

(e1ue3u)i,j,k

4∑
n=1

fv(rn)Ṽk(rn),

CORyi,j,k =
−1

4

1

(e2ve3v)i,j,k

4∑
n=1

fu(rn)Ũk(rn), (6)

where CORx (CORy) is the x (y) component of the discrete Coriolis acceleration which247

is centred on a U (V ) point; Ṽ = ve1ve3v and Ũ = ue2ue3u are volume fluxes; and rn248

points to one of the four neighbouring V or U points. If we depth-integrate the accel-249

eration in Equation 6 and then take the curl, we obtain the following equation for the250

discrete planetary vorticity term:251

PVOi,j,k = −1

4

1

(e1fe2f )i,j

[(
fuUe2u

)
i+1,j

+
(
fue2uU

)
i+1,j+1

−
(
fuUe2u

)
i−1,j

−
(
fuUe2u

)
i−1,j+1

+
(
fvV e1v

)
i,j+1

+
(
fvV e1v

)
i+1,j+1

−
(
fvV e1v

)
i,j−1

−
(
fvV e1v

)
i+1,j−1

]
, (7)

where PVO is the discrete planetary vorticity term which is centred on an F point. Equa-252

tion 7 is the discrete calculation of −∇h·(fU) averaged over the four T cells surround-253

ing the central F point and is therefore closely related to the analytic planetary vortic-254

ity term in Equation 2. The Coriolis acceleration given in Equation 6 is not used in C-255

grid models as it lacks the energy and/or enstrophy conserving properties of other main-256

stream schemes. However, when studying the discrete depth-integrated vorticity bud-257
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get it is useful to consider how the used Coriolis accelerations deviate from this refer-258

ence value as any difference may emerge as a departure from the discrete calculation of259

−∇h · (fU) in the vorticity budget.260

When using a vector invariant momentum equation, mainstream schemes use multi-261

point and thickness-weighted averaging of f and u in order to conserve energy and/or262

enstrophy (Madec et al., 2019). A general form of the discrete Coriolis acceleration un-263

der these schemes is:264

CORxi,j,k =
1

N

1

e1ui,j

N∑
n=1

(
f(an)

e3k(bn)

)
Ṽk(cn), (8)

CORyi,j,k =
−1

N

1

e2vi,j

N∑
n=1

(
f(an)

e3k(bn)

)
Ũk(cn), (9)

where an, bn, and cn are the horizontal locations of three neighbouring grid points (not265

necessarily different) for the nth term of the sum. CORx and CORy are still centred on266

U and V points respectively. Note that an is always the location of an F point and cn267

is always the location of a U or V point. Depending on the scheme, the e3k term can be268

either a U , V , or F cell thickness so bn is the location of either a U , V , or F point. N269

is the number of terms in the average which depends on the choice of scheme. Equations270

8 and 9 are valid on points near the bathymetry but if bn or cn points to a masked grid271

point (a point in the bathymetry) then the nth term in the sum is equal to zero.272

In this article we consider three popular schemes for calculating the Coriolis ac-273

celeration. The energy conserving scheme (ENE) (Sadourny, 1975) conserves total hor-274

izontal kinetic energy and uses a four point average (N=4). The enstrophy conserving275

scheme (ENS) (Sadourny, 1975) conserves potential enstrophy and has eight terms (N=8).276

Finally the energy and enstrophy conserving scheme (EEN) (Arakawa & Lamb, 1981)277

conserves both horizontal kinetic energy and potential enstrophy and uses a twelve point278

average (N=12). Barnier et al. (2006) demonstrates that the choice of scheme can sig-279

nificantly influence the global ocean circulation, especially in areas with strong current-280

topography interaction.281

The explicit forms of the ENE, ENS, and EEN schemes for the Coriolis accelera-282

tion are given in Appendix B. The results in Section 4 and 5 use the EEN scheme; how-283

ever, in Section 6.1 we argue that all three schemes produce similar spurious forces. This284

argument is more concise when we use a form of the Coriolis acceleration that is gen-285

eral to the ENE, ENS, and EEN schemes.286

We will decompose the general discrete Coriolis acceleration in Equations 8 and287

9 by considering variations of f and e3 around the U and V points:288

f(an) = f(cn) + [f(an)− f(cn)] , (10)289

e3k(bn) =
1

αk(bn)

(
e3ui,j,k +

[
αk(bn)e

3
k(bn)− e3ui,j,k

])
, (11)290

e3k(bn) =
1

αk(bn)

(
e3vi,j,k +

[
αk(bn)e

3
k(bn)− e3vi,j,k

])
, (12)291

where f(cn) is the value of the Coriolis parameter centred on the same point as the vol-292

ume flux. Equation 11 will be applied to CORx (Equation 8) and Equation 12 will be293

applied to CORy (Equation 9). The αk(bn) term is of order one and represents the scal-294

ing of e3k relative to other local cell thicknesses that only occurs in the EEN scheme. In295

the EEN scheme, e3k(bn) is an F cell thickness and F cell thicknesses are calculated us-296

ing:297

e3fi,j,k =
1

4

(
e3ti,j,k + e3ti+1,j,k + e3ti,j+1,k + e3ti+1,j+1,k

)
, (13)298

where masked T cell thicknesses are set to zero. When near bathymetry (masked points),299

the F cell thickness could be up to four times smaller than the typical unmasked T cell300
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thicknesses surrounding it. The product αke
3f
k is the F cell thickness before this scal-301

ing is applied and will be more similar to the neighbouring T cell thicknesses in Equa-302

tion 13. This scaling of e3f is unique to the EEN scheme and therefore αk = 1 in the303

ENS and ENE cases.304

By combining Equations 8, 9, 10, 11, and 12 we can derive a general decomposi-305

tion of the Coriolis acceleration:306

CORxi,j,k =
1

N

1

(e1ue3u)i,j,k

N∑
n=1

f(cn)Ṽk(cn)

[
1 +

f(an)− f(cn)

f(cn)︸ ︷︷ ︸
f displacement

+αk(bn)
αk(bn)e

3
k(bn)− e3ui,j,k
e3ui,j,k

+ [αk(bn)− 1]︸ ︷︷ ︸
Cell thicknesses

+ [αk(bn)− 1]
f(an)− f(cn)

f(cn)︸ ︷︷ ︸
Coupled f-topographic

]
,

CORyi,j,k =
−1

N

1

(e2ve3v)i,j,k

N∑
n=1

f(cn)Ũk(cn)

[
1 +

f(an)− f(cn)

f(cn)︸ ︷︷ ︸
f displacement

+αk(bn)
αk(bn)e

3
k(bn)− e3vi,j,k
e3vi,j,k

+ [αk(bn)− 1]︸ ︷︷ ︸
Cell thicknesses

+ [αk(bn)− 1]
f(an)− f(cn)

f(cn)︸ ︷︷ ︸
Coupled f-topographic

]
, (14)

where we have assumed that variations in f and the nonscaled cell thickness, αke
3
k, are307

small. The x and y components of the Coriolis acceleration have a leading order contri-308

bution centred on the U and V point. The leading order term simplifies to the reference309

Coriolis acceleration in Equation 6 and therefore will resemble −∇h · (fU) in the dis-310

crete vorticity budget. Equation 14 is valid on points near the bathymetry but if bn or311

cn points to a masked grid point then the nth term of the entire sum is equal to zero.312

The remaining terms may emerge as first order departures from −∇h·(fU) in the313

discrete vorticity budget. The first order contributions are: an f displacement term caused314

by the difference between the values of f where the volume fluxes are located and the315

values of f used in the scheme; a topographic effect caused by variations in cell thick-316

nesses; and a coupled f -topographic effect caused by the combined effect of sudden changes317

in cell thicknesses near masked points and the previously mentioned f displacement term.318

Note that if α = 1 (true for ENS and ENE) then the f -topographic effect vanishes.319

The depth-integrated Coriolis acceleration is:320

ĈOR
x

i,j =

kxmax(i,j)∑
k=1

e3ui,j,kCORxi,j,k,321

ĈOR
y

i,j =

kymax(i,j)∑
k=1

e3vi,j,kCORyi,j,k, (15)322

where kxmax and kymax are the highest unmasked indices in the column and they may vary323

with horizontal index when z-coordinates are used. The depth-integrated Coriolis ac-324

celeration is therefore also sensitive to steps in the bathymetry. This is discussed in the325

next sub-section.326

3.3 The influence of model level steps on the Coriolis acceleration327

In this section, we present a toy configuration that highlights how model levels can328

influence the discrete Coriolis acceleration. The configuration is shown in Figure 2. The329

configuration has two model levels, three U -grid points in the i direction, two in the j330

direction, and a rigid lid. The points in the upper level are surrounded by unmasked points,331
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Depth-integrated fields / ∆z

Depth-int
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i = 1 i = 2 i = 1 i = 2

j = 1

j = 2

j = 1

j = 2

Figure 2. A toy model demonstrating how model levels influence the discrete Coriolis ac-

celeration. A horizontal plan is shown for the upper and lower level as well as a view of the

depth-integrated fields divided by the cell thickness ∆z. Single arrows represent prescribed veloc-

ities; double arrows represent calculated Coriolis accelerations; and shaded cells represent bottom

topography. Accelerations on the lower level are masked to prevent the velocity field from evolv-

ing into a flow that would violate the no penetration boundary condition. The central F point is

marked by a cross and is where the depth-integrated vorticity is generated.

we assume the grid is regular, and cell widths are the same in the i and j direction. We332

also assume an f -plane so f does not vary.333

The configuration has a step bathymetry and a current running alongside it. The334

current has no y component so v = 0 everywhere and therefore CORx = 0 at all points.335

The lower limb of the current decelerates by an amount u1 and as a consequence of in-336

compressibility a vertical velocity is induced which accelerates the upper current by u1.337

Under these assumptions, the discrete Coriolis acceleration does not vary between338

the ENE, ENS, and EEN schemes and is:339

CORyi,j,k =
f

4
[ui,j,k + ui−1,j,k + ui,j+1,k + ui−1,j+1,k] , (16)340

which is effectively f multiplied by the four point average of u.341
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In the upper layer, the Coriolis accelerations, located on the V points marked by342

red triangles in Figure 2, are:343

CORy1,1,k=1 = fu0, (17)344

CORy2,1,k=1 =
f

4
(4u0 + u1) . (18)345

In the lower layer, the Coriolis accelerations are set to zero as they lie on masked V points.346

The V points are masked to prevent accelerations into the topography that would vi-347

olate the no penetration boundary condition. The depth-integrated Coriolis accelerations348

are:349

ĈOR
y

1,1 = CORy1,1,k=1 ∆z, (19)350

ĈOR
y

2,1 = CORy2,1,k=1 ∆z, (20)351

where ∆z is the constant cell thickness. It should be noted that u1 vanishes when cal-352

culating the depth-integrated velocities but remains in the depth-integrated acceleration.353

The depth-integrated Coriolis acceleration depends on more than the depth-integrated354

velocities.355

When we take the curl of the depth-integrated accelerations, we can see how a depth-356

integrated vorticity is generated:357

1

∆x

[
ĈOR

y

2,1 − ĈOR
y

1,1

]
=

1

4

∆z

∆x
fu1, (21)358

where ∆x is the constant cell width. Note that this value is located on the central F point359

shown in Figure 2.360

The pressure gradient, lateral diffusion term (unless no-slip boundary conditions361

are used), and the horizontal advection term are ambiguous on the masked velocity points362

at the edge of the bathymetry (e.g. the V points in the upper right diagram of Figure363

2). An explicit momentum balance cannot be resolved and the Coriolis acceleration is364

the only non-zero and unambiguous acceleration into the sea floor. There should be no365

net acceleration into the bathymetry or else the no penetration boundary condition would366

be violated, so all accelerations that are incident on bathymetry are masked and set to367

zero. The masking of all accelerations can be interpreted as the addition of a spurious368

term to the discrete Coriolis acceleration. This spurious force is of unclear physical ori-369

gin and is not realistic as it is localized to grid points that lie near model level steps. We370

can think of the result in Equation 21 as either the curl of this spurious force or as a form371

of spurious vortex stretching that takes place on F points near model level steps (cf. Bell,372

1999).373

3.4 Decomposing the planetary vorticity term374

In Section 3.2 we concluded that the discrete Coriolis acceleration used in main-375

stream schemes contained spurious contributions caused by f displacement, variations376

in cell thicknesses, and a coupled f -topographic effect. In Section 3.3 we demonstrated377

how spurious contributions from model level steps exist in the depth-integrated discrete378

Coriolis acceleration. The four found spurious contributions have the potential to emerge379

in the planetary vorticity diagnostic which is calculated by taking the curl of the depth-380

integrated Coriolis acceleration:381

PVOi,j =
1

(e1fe2f )i,j

[(
ĈOR

y
e2v
)
i+1,j

−
(
ĈOR

y
e2v
)
i,j

−
(
ĈOR

x
e1u
)
i,j+1

+
(
ĈOR

x
e1u
)
i,j

]
. (22)
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Table 1. The five different calculations of the planetary vorticity term and the components

from Equation 23 they include. FD = f displacement term, E3 = Cell thicknesses term, FT =

f -topographic term, MLV = Model levels steps term.

Calculation −∇h · (fu) FD E3 FT MLV

Full diagnostic ✓ ✓ ✓ ✓ ✓
Assume f(an) = f(cn), e

3 = const ✓ ✗ ✗ ✗ ✓
Assume e3 = const ✓ ✓ ✗ ✗ ✓
Assume f(an) = f(cn) ✓ ✗ ✓ ✗ ✓
Calculate −∇h · (fU) ✓ ✗ ✗ ✗ ✗

382

We can therefore express the planetary vorticity diagnostic as the sum of five com-383

ponents:384

PVOi,j = −∇h · (fU) |i,j + f displacement + cell thicknesses385

+ f -topographic + model level steps (23)386

where −∇h · (fU) |i,j refers to the discrete divergence calculation in Equation 7 and387

is closely related to the analytic planetary vorticity term in Equation 2. The remaining388

terms are departures from the analytic estimate that emerge from using mainstream schemes389

to calculate the Coriolis acceleration and the masking of velocity points near the bathymetry.390

The magnitude of these contributions may vary significantly between configurations391

so a general method for decomposing the planetary vorticity diagnostic is valuable. In392

order to calculate the decomposition of the planetary vorticity diagnostic, we calculate393

the Coriolis acceleration under three different assumptions and then calculate the cor-394

responding contributions to the vorticity budget. An explicit calculation of −∇h·(fU) |i,j395

(Equation 7) is also needed. The calculations are listed in Table 1 along with the com-396

ponents from Equation 23 they include. By linearly combining the fields from each cal-397

culation we can isolate each component in Equation 23. The f -topographic component398

is calculated by finding the difference between the complete planetary vorticity diagnos-399

tic and the sum of the four other components; therefore the five components add up to400

the complete planetary vorticity diagnostic by construction.401

3.5 Contour integration on a C-grid402

Calculating the curl on a C-grid is consistent with Stokes’ law applied to an F cell,403

and integrating ∇×M ·k over several adjacent F cells is equivalent to a line integral404

of M around them (see Figure 3). As the streamfunction, ψ, is defined on F points we405

can approximate that the area enclosed by a streamline is a collection of interior F cells406

and that the area integral of vorticity diagnostics is the line integral of model acceler-407

ations around them. This is an approximation as we are assuming that the streamline408

follows the rectangular edges of the interior F cells but the resultant error is minimised409

if we first interpolate the points onto a sufficiently fine grid. The asymptotic value the410

contour integral tends towards as the interpolation resolution is increased should be free411

of area error. This method is applied to all contour integrals presented in Sections 4 and412

5. Any non-topographic contributions to the contour integral that remains after the in-413

terpolation will be described as a numerical beta effect.414

A numerical beta effect can emerge from −∇h · (fU) |i,j even after being inter-415

polated onto a fine grid as the divergence is calculated over the four T cells that surround416

the central F point (see Equation 7). When the internal F points are summed within417
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˜
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�

ΓF
M · dl

I3F =
˜

A3F
∇×M · k̂ dA

I3F =
�

Γ3F
M · dl

Ωi,j

Figure 3. The application of Stokes’ theorem on a C-grid. The vorticity diagnostic Ω is equiv-

alent to the normalized line integral of M around a single F cell of area AF . The area integral of

Ω over a collection of F cells (e.g. A3F ) is equivalent to the line integral of M along the perime-

ter (e.g. Γ3F ).

the contour, the local domains for calculating the grid point divergences will overlap mean-418

ing the resultant area integral will not satisfy the divergence theorem in general. Over-419

lapping local domains are a requirement of the C-grid’s horizontal geometry. In Section420

6.3 we highlight how the divergence calculation on a B-grid only requires information421

from a single tracer cell. The local domains for calculating the divergence do not over-422

lap when integrating on the B-grid and the associated numerical beta effect will not emerge.423

424

4 A double gyre model425

4.1 Details of the configuration426

The first experiment in this article is an idealized double gyre configuration based427

on the GYRE PISCES reference configuration in NEMO. The GYRE PISCES reference428

configuration has been used for a wide range of experiments (Lévy et al., 2010, 2015; Rug-429

giero et al., 2015; Perezhogin, 2019). The domain is a closed rectangular basin which is430

3180 km long, 2120 km wide, and is rotated at an angle of 45° relative to the zonal di-431

rection. The basin exists on a beta plane where f varies linearly around its value at ∼432

30°N.433

The model has a regular 122×82 grid that is aligned with the rotated basin. The434

horizontal resolution is equivalent to a 1/4° grid at the equator and the configuration has435

31 model levels. Two forms of bathymetry are used in this section. The FLAT config-436

uration has a fixed depth of 4.5km and no partial cells are used. The SLOPED config-437

uration has a linear slope that extends from the North West side of the basin and spans438

half the basin (see Figure 4a). The maximum depth of the SLOPED configuration is 4.5km,439

the minimum depth is 2km, and partial cells are used to represent the slope.440

The circulation is forced by sinusoidal analytic profiles of surface wind stress and441

buoyancy forcing. The wind stress is zonal and only varies with latitude so that the curl442

changes sign at 22°N and 36°N (see Figure 4b). The wind stress profile is designed to spin443

up a subpolar gyre in the north, a subtropical gyre in the south, and a small recircula-444

tion also emerges in the bottom corner. The net surface heat flux takes the form of a restor-445
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Figure 4. (a) Bathymetry of the SLOPED configuration. (b) The wind stress profile for both

the FLAT and SLOPED configuration. The wind stress profile varies seasonally in a sinusoidal

manner between summer and winter extremes that are highlighted.

ing to a prescribed apparent temperature. Further details about the buoyancy forcing446

can be found in Lévy et al. (2010). The wind stress and buoyancy forcing varies season-447

ally in a sinusoidal manner.448

The model uses a free slip condition on all boundaries except at the bottom where449

a linear friction drag is applied. A simplified linear equation of state is used with a ther-450

mal expansion coefficient of a0 = 2×10−4kg m−3 K−1, and a haline coefficient of b0 =451

7.7×10−4kg m−3 psu−1. Horizontal and biharmonic diffusion of momentum is imple-452

mented with a diffusivity of 5×1010 m4s−1. Biharmonic diffusion of tracers along isopy-453

cnals is implemented with a diffusivity of 109 m4s−1 (Lemarié, Debreu, et al., 2012; Madec454

et al., 2019).455

The model is spun up for 60 years and the experiment was run for an additional456

10 years with monthly-mean outputs. A steady state is not required for the diagnostics457

to be valid as the time derivative term is present in the vorticity budget. A time step458

of 10 minutes is used for the model integration.459

The EEN vorticity scheme is used for consistency with all analysis discussed in Sec-460

tion 3 and the results from the Weddell Gyre in Section 5. The EEN method calculates461

F cell thicknesses using the method described by Equation 13 and we therefore expect462

sudden changes in the F cell thickness near the domain edge for both the FLAT and SLOPED463

configurations.464

4.2 Methods465

Momentum diagnostics are calculated for every time step and the discrete vortic-466

ity diagnostics are calculated by depth-integrating the momentum diagnostics and tak-467
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ing the curl. The resultant diagnostics are time-averaged over the ten year experimen-468

tal period. The extensive time-averaging will influence the advection vorticity diagnos-469

tic as there is an added contribution from the eddy vorticity flux.470

For contour integration, the vorticity diagnostics and depth-integrated stream func-471

tion are then linearly interpolated onto a regular 1/12° grid. This is to minimise errors472

caused by the difference between the true enclosed streamline area and the total area473

of the enclosed F cells. Interpolation beyond 1/12° resolution makes little difference to474

the results, suggesting that the area error has been significantly suppressed.475

For 1001 values of ψ, closed streamline contours are identified using a marching squares476

algorithm from the scikit-image package (Van Der Walt et al., 2014). Streamlines that477

are near the recirculation gyre (south of 20°N) are ignored in this experiment and for some478

values of ψ no closed streamlines could be found. For each closed streamline found, the479

vorticity diagnostics are integrated over the area enclosed; this is equivalent to calculat-480

ing I(ψ) in Equation 4 over many values of ψ. The freshwater fluxes mean that ∇h·U ̸=481

0 even in a steady state and an exact stream function cannot be calculated. To test how482

closely the calculated streamlines follow the circulation we integrate the positive quan-483

tity | f0 (∇h ·U) | over the same enclosed areas to estimate the magnitude of the er-484

ror caused by the divergent flow. The maximum value of f is used as f0 and the largest485

contour integral of | f0 (∇h ·U) | is 1.84 m3 s−2 which is substantially smaller than the486

leading contour integrals presented in the next sub-section. In addition to this test we487

used an elliptical solver to calculate the Helmholtz decomposition of the depth-integrated488

velocity field (e.g. Marshall & Pillar, 2011); using the streamlines from the incompress-489

ible component does not change the results presented in the next sub-section.490

Multiple closed contours can be found for the same value of ψ so an additional con-491

tour constraint is needed to ensure I(ψ) is single-valued. In this experiment we always492

choose the contour that spans the largest area which minimises the influence of small493

pocket circulations that are not a part of the gyre. Closed streamlines that run along494

the edge of the domain can be hard to identify so a discontinuity in I(ψ) near ψ = 0495

is expected as the largest detected contours will suddenly become pocket circulations as496

ψ approaches zero.497

4.3 Results498

The depth-integrated streamfunction from the FLAT and SLOPED configurations499

is shown in Figure 5. The vorticity of the depth-integrated velocity field is shown in Fig-500

ure 6. In both configurations a subtropical and subpolar gyre can clearly be identified501

and a small recirculation gyre can be found in the Southernmost corner. The subtrop-502

ical gyre circulation is clockwise and the subpolar gyre circulation is anticlockwise.503

In the FLAT configuration the subtropical gyre has a transport of 65 Sv and the504

subpolar gyre has a transport of 18 Sv. In the SLOPED configuration the subtropical505

gyre has a transport of 38 Sv and the subpolar gyre has a transport of 14 Sv. We note506

that the sloped bathymetry significantly alters the form of the subtropical gyre stream-507

lines.508

The depth-integrated vorticity diagnostics of the FLAT and SLOPED configura-509

tion are shown in Figures 7 and 8 respectively alongside the decomposition of the plan-510

etary vorticity diagnostic introduced in Section 3.4. In the FLAT configuration we note511

that the non-linear advection of vorticity and the planetary vorticity diagnostic have the512

largest grid point values (∼ 10−9 m s−2) near the western boundary currents of both513

gyres. The wind stress curl is one order of magnitude smaller (∼ 10−10 m s−2) but changes514

sign less frequently within the gyre regions. We see that the planetary vorticity diagnos-515

tic is almost entirely a result of the beta effect (Figure 7g and h). We note that the con-516

tribution from varying cell thicknesses in the FLAT configuration is non-zero and local-517
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Figure 5. The depth-integrated streamfunction (time-averaged) of the (a) FLAT and (b)

SLOPED configurations. The transports of the subtropical gyre (Tstr) and subpolar gyre (Tspl)

are given.
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ized to the edge (Figure 7j) where the EEN Coriolis scheme artificially shrinks F cell thick-518

nesses near masked points.519

In the SLOPED configuration (Figure 8) the advection and planetary vorticity di-520

agnostics are still large but have an elongated structure similar to the SLOPED stream-521

lines in Figure 5b. The bottom pressure torque is significant and is localized to the sloped522

region (Figure 8b). The planetary vorticity diagnostic has a more complex decomposi-523

tion as the influence of varying cell thicknesses extends beyond the edge of the domain524

and model level steps also contribute (Figure 8k).525

The integrals of the vorticity diagnostics over areas enclosed by streamlines are shown526

in Figure 9 and Figure 10 for the FLAT and SLOPED configurations respectively as well527

as the integrals of the planetary vorticity diagnostic components. Example streamline528

contours are also shown. In these figures ψ > 0 describes the subtropical gyre and ψ <529

0 describes the subpolar gyre. The subtropical and subpolar gyres circulate in the op-530

posite direction but the sign of the integration results are adjusted so that positive in-531

tegrals correspond to forces that spin the gyres up.532

In the FLAT configuration we see that the subtropical and subpolar gyre are en-533

tirely driven by wind stress curl. For area integrations that envelop most of the subtrop-534

ical gyre (small and positive values of ψ), the wind stress curl is largely balanced by the535

advection of relative vorticity. This balance implies a net import of positive vorticity into536

the gyre. The imported vorticity cannot originate from the subpolar gyre as the advec-537

tion of relative vorticity plays no role in spinning the subpolar gyre down. The stream-538

lines at the exterior of the gyre envelop both cells (maxima in ψ) of the subtropical gyre539

so the advection of vorticity between the cells is not a contribution to the signal. The540

imported vorticity must originate from the recirculation gyre in the southernmost cor-541

ner. In the subtropical gyre interior (large positive values of ψ) the wind stress curl is542

largely balanced by the curl of bottom friction, matching the balance proposed by Niiler543

(1966).544

The planetary vorticity diagnostic is significant in both of the FLAT gyres and is545

the dominant drag for the subpolar gyre. For area integrals that include the exterior of546

either gyre (small values of ψ), the integrated planetary vorticity diagnostic is a com-547

bination of a numerical beta effect originating from the discrete calculation of −∇h·(fU)548

and the influence of partial F cells that are artificially created by the EEN scheme. At549

the interior of both gyres (large values of ψ) the numerical beta effect is the only com-550

ponent.551

In the SLOPED configuration we see that both the subtropical and subpolar gyre552

are almost entirely driven by wind stress curl. There is no dominant force spinning the553

gyres down. Advection, bottom pressure torques, lateral diffusion, bottom friction, and554

planetary vorticity all make a similar contribution to spinning the gyres down. The plan-555

etary vorticity diagnostic is similarly mixed as both the numerical beta effect and par-556

tial cells make up the signal. The gyres in the SLOPED configuration appear to be an557

intermediate case between a topographically steered gyre and an advective regime.558

Spurious forces that emerge from the discrete Coriolis acceleration are significant559

in idealised models with and without variable bathymetry and appear to have a large560

influence on gyre circulations. In the next sub-section we see if these forces are also sig-561

nificant in a realistic global model.562
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Figure 7. The depth-integrated vorticity diagnostics for the FLAT configuration and the

components of the planetary vorticity diagnostic (time-averaged). Panels (a) through to (g) are

the diagnostics for the terms in the depth-integrated vorticity equation (Equation 2). Panels (h)

through to (l) are the components of the planetary vorticity diagnostic in Equation 23 and dis-

cussed in Section 3.4. The color bar is logarithmic (for values greater than 10−11 in magnitude)

and shows the four leading order magnitudes that are positive and negative.
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Figure 8. The depth-integrated vorticity diagnostics for the SLOPED configuration and the

components of the planetary vorticity diagnostic (time-averaged).
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Figure 9. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

(time-averaged) for the FLAT configuration. Positive values correspond to a force that spins the

subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. The diagnostics are integrated over areas en-

closed by streamlines to develop a full forcing profile of the gyres. The x axis describes the value

of the streamline used in the integration. Example streamline contours are given. (b) Shows the

area integrals of the planetary vorticity diagnostic and its components. The maximum contour

integral of |f0 (∇h ·U) | is stated as an approximate error caused by the divergence of the depth-

integrated flow.
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Figure 11. (a) The bathymetry of the Weddell Gyre region in the global model. (b) Depth-

integrated streamfunction of the Weddell Gyre (time-averaged).

5 The Weddell Gyre563

5.1 Details of the configuration564

We now consider a more realistic configuration based on the NEMO global model565

with realistic forcing and bathymetry. In this experiment, we use an ocean-ice global con-566

figuration that is similar to that described in Storkey et al. (2018) but based on NEMO567

version 4. The global grid is based on the ‘ORCA’ family of grids within the NEMO frame-568

work (Madec et al., 2019). In this article we only consider the configuration using the569

ORCA025 grid (1/4° horizontal resolution at the equator). Most of the model bathymetry570

for ORCA025 is derived from the ETOPO1 data set (Amante & Eakins, 2009). Bathymetry571

on the Antarctic shelf is based on IBSCO (Arndt et al., 2013) and has been smoothed572

by three applications of a first order Shapiro filter. The bathymetry is represented in z-573

coordinates by partial cells (Barnier et al., 2006). Surface forcing is taken from the CORE2574

surface forcing data set (Large & Yeager, 2009) and includes contributions from sea ice.575

The bathymetry is shown in Figure 11a.576

The model uses a free slip lateral boundary condition with a quadratic drag along577

the bottom boundaries and the TEOS-10 equation of state (McDougall & Barker, 2011).578

Biharmonic diffusion of momentum is implemented and acts along model level surfaces579

with a diffusivity that varies with local horizontal grid spacing (Willebrand et al., 2001).580

Laplacian diffusion of tracers is implemented and acts along isopycnal surfaces with a581

diffusivity that also varies with local horizontal grid spacing. The EEN vorticity scheme582

is used again for consistency with the analysis in Section 3 and the results in Section 4.583

5.2 Methods584

The methods used for calculating the depth-integrated streamfunction, vorticity585

diagnostics, and contour integrals are identical to those described in Section 4.2. We study586

the area including and surrounding the Weddell Gyre in the model (see Figure 11) and587

consider the time-averaged fields over a typical year. The stream function is interpolated588

onto a regular 1/12° grid and closed contours are identified for 201 values of ψ. Inter-589

polating beyond 1/12° resolution makes little difference to the results, suggesting that590
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Figure 12. The vorticity of the depth-integrated velocity field (time-averaged) in the Weddell

Gyre region of the global model. The black contours are positive streamlines (ψ > 0) from Figure

11.

any area errors have been significantly suppressed. We test how closely the calculated591

streamlines follow the circulation by integrating the positive quantity | f0 (∇h ·U) | over592

the same enclosed areas to estimate the magnitude of the error caused by the divergent593

flow. The maximum value of | f | is used as f0 and the largest contour integral of | f0 (∇h ·U) |594

is 19.52 m3 s−2 which is substantially smaller than the leading contour integrals presented595

in the next sub-section. In addition to this test we used an elliptical solver to calculate596

the Helmholtz decomposition of the depth-integrated velocity field; using the streamlines597

from the incompressible component does not change the results presented in the next598

sub-section.599

As we are studying a one gyre system we choose to only identify contours where600

ψ > 0. This effectively filters out the vorticity budget of closed circulations in the Antarc-601

tic Circumpolar Current. The sign of the integration results are adjusted so that pos-602

itive integrals correspond to forces that spin the Weddell Gyre up.603

5.3 Results604

The depth-integrated streamfunction of the Weddell Gyre is shown in Figure 11b605

and it can be seen that the Weddell Gyre has a transport of 60 Sv. The streamlines fol-606

low the isobaths closely suggesting the circulation is largely constrained by the bathymetry.607

The vorticity of the depth-integrated velocity field is shown in Figure 12.608

The depth-integrated vorticity diagnostics are shown in Figure 13. The fields shown609

in Figure 13 have been smoothed using 25 point nearest neighbour averaging over a lo-610

cal 5×5 grid. The contribution from model level steps (Figure 13k) has not been smoothed611

to show that it is localized to specific lines where the number of model levels change. The612

combined effect of the wind stress and stress due to sea ice are shown in Figure 13e. With613

realistic topography and forcing, the grid point values of depth-integrated vorticity di-614

agnostics are very noisy (even when smoothed) with the exception of the surface stress615

curl. This highlights how important it is to integrate the vorticity diagnostics when in-616

terpreting them. For individual grid points we see that the planetary vorticity diagnos-617

tic is made up of contributions from the beta effect, partial cells, and a significant con-618
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tribution from model level steps. The beta effect is the most coherent of the contribu-619

tions and is mostly negative in the western limb of the gyre where V > 0 and positive620

in the eastern limb where V < 0. As expected, the contribution from model levels steps621

is localized to areas where the number of model levels change.622

Unlike in the double gyre model, bottom friction appears to be small and incoher-623

ent in the Weddell Gyre region and is unlikely to have any significant influence on the624

vorticity budget. The total time tendency (Figure 13d) is non-zero in this vorticity bud-625

get suggesting that the model is not in a completely steady state; however, the grid point626

values are only significant in the Drake Passage and are noisy.627

The integrals of the depth-integrated vorticity diagnostics over areas enclosed by628

streamlines are shown in Figure 14 alongside integrations of the planetary vorticity com-629

ponents. We see that the Weddell Gyre is almost entirely spun up by the wind stress curl.630

The stress due to sea ice (marked by hatching in Figure 14a) and the advection of rel-631

ative vorticity also help to spin the Weddell Gyre up. The advective contribution is caused632

by vorticity exchange at the interface between the Weddell Gyre and the ACC.633

Bottom pressure torques and lateral diffusion play a notable role in spinning the634

Weddell Gyre down but the planetary vorticity diagnostic is the most significant con-635

tribution. Looking at the decomposition of the planetary vorticity diagnostic we see that636

the signal is mostly determined by changes in model level and the remainder is deter-637

mined by variations in cell thickness. This suggests that the Weddell Gyre is almost en-638

tirely spun down by topography due to the combined effect of bottom pressure torques639

and the planetary vorticity diagnostic, but the majority of the gyre’s interaction with640

the sea floor is spurious. This conclusion is true in both the interior and exterior of the641

gyre.642

The results in Figure 14 are concerning as they suggest that the vorticity input from643

the realistic surface stresses is largely balanced by spurious topographic accelerations.644

In an area of the ocean with such strong bathymetric feratures, it is not surprising that645

topographic forcing is important but we would expect the topographic accelerations from646

a realistic bathymetry to also be realistic. Instead, the dominant component of the to-647

pographic forcing is a spurious acceleration that is localized to discrete lines where the648

number of model levels change (see Figure 13k) and arises from the masking of the non-649

topographic Coriolis acceleration. This suggests that the partial cell representation of650

the sea floor is not providing realistic topographic forcing in the Weddell Gyre region.651

6 Discussion652

We have shown that the vorticity dynamics of both highly idealized and realistic653

gyre configurations are greatly influenced by spurious forces that emerge from the dis-654

crete Coriolis force and the step-like representation of bathymetry. In the idealized dou-655

ble gyre configuration (Section 4) the spurious force is a combination of numerical beta656

and topographic effects that are present in both the FLAT and SLOPED configuration.657

In the realistic Weddell Gyre (Section 5) the spurious force is the dominant drag and is658

entirely determined by model level steps and partial cells. In this section we discuss pos-659

sible methods to mitigate these spurious forces.660

6.1 Alternative vorticity schemes661

The results presented in Sections 4 and 5 both use the EEN vorticity scheme and662

it is tempting to dismiss the spurious forces as an artifact of the selected scheme. The663

analysis in Section 3.2 is general for three popular schemes: EEN, ENE, and ENS. The664

methods and decomposition used in this article are applicable under any scheme where665

the Coriolis acceleration can be expressed in the form of Equations 8 and 9. Results from666

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

−70

−60

−50

L
at

it
u

d
e

(d
eg

re
es

)

a.

Advection

b.

Bottom pressure torque

c.

Lateral diffusion

−70

−60

−50

L
at

it
u

d
e

(d
eg

re
es

)

d.

Time derivative

e.

Surface stress curl

f.

Bottom friction

−70

−60

−50

L
at

it
u

d
e

(d
eg

re
es

)

g.

=

Planetary vorticity

h.

+

P. vorticity: −∇h · (fU)

i.

P. vorticity: f displacement

−50 0 50

Longitude (degrees)

−70

−60

−50

L
at

it
u

d
e

(d
eg

re
es

)

j.

+

P. vorticity: Cell thicknesses

−50 0 50

Longitude (degrees)

Not smoothed
k.

+

P. vorticity: Model level steps

−50 0 50

Longitude (degrees)

l.

P. vorticity: Coupled f -topographic

−10−6 −10−7 −10−8 −10−9 −10−10 10−10 10−9 10−8 10−7 10−6

Vorticity diagnostic [m/s2]

Figure 13. The depth-integrated vorticity diagnostics for the Weddell Gyre and the com-

ponents of the planetary vorticity diagnostic (time-averaged). All fields except (k) have gone

through a 25 point nearest neighbour smoothing process.
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Figure 14. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

for the Weddell Gyre (time-averaged). Positive values correspond to a force that spins the gyre

up. The hatching marks the sea ice contribution to the surface stress integral. (b) Shows the area

integrals of the planetary vorticity diagnostic and its components.

the SLOPED double gyre configuration using the different schemes are presented in Ap-667

pendix C and the vorticity budgets are qualitatively similar. Spurious topographic forces668

and the numerical beta effect are still significant.669

It therefore seems that switching between the available vorticity schemes will not670

alleviate the spurious signal. It is possible that a new scheme could be formulated which671

is designed to significantly reduce the spurious forces, but that will most likely require672

abandoning the conserved quantities that characterise the existing schemes.673

6.2 Alternative depth-integrated vorticity equations674

In Section 2.1 we derived a depth-integrated vorticity equation by taking the curl675

of the depth-integrated momentum equation and we calculated the model vorticity di-676

agnostics using the equivalent discrete method. As discussed in Section 2.1, there are677

alternative formulations of the depth-integrated vorticity equations with different phys-678

ical meanings. An accurate model should be able to represent all forms of the depth-integrated679

vorticity budget so switching between formulations does not alleviate any spurious forces,680

but it is interesting to see if any of the spurious contributions in this article can spill over681

into other vorticity budgets.682

If we derive a continuous depth-integrated vorticity equation by depth-integrating683

the curl of the momentum equations then the Coriolis acceleration emerges in the vor-684

ticity budget as:685

ˆ η(x,y,t)

−H(x,y)

[
∇×

(
−f k̂× u

)
h

]
· k̂ dz = −∇h · (fU) + f (ub · ∇)H + f (ut · ∇) η, (24)

where ut and ub are the horizontal velocities at the free surface and sea floor respectively.686

When compared with Equation 2 we can see that the planetary vorticity term has an687
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additional topographic and free surface term. The second term on the right hand side688

of Equation 24 describes a vortex stretching acting on the vertical velocity induced by689

the bottom topography. In configurations with no variable bathymetry and small vari-690

ations in the free surface, the order of taking the curl and depth-integrating no longer691

affects the vorticity budget so the non-topographic spurious forces identified in this ar-692

ticle will remain in either formulation.693

To calculate the discrete curl of a horizontal vector field near the bathymetry we694

need to make an assumption about how the along-slope component varies as it approaches695

the edge of the domain. We can assume either a free slip or no slip boundary condition696

by using a ghost point that mirrors the location of the closest grid point into the bathymetry.697

For a free slip boundary condition the ghost point value matches the closest grid point698

value, F ∥; for a no slip boundary condition the ghost point value will be the negative699

of the closest grid point value, −F ∥. A partial slip boundary condition also exists where700

the value of the ghost point will be between −F ∥ and F ∥.701

Let us return to the simple flow introduced in Section 3.3 and illustrated in Fig-702

ure 2 but this time when we calculate the planetary vorticity diagnostic we will calcu-703

late the curl of the Coriolis acceleration on each model level and then depth-integrate.704

For the lower level, the horizontal flow is entirely in the x direction so there is a zero along-705

slope component of the Coriolis acceleration near the bathymetry (F ∥=0). This means706

that if a free slip, no-slip, or partial slip boundary condition are used the ghost point value707

will be zero and the curl of the Coriolis force (centred on the purple cross in Figure 2)708

will be zero in all three cases. As all vorticity generation takes place in the upper level,709

the planetary vorticity diagnostic is the same if we take the curl before or after depth-710

integrating (Equation 21) and the effect of model level steps can exist in either vortic-711

ity budget.712

The result of Equation 21 can be interpreted as a vortex stretching acting on the713

vertical velocity that is induced by the change in horizontal velocity u1 (see Figure 2).714

The vertical velocity seems unlikely to originate from topographic upwelling as there is715

no flow in the y direction. This fact combined with the ambiguity of ∇H at model level716

steps means we would advise caution before comparing the discrete vortex stretching that717

originates from model level steps to the analytic vortex stretching in Equation 24.718

6.3 The B-grid719

Altering the grid geometry can significantly change the behaviour of model forces.720

To highlight this we consider how the Coriolis force behaves on the B-grid. The B-grid721

excels at representing geostrophic flows as u, and v are located on the same vector point.722

The streamfunction and relative vorticity are located on the tracer point as shown in Fig-723

ure 15.724

On the B-grid the Coriolis acceleration is simply:725

CORxi,j,k = fi,j vi,j,k, (25)

CORyi,j,k = −fi,j ui,j,k. (26)

The Coriolis acceleration does not rely on multi-point averaging or thickness weighting726

of f so numerical contributions do not emerge in the grid point acceleration.727

On the B-grid u and v lie on the same point so they share the same mask. This728

means that non-zero Coriolis accelerations are never masked near model level steps and729

the depth-integrated Coriolis acceleration is a function of the depth-integrated veloci-730

ties only:731

ĈOR
x

i,j = fi,j Vi,j , (27)

ĈOR
y

i,j = −fi,j Ui,j , (28)
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Figure 15. The horizontal distribution of variables on the B-grid. Tracer points (T) and vec-

tor points (V) are shown alongside important values that are centred on these points. Just like in

the C-grid, the vertical velocities are found directly above and below the Tracer point.

We therefore conclude that the spurious force caused by model level steps on the C-grid732

(see Section 3.3) is not present on the B-grid. The corresponding planetary vorticity di-733

agnostic is equal to −∇h · (fU) |i,j calculated over a single tracer cell.734

Calculating the curl on a B-grid is consistent with Stokes’ law applied to a tracer735

cell but the vector information is found on the corners of the cell. As the stream func-736

tion is defined on the tracer point we can approximate that the area enclosed by a stream-737

line is a collection of interior tracer cells. Similarly to the C-grid case in Section 3.5 this738

is an approximation as we are assuming that the streamline follows the rectangular edges739

of the interior tracer cells so interpolation may be required to remove any significant area740

error. Unlike the C-grid case, the planetary vorticity diagnostic is equal to −∇h·(fU) |i,j741

calculated over a single tracer cell. Therefore, the area integral of the planetary vortic-742

ity diagnostic will satisfy the divergence theorem applied to the internal tracer cells. It743

seems likely that this discrete integral may vanish on a sufficiently fine grid but further744

investigation with idealized and realistic streamlines is needed.745

Using the B-grid would remove all of the spurious topographic forces identified in746

this article. This highlights how a model circulation’s interaction with the sea floor is747

significantly affected by the grid geometry.748

6.4 Terrain-following coordinates749

The spurious topographic effects found in this article are a consequence of how bot-750

tom topography is represented in z-coordinates. In the Weddell Gyre especially we see751

how model level steps can create large spurious contributions to the depth-integrated vor-752

ticity budget.753

Terrain-following coordinates (or σ-coordinates) are an alternative form of verti-754

cal coordinate where the vertical resolution adjusts with the bottom topography so that755

the same number of model levels are present in all fluid columns (Song & Haidvogel, 1994).756

σ-coordinates are used in Stewart et al. (2021), Schoonover et al. (2016), and Jackson757

et al. (2006) and have the advantage of removing spurious terms that emerge from model758

level steps. The forms of the EEN, ENE, and ENS vorticity schemes are unchanged when759

using terrain-following coordinates so the horizontal variations in cell thicknesses could760

still cause a spurious signal.761

Terrain-following coordinates are not used widely in climate models because of the762

difficulty in calculating accurate horizontal pressure gradients (near the equator), advec-763
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tion, and isoneutral tracer diffusion. A full discussion of the current advantages and lim-764

itations of terrain following coordinates can be found in Lemarié, Kurian, et al. (2012).765

6.5 Isopycnal coordinates and the vertical Lagrangian-remap method766

In isopycnal C-grid models, where density is used as a vertical coordinate, cell thick-767

nesses still vary and in models with many density layers the model levels are free to in-768

crop to the sea floor. The forms of the EEN, ENS, and ENE schemes are unchanged when769

using density coordinates so the spurious signals in the planetary vorticity diagnostic seem770

to be possible. In configurations where density layers infrequently incrop to the sea floor,771

the effect of model level steps will be significantly suppressed as the grid is approach-772

ing the limit of a terrain-following coordinate system.773

In C-grid models that use the vertical Lagrangian-remap method (Bleck, 2002; Ad-774

croft et al., 2019) the vertical coordinate evolves with the flow and is then conservatively775

remapped onto a target grid (see Griffies et al. (2020) for a review). The forms of the776

EEN, ENS, and ENE schemes are unchanged when using this method. If the target co-777

ordinate grid still has horizontal variations in cell thicknesses and incrops with the sea778

floor, we would expect there to be spurious topographic interactions with the sea floor.779

It is possible that in areas of topographic upwelling the effect of model level steps could780

be reduced as Coriolis accelerations near the bathymetry are elevated by the vertical mo-781

tion and are partially projected onto unmasked points when remapped onto the target782

grid.783

7 Summary784

The depth-integrated vorticity budget is a valuable tool for identifying important785

model forces in gyre circulations. Vorticity diagnostics can be integrated over the area786

enclosed by streamlines to identify forces responsible for spinning the gyre up and down.787

By considering how the vorticity budget is represented on a C-grid with step-like bathymetry788

we identified spurious forces that emerge from the representation of bottom topography789

and the discrete Coriolis acceleration. Model level steps and partial cells produce two790

distinct spurious topographic forces. In the absence of bottom topography, it is shown791

that the discrete planetary vorticity term does not generally vanish when integrated over792

the discrete area enclosed by a streamline. This suggests that a spurious non-topographic793

force, described as a numerical beta effect, is also present.794

We first studied the vorticity budget of an idealized double gyre configuration with795

analytic geometry, forcing, and two bathymetry options. The FLAT variant has a con-796

stant depth and the SLOPED variant has a linear slope that extends over half the do-797

main. The subtropical gyre of the FLAT configuration is non-linear at the exterior (wind798

stress curl balanced by advection) and is in a Stommel (1948) regime in the interior (wind799

stress curl balanced by friction). The FLAT subpolar gyre is spun up by wind stress curl800

and mostly spun down by spurious forces found in the planetary vorticity diagnostic. Spu-801

rious forces are significant in both FLAT gyres and are a consequence of the numerical802

beta effect and partial F cells that are artificially introduced by the EEN vorticity scheme.803

Artificial partial F cells would not be present in the ENS or ENE vorticity schemes.804

The vorticity budget of the SLOPED gyres features bottom pressure torques and805

an increased influence of partial cells on the planetary vorticity diagnostic. The SLOPED806

subtropical gyre is an intermediate case between a topographically steered gyre and a807

non-linear circulation. The SLOPED subpolar gyre is driven by wind stress curl but spun808

down by the combined effect of bottom pressure torques and spurious interactions with809

the topography via partial cells. This first case study highlighted how spurious terms810

can dominate a vorticity budget in idealized configurations with and without variable811

bathymetry.812
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The second case study was the Weddell Gyre in a global model where the forcing813

and geometry are more realistic. By studying the vorticity budget of the Weddell Gyre814

we conclude that the model circulation is mostly spun up by wind stress curl and spun815

down by the combined effect of bottom pressure torques and spurious interactions with816

the topography. The largest of the topographic forces spinning the Weddell Gyre down817

is the spurious and unrealistic force caused by model level steps.818

Switching to alternative vorticity schemes is not effective at reducing spurious con-819

tributions to the vorticity budget. By presenting a general form of the discrete Corio-820

lis acceleration we are able to quickly conclude that the topographic and non-topographic821

spurious forces will remain under all three vorticity schemes and any other scheme that822

uses this general form. The influence of model level steps is a direct consequence of the823

C-grid geometry when using vertical coordinates that intersect the bathymetry and is824

relatively insensitive to the choice of vorticity scheme.825

Altering the geometry of the discretisation is an effective method for reducing spu-826

rious topographic forces. The B-grid is better at representing the Coriolis force and it827

is not possible for model level steps or partial cells to influence the Coriolis acceleration.828

Model level steps and their influence on the Coriolis acceleration can be avoided alto-829

gether by using terrain-following coordinates.830

The B-grid and terrain-following coordinates have their own unique limitations and831

it is unclear how much the identified spurious forces corrupt circulation variables such832

as the gyre transport. It is possible that the spurious forces are inadvertently perform-833

ing the role of one or more real ocean processes that are required for accurate simula-834

tions. If a combination of non-spurious forces can fully account for the spurious forces835

found in this article then the identified problem is purely diagnostic in nature. Other-836

wise, any part of the spurious forcing that cannot be accounted for by non-spurious forces837

should be considered as a numerical error. This numerical error could be small but may838

also accumulate under specific conditions and corrupt model circulations. The spurious839

cooling (Hecht, 2010) that occurs when a dispersive advection scheme is used with the840

Gent and McWilliams (1990) eddy parametrization highlights the dangers of ignoring841

numerical errors.842

It is also possible that other model forces contain spurious contributions that have843

not been uncovered in this article. These contributions could be significant and may have844

the potential to cancel the spurious effects found in this article. When looking at the in-845

tegrated diagnostics in Figures 9, 10, and 14 we see that usually the only model force846

with an opposite contribution to the Coriolis force that is large enough to cancel the found847

spurious effects is the surface stress. It seems unlikely that the surface stress contains848

spurious contributions that are closely tied to bathymetry and the Coriolis parameter.849

It is important for the ocean modelling community to continue developing new ways850

of representing bathymetry and we hope that vorticity budgets and the diagnostic method851

presented in this article will provide a valuable tool for assessing and quantifying rep-852

resentations of the sea floor in current and future ocean models.853

Appendix A Deriving the depth-integrated vorticity equation854

Here we derive the depth-integrated vorticity equation (Equation 2) including the855

omitted contributions from surface undulations and atmospheric pressure torques. We856

start from the vector invariant form of the momentum equation,857

∂uh

∂t
= −

[
(∇× u)× u+

1

2
∇ (u · u)

]
h

− f
(
k̂× u

)
h
− 1

ρ0
∇hP + Fu +Du, (A1)858

which has already been introduced in Section 2.1. To derive the depth-integrated vor-859

ticity equation, we must first depth-integrate the equation and then calculate the ver-860
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tical component of the curl. In this appendix, we consider how each term in Equation861

A1 is transformed by this operation.862

When depth-integrating the time derivative term in Equation A1, we must respect863

the time dependency of the free surface, η. We therefore use the Leibniz integration rule,864

∇×
(
ˆ η(x,y,t)

−H(x,y)

∂uh

∂t
dz

)
· k̂ =

∂

∂t
(∇×U) · k̂−∇×

(
uh(z = η)

∂η

∂t

)
· k̂, (A2)865

where the second term on the right hand side of Equation A2 is the contribution from866

free surface undulations.867

The non-linear term in Equation A1 can be rewritten as,868 [
(∇× u)× u+

1

2
∇ (u · u)

]
h

=
1

2
∇h(uh · uh) + ζ

(
k̂× u

)
h
+ w

∂uh
∂z

. (A3)869

The non-linear term emerges as the advection term in the depth-integrated vorticity equa-870

tion and we note that,871

∇×
[
ˆ η

−H
ζ
(
k̂× u

)
h
dz

]
· k̂ = ∇h ·

(
ˆ η

−H
ζuh dz

)
. (A4)872

Similarly the curl of the depth-integrated Coriolis acceleration is the planetary vortic-873

ity term,874

∇×
[
ˆ η

−H
−f
(
k̂× u

)
h
dz

]
· k̂ = −∇h · (fU) . (A5)875

When depth-integrating the pressure gradient in Equation A1, we must respect the876

x and y dependency of the sea floor and the free surface. We therefore use the Leibniz877

integration rule,878

∇×
(
ˆ η(x,y,t)

−H(x,y)

− 1

ρ0
∇hP dz

)
· k̂ =

1

ρ0
(∇Pb ×∇H) · k̂+

1

ρ0
(∇Pa ×∇η) · k̂, (A6)879

where Pa is the atmospheric pressure at the free surface. The second term on the right880

hand side of Equation A6 is the atmospheric pressure torque.881

The surface forcing term in Equation A1 emerges as the difference between the curl882

of the top and bottom stresses,883

∇×
(
ˆ η

−H
Fu dz

)
· k̂ =

1

ρ0
(∇× τ top) · k̂− 1

ρ0
(∇× τ bot) · k̂, (A7)884

(A8)885

and the diffusion term emerges as Dζ ,886

∇×
(
ˆ η

−H
Du dz

)
· k̂ = Dζ . (A9)887

By combining all the equations above we can derive the depth-integrated vortic-888

ity equation,889

∂

∂t
(∇×U) · k̂ = − ∇h · (fU) +

1

ρ0
(∇Pb ×∇H) · k̂+

1

ρ0
(∇× τ top) · k̂890

− 1

ρ0
(∇× τ bot) · k̂+Dζ

891

− ∇h ·
(
ˆ η(x,y,t)

−H(x,y)

ζu dz

)
−
[
∇×

(
ˆ η(x,y,t)

−H(x,y)

1

2
∇h

(
u2
h

)
+ w

∂uh
∂z

)]
· k̂892

+
1

ρ0
(∇Pa ×∇η) · k̂︸ ︷︷ ︸

Atmospheric pressure torque

+

[
∇×

(
uh(z = η)

∂η

∂t

)]
· k̂︸ ︷︷ ︸

Surface undulations

. (A10)893

894
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Appendix B Explicit forms of the Coriolis schemes895

Here we explicitly state the forms of the discrete Coriolis acceleration in the ENE,896

ENS, and EEN vorticity schemes for a z-coordinate system. In the ENE vorticity scheme897

the x and y components of the Coriolis acceleration are:898

CORxi,j,k =
1

4e1ui,j

[
fi,j−1

((
ve1v

)
i,j−1,k

+
(
ve1v

)
i+1,j−1,k

)
+fi,j

((
ve1v

)
i,j,k

+
(
ve1v

)
i+1,j,k

)]
,

CORyi,j,k =
1

4e2vi,j

[
fi−1,j

((
ue2u

)
i−1,j,k

+
(
ue2u

)
i−1,j+1,k

)
+fi,j

((
ue2u

)
i,j,k

+
(
ue2u

)
i,j+1,k

)]
. (B1)

In the ENS vorticity scheme the x and y components of the Coriolis acceleration are:899

CORxi,j,k =
1

8e1ui,j

[(
ve1v

)
i,j−1,k

+
(
ve1v

)
i+1,j−1,k

+
(
ve1v

)
i,j,k

+
(
ve1v

)
i+1,j,k

]
[fi,j−1 + fi,j ] ,

CORyi,j,k =
−1

8e2vi,j

[(
ue2u

)
i−1,j−1,k

+
(
ue2u

)
i−1,j+1,k

+
(
ue2u

)
i,j,k

+
(
ue2u

)
i,j+1,k

]
[fi−1,j + fi,j ] . (B2)

We note that each term in the ENE and ENS forms can be written in the general form900

of Equations 8 and 9 as ve1v = Ṽ /e3v and ue2u = Ũ/e3u. In the ENE and ENS cases901

e3k(bn) = e3k(cn) in Equations 8 and 9.902

In the EEN vorticity scheme, the x and y components of the Coriolis acceleration903

are:904

CORxi,j,k =
1

12e1ui,j

[
FNEi,j,k

(
ve3ve1v

)
i,j,k

+ FNWi+1,j,k

(
ve3ve1v

)
i+1,j,k

+FSEi,j,k
(
ve3ve1v

)
i,j−1,k

+ FSWi+1,j,k

(
ve3ve1v

)
i+1,j−1,k

]
,

CORyi,j,k =
−1

12e2vi,j

[
FNEi,j,k

(
ue3ue2u

)
i,j,k

+ FNWi,j,k

(
ue3ue2u

)
i−1,j,k

+FSEi,j+1,k

(
ue3ue2u

)
i,j+1,k

+ FSWi,j+1,k

(
ue3ue2u

)
i−1,j+1,k

]
, (B3)

where FNE , FNW , FSE , and FSW are thickness-weighted triads of the Coriolis param-905

eter:906

FNEi,j,k =
(
f̃i,j,k + f̃i−1,j,k + f̃i,j−1,k

)
, (B4)

FNWi,j,k =
(
f̃i,j,k + f̃i−1,j,k + f̃i−1,j−1,k

)
, (B5)

FSEi,j,k =
(
f̃i,j,k + f̃i,j−1,k + f̃i−1,j−1,k

)
, (B6)

FSWi,j,k =
(
f̃i−1,j,k + f̃i,j−1,k + f̃i−1,j−1,k

)
, (B7)

where f̃ = f/e3f using the EEN definition of e3f shown in Equation 13.907

To calculate the planetary vorticity diagnostic we take the curl of the depth-integrated908

Coriolis acceleration using Equations 15 and 22. In general the resulting equation of the909

vorticity diagnostic is very difficult to interpret. We only present the form of the plan-910

etary vorticity diagnostic for the EEN scheme on a grid with no partial cells or model911

–31–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

level steps as it is used to derive the numerical beta effect in Section 3.5:912

PVOi,j =
1

12 (e1fe2f )i,j

[
−fNEi,j+1

(
V e1v

)
i,j+1

− fNWi+1,j+1

(
V e1v

)
i+1,j+1

+fSEi,j
(
V e1v

)
i,j−1

+ fSWi+1,j

(
V e1v

)
i+1,j−1

−fSEi+1,j+1

(
Ue2u

)
i+1,j+1

− fNEi+1,j

(
Ue2u

)
i+1,j

+fSWi,j+1

(
Ue2u

)
i−1,j+1

+ fNWi,j

(
Ue2u

)
i−1,j

− (fi,j+1 − fi,j−1)
((
V e1v

)
i+1,j

+
(
V e1v

)
i,j

)
− (fi+1,j − fi−1,j)

((
Ue2u

)
i,j+1

+
(
Ue2u

)
i,j

)]
. (B8)

Appendix C Alternative vorticity schemes in the double gyre model913

In this section we present various integrations of the SLOPED double gyre config-914

uration using different vorticity schemes: EEN, ENS, and ENE. All other aspects of the915

experiment are as described in Section 4.1. The results are shown in Figure C1. The vor-916

ticity budget is qualitatively similar between the three cases as well as the decomposi-917

tion of the planetary vorticity diagnostic. It should be noted that the circulations do dif-918

fer as the transports vary and the separation points of the western boundary currents919

change.920

Appendix D Contour integration without interpolation921

The interpolation of vorticity diagnostic fields and the streamfunction is discussed922

in Section 4.2. Linear interpolation is used to minimise the difference between the en-923

closed area of the true streamline and the total area of the interior F cells. In this sec-924

tion we present results that use uninterpolated fields from the FLAT double gyre con-925

figuration. The results are shown in Figure D1 and are qualitatively similar to the in-926

terpolated results shown in Figure 9. This example is selected to demonstrate both the927

qualitative similarity to interpolated results but also the reduced coherence that comes928

from using non-interpolated data. The non-interpolated results from the Weddell Gyre929

are in fact more coherent than the results shown in Figure D1.930
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Figure C1. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

for the SLOPED configuration (time-averaged) using the EEN, ENE, and ENS vorticity schemes.

Positive values correspond to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre

up. A decomposition of the planetary vorticity diagnostic integrals are given on the right (b,d,f).
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Figure D1. Stacked area plots showing the integrals of depth-integrated vorticity diagnostics

(time-averaged) for the FLAT configuration without using interpolated fields. Positive values

correspond to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. (b) Shows

the area integrals of the planetary vorticity diagnostic and its components. The vorticity budget

and decomposition are qualitatively similar to that shown in Figure 9.

• branches/UKMO/NEMO 4.0.4 GO6 mixing @ 14099,948

• branches/UKMO/NEMO 4.0.4 old tidal mixing @ 14096,949

• branches/UKMO/NEMO 4.0.4 momentum trends @ 15194.950

The double gyre configuration uses NEMO version 4.0.1 and any modified source code951

is archived on Zenodo (Styles et al., 2021). The versions of NEMO and the mentioned952

branches can be found at https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/.953
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