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Abstract

Quantifying the magnitude and frequency of extreme precipitation events
is key in translating climate observations to planning and engineering de-
sign. Past efforts have mostly focused on the estimation of daily extremes
using gauge observations. Recent development of high-resolution global pre-
cipitation products, now allow estimation of global extremes. This research
aims to quantitatively characterize the spatiotemporal behavior of precipita-
tion extremes, by calculating extreme precipitation return levels for multiple
durations on the global domain using the Multi-Source Weighted-Ensemble
Precipitation (MSWEP) dataset. Both classical and novel extreme value
distributions are used to provide an insight into the spatial patterns of pre-
cipitation extremes. Our results show that the traditional Generalized Ex-
treme Value (GEV) distribution and Peak-Over-Threshold (POT) methods,

Email address: g.j.gruendemann@tudelft.nl (Gaby J. Gründemann )

Preprint submitted to Journal of Hydrology April 23, 2021



which only use the largest events to estimate precipitation extremes, are not
spatially coherent. The recently developed Metastatistical Extreme Value
(MEV) distribution, that includes all precipitation events, leads to smoother
spatial patterns of local extremes. While the GEV and POT methods pre-
dict a consistent shift from heavy to thin tails with increasing duration, the
heaviness of the tail obtained with MEV was relatively unaffected by the
precipitation duration. The generated extreme precipitation return levels
and corresponding parameters are provided as the Global Precipitation EX-
tremes (GPEX) dataset. These data can be useful for studying the underlying
physical processes causing the spatiotemporal variations of the heaviness of
extreme precipitation distributions.

Keywords: Precipitation extremes, MSWEP, Metastatistical extreme value
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1. Introduction1

Extreme precipitation events are a major contributor to natural disasters2

(CRED, 2019). Accurate estimates of the severity of intense precipitation3

events are needed for an enhanced disaster risk understanding, such as that4

of floods and landslides. The urgency of this is indicated as the first priority5

of the Sendai Framework for Disaster Risk Reduction (UNSIDR, 2015). The6

accurate quantification of extremes is also necessary for infrastructure plan-7

ning and design. Some countries already provide spatiotemporal estimates8

of extreme precipitation based on extreme value distributions (EVDs), for9

example, for Australia (Ball et al., 2019), the Netherlands (Beersma et al.,10

2018), and the US (e.g., Perica et al., 2015, 2018). However, many countries11

and regions do not have sufficient local data available (Gründemann et al.,12

2018; Kidd et al., 2017; van de Giesen et al., 2014), such that spatially-13

distributed extreme precipitation estimates are not possible.14

Several previous studies have developed global-scale datasets of extreme15

precipitation. Courty et al. (2019) calculated intensity-duration-frequency16

curves at the global domain and their scaling with different event durations17

using reanalysis data and the Generalized Extreme Value (GEV) distribu-18

tion with fixed tail behavior. Donat et al. (2013) produced the HadEx-219
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dataset, which contains 29 generic precipitation and temperature indices,20

although these indices are not based on EVDs. Furthermore, this dataset21

has a coarse 2.50◦ latitudinal × 3.75◦ longitudinal resolution, with data-22

gaps due to insufficient available gauge data. Other global studies mostly23

focused on examining which type of distribution is most suitable to capture24

the tail behavior of extreme precipitation (Cavanaugh and Gershunov, 2015;25

Cavanaugh et al., 2015; Papalexiou et al., 2013). In addition, the spatial26

patterns of the parameter controlling the tail decay have been studied for27

the GEV distribution (Papalexiou and Koutsoyiannis, 2013; Ragulina and28

Reitan, 2017), and the Generalized Pareto (GP) distribution (Serinaldi and29

Kilsby, 2014). However, several issues remain to be addressed in order to30

obtain global-domain extreme precipitation return levels: 1) the choice of31

the dataset, 2) the focus on daily durations, 3) the choice of the time blocks32

over which block-maxima are determined, and 4) the exploration of possi-33

ble alternatives to the classical EVDs and the associated uncertainty with34

respect to the tail behavior.35

1. Several (quasi-)global gridded precipitation datasets have been devel-36

oped in the recent years, each with strengths and weaknesses. See Sun37

et al. (2018) and Beck et al. (2019a) for recent overviews of available38

datasets. Most of these datasets are based on gauge, reanalysis, or39

satellite sensor data. Notable examples of gauge-based datasets in-40

clude GPCC-FDR (Becker et al., 2013; Schneider et al., 2011) and41

REGEN (Contractor et al., 2020). However, gauges are extremely un-42

evenly distributed across the globe (Kidd et al., 2017; Schneider et al.,43

2014), and the number of active gauges has been declining in recent44

decades (Mishra and Coulibaly, 2009). Satellite-based products such45

as CMORPH (Joyce et al., 2004), GSMaP (Ushio et al., 2009), IMERG46

(Huffman et al., 2015), and PERSIANN (Hong et al., 2004) have a rel-47

atively high spatio-temporal resolution. However, they do not cover48

regions outside of 60◦N/S, and are only available from 2000 onwards,49

which significantly hinders their use for extreme value analyses. Pre-50

cipitation products with a true global coverage and long records are51

reanalyses, such as ERA-5 (Hersbach et al., 2020), JRA-55 (Kobayashi52

et al., 2015), and MERRA-2 (Gelaro et al., 2017). However, reanaly-53

sis products tend to exhibit strong systematic biases in the magnitude54

and frequency of precipitation (Decker et al., 2012; Liu et al., 2018;55

Ménégoz et al., 2013).56
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2. Global-scale analyses of precipitation extremes are generally based on57

daily precipitation records (Cavanaugh et al., 2015; Koutsoyiannis,58

2004a,b; Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013;59

Ragulina and Reitan, 2017; Serinaldi and Kilsby, 2014). In practice,60

however, multiple durations are needed for the design of infrastruc-61

ture (e.g., Nissen and Ulbrich, 2017) or urban drainage networks (e.g.,62

Mailhot and Duchesne, 2009). It is known that precipitation extremes63

of different durations scale differently with temperature (Wasko et al.,64

2015), but little is known about the variation of EVD properties (tail65

behavior) for different temporal resolutions. Studies that did derive66

extreme precipitation statistics for durations ranging from minutes to67

a few days have mostly focused on small regions (McGraw et al., 2019;68

Nissen and Ulbrich, 2017; Overeem et al., 2008).69

3. Studies estimating return levels of extreme precipitation by using an-70

nual maxima typically use calendar years to delineate the annual pe-71

riods from which maxima values are extracted (e.g., De Paola et al.,72

2018; Marani and Zanetti, 2015; Papalexiou and Koutsoyiannis, 2013;73

Ragulina and Reitan, 2017; Villarini et al., 2011). When the variable74

of interest is river discharge instead of precipitation, however, hydro-75

logical years are typically used instead of calendar years to determine76

the annual maxima (Ward et al., 2016). For discharge values this is77

important, since peak discharge and flooding could occur during 3178

December to 1 January transition and one event would be included in79

two calendar years. Although not often considered, this could also hap-80

pen for precipitation. The annual maxima method could pick multiple81

values from a single rainy season that may, for example, be highly influ-82

enced by the El Niño-/Southern Oscillation, which is known to impact83

precipitation extremes (Allan and Soden, 2008; Rasmusson and Arkin,84

1993).85

4. The Generalized Extreme Value (GEV) distribution, the most widely86

used EVD, is typically fitted through one of two approaches: a) using87

annual maximum precipitation series and maximum likelihood (Coles,88

2001) or L-moment (Hosking, 1990) estimation approaches, or b) us-89

ing a Peak-Over-Threshold (POT) method to fit a Generalized Pareto90

Distribution to excesses above the threshold and a Poisson process to91

the sequence of threshold exceedances (Coles, 2001). In contrast to92

GEV and POT, the recently developed Metastatistical Extreme Value93

(MEV) distribution is fitted using all events with recorded precipita-94
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tion instead of only the most severe. The inclusion of more events re-95

duces the uncertainty due to sampling effects, which is important when96

dealing with short time series (Hu et al., 2020; Marani and Ignaccolo,97

2015; Marra et al., 2018, 2019a; Miniussi and Marani, 2020; Zorzetto98

et al., 2016; Zorzetto and Marani, 2019). This is particularly advanta-99

geous when analyzing short remote sensing precipitation products, as100

the commonly applied GEV requires many years of data to accurately101

estimate the tail of the distribution (Papalexiou and Koutsoyiannis,102

2013). Additionally, GEV parameter estimation depends heavily on a103

few large values, which makes it very sensitive to the possible presence104

of outliers, a relatively common occurrence in remote sensing estimates105

of precipitation amounts (Zorzetto and Marani, 2020). The GEV tail106

behavior is mostly controlled by its shape parameter, which is very107

sensitive to sampling effects and the choice of the method used for es-108

timation. To overcome these problems, some studies have suggested109

to use one universal value of the shape parameter that is applicable to110

the whole world Koutsoyiannis (2004a,b), or a shape parameter value111

within a narrow range between exponential and heavy-tail behavior112

(Papalexiou and Koutsoyiannis, 2013), or one shape parameter per re-113

gion, that is similar within climate types and elevation ranges (Ragulina114

and Reitan, 2017). The estimation of the shape parameter is partic-115

ularly difficult with short data series, though crucial for the accurate116

estimation of extremes.117

In this study we contribute to overcome these issues by 1) using a dataset118

that merges all three main sources of precipitation data, 2) estimating ex-119

tremes for several event durations, 3) using hydrological years in our analyses,120

and 4) comparing results from three different extreme value methods (GEV,121

POT and MEV). Specifically, we are interested in quantitatively character-122

izing the behavior of extreme precipitation and the spatiotemporal variation123

of extreme value distributional tails at the global domain.124

2. Material and Methods125

2.1. Data126

The global precipitation product used in this study is the Multi-Source127

Weighted-Ensemble Precipitation (MSWEP-V2.2) dataset. MSWEP is par-128

ticularly suited for our purpose due to its global coverage, long temporal129
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span, high spatial and temporal resolution. We used data from 1 January130

1979 to 31 October 2017 at a 0.1◦ latitude × 0.1◦ longitude resolution at131

3-hourly time steps. We selected all land-cells between 90◦N and 58◦S for132

our analysis. MSWEP precipitation estimates are derived by merging five133

different satellite- and reanalysis-based global precipitation datasets. The134

dataset is one of the few precipitation products with daily (as opposed to135

monthly) gauge corrections, applied using a scheme that accounts for gauge136

reporting times (Beck et al., 2019b). MSWEP has shown robust performance137

compared to other widely used precipitation datasets (e.g., Alijanian et al.,138

2017; Bai and Liu, 2018; Beck et al., 2017, 2019a; Casson et al., 2018; Hu139

et al., 2020; Sahlu et al., 2017; Satgé et al., 2019; Zhang et al., 2019), thus140

underlying its potential for improving the characterization of extreme pre-141

cipitation worldwide. We refer to Beck et al. (2019b) for a comprehensive142

description of the dataset.143

2.1.1. Quality Control144

The integration of erroneous gauge observations into MSWEP-V2.2 can145

occasionally result in implausible precipitation values. Therefore, we imple-146

mented a three-step quality control procedure of the 3-hourly data prior to147

the analysis. We first discarded negative values, which are physically impos-148

sible. The second step was to discard outliers, which we defined as values149

deviating from the mean by more than 30 standard deviations. We also dis-150

carded data surrounding the outliers for the same time step using a 11× 11151

grid-cell window, as erroneous gauge observations may have influenced sur-152

rounding cells in the production of the MSWEP dataset. The third step153

was to discard years with > 30 missing days or < 5 ‘wet’ 3-hourly periods,154

identified using a threshold of 0.2 mm 3h−1 following Wasko et al. (2015).155

Finally, we only included in the analysis data from grid cells with at least156

30 years of data remaining, as a minimum record length of 30 years is cus-157

tomary and recommended to obtain reliable results (Arguez and Vose, 2011;158

Kendon et al., 2018; Westra et al., 2013).159

2.1.2. Durations and Identification of Independent Events160

The durations we selected for our analysis are 3, 6, 12 and 24 hours, and161

2, 3, 5 and 10 days. In order to create statistically-independent precipitation162

events for multiple durations, we first separated 3-hourly events following the163

declustering method to limit the autocorrelation of the samples described in164

Marra et al. (2018, their Section 3.1). For longer durations, independent165
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events are the maximum intensities within each independent event and non-166

overlapping period using moving windows (Marra et al., 2020).167

2.1.3. Hydrological Year168

A common challenge in global-scale assessments is the delineation of the169

hydrological year, given the regional variability in the climatological precip-170

itation seasonality. We therefore developed an uniform way to define the171

hydrological year. To avoid splitting one rainy season over two different172

years, we computed the median of the monthly precipitation for each grid-173

cell, and defined the start of the hydrological year to be the first day of the174

driest month. Supplementary Material Figure S1a shows the starting month175

of the hydrological year as determined by this method. These data are also176

available in the GPEX dataset (Gründemann et al., 2021). As MSWEP-V2.2177

spans the interval from 1 January 1979 to 31 October 2017, we discarded the178

data prior to the start of the first hydrological year, thus keeping 38 complete179

years. Only where the hydrological year starts in December there are just 37180

complete years, which occurs in 5.8 % of the grid cells.181

We also investigated whether there is a significant difference between the182

use of calendar and hydrological years for the estimated daily extremes for183

GEV and MEV. The POT method is based on the values over a high thresh-184

old, irrespective of when they occurred. Therefore, there is by definition no185

difference in calculating the extremes using hydrological or calendar years186

for the POT method. To determine the difference for GEV and MEV, we187

first calculated the daily return levels for normal calendar years, using the188

MSWEP data from 1979 to 2016. Second, we calculated the return levels for189

the same distributions and the same years, by removing the months before190

the start of the hydrological year from the year 1979 and adding them to the191

year 2016. We did this in order to use the exact same data, so the differences192

in the return level estimates are solely due to a different starting month.193

2.2. Extreme Value Distributions194

Three extreme value distributions were fitted to the MSWEP data to195

calculate extreme precipitation return levels: the GEV, POT, and MEV196

distributions. Annual (hydrological year) maxima were used to estimate the197

three parameters of the GEV using the L-moments approach, because of its198

robust performance for small samples (Hosking, 1990). The GEV cumulative199
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distribution function (CDF) is given by:200

G(z) =

{
exp

{
−
[
1 + ξ

(
z−µ
σ

)]− 1
ξ

}
, ξ 6= 0

exp
{
−exp

[
−
(
z−µ
σ

)]}
, ξ = 0

(1)

with location parameter µ ∈ (−∞,∞), scale parameter σ > 0, and shape201

parameter ξ ∈ (−∞,∞). The annual extremes estimated by GEV are trans-202

lated into those of the parent distribution, following Koutsoyiannis (2004a,203

equation 3).204

As a second EV model we use a Peaks Over Threshold approach, de-205

scribing precipitation accumulations exceeding a high threshold using a GP206

distribution, while modelling the frequency of threshold exceedances using a207

Poisson point process (Coles, 2001; Davison and Smith, 1990). This frame-208

work also yields GEV as the resulting extreme value distribution, which is209

then used to determine the quantile corresponding to a given return period.210

The GP CDF is given by:211

H(y) =

 1−
(

1 + ξy
β

)− 1
ξ
, ξ 6= 0

1− exp
(
− y
β

)
, ξ = 0

(2)

where y > 0 are precipitation excesses over the threshold, with β > 0 and212

ξ ∈ (−∞,∞) the GP scale and shape parameters respectively. A relevant213

aspect in applying the POT model is a suitable choice of the threshold used214

to define precipitation exceedances. Our global-scale application requires215

studying the distribution of precipitation extremes across markedly different216

climatic regions, thus excluding the adoption of a constant threshold value.217

We studied the effect of the threshold choice using multiple threshold selec-218

tion methods on a global sample of grid cells (see Supplementary Material219

Section 2 and and Figure S2). Our results showed that this choice had a lim-220

ited effect on the estimated return levels (Figure S2a). We chose to perform221

our global analysis by selecting for each cell a threshold value such that it222

is exceeded on average 3 times each hydrological year. As a consequence of223

this choice, the sample size available for fitting the GP distribution remains224

constant across different precipitation durations. The method used to fit225

the GP distributions is the Probability Weighted Moments (PWM; e.g., see226

Hosking and Wallis, 1987).227

The third model applied here is the MEV distribution (Hosseini et al.,228

2020; Hu et al., 2020; Marani and Ignaccolo, 2015; Miniussi et al., 2020a,b;229
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Zorzetto et al., 2016). In the MEV framework, all “ordinary” precipitation230

events, i.e. all events above a small threshold, are used to infer this EV231

distribution. The threshold we applied is 0.2 mm 3h−1, coinciding with232

the earlier defined ’wet event’. Weibull parameters were estimated for each233

hydrological year separately, based on all wet events using the PWM method234

(Greenwood et al., 1979) as done in Zorzetto et al. (2016). The MEV-Weibull235

CDF is given by:236

ζm(x) =
1

M

M∑
j=1

{
1− exp

[
−
(

x

Cj

)wj
]}nj

(3)

where j is the hydrological year (j = 1, 2, . . . ,M), Cj > 0 is the Weibull scale237

parameter, wj > 0 is the Weibull shape parameter, and nj is the number of238

wet events observed in hydrological year j (Marani and Ignaccolo, 2015).239

2.2.1. Observed Return Period240

The MSWEP dataset analyzed here has 38 complete years of data. There-241

fore, the empirical return period associated with the maximum value on242

record computed according to the Weibull empirical frequency estimate is243

T observed = 39 years. However, only 91 % of all cells had 38 complete years244

of data, so the maximum observed return period is sometimes lower: for 7 %245

of the cells only 37 complete years were available, and for 2 % of the cells246

36 years or less were available. However, for simplicity we still refer to the247

corresponding maximum return level as T39 in the results.248

2.2.2. Tail Behavior249

Both the GEV and MEV distributions are flexible and can describe dif-250

ferent tail behaviors. They are, therefore, appropriate models to study the251

characteristics of local precipitation extremes. The tail behavior of the two252

distributions differs, as illustrated in Figure S3 for different combinations of253

scale and shape parameters. The shape parameter ξ of the GEV distribution,254

obtained either through the annual maxima or POT approach, encodes the255

nature of the tail of the distribution. Based on the value of ξ, the GEV can256

take one of three forms: a positive GEV shape parameter (ξ > 0, “Fréchet”)257

corresponds to a power-law tail, i.e., to a slowly-decaying probability of large258

events. This heavy-tail behavior contrasts with the case of an exponential259

tail (ξ = 0, “Gumbel”), and with the case of a distribution with an upper end260
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point, which corresponds to negative values of the shape parameter (ξ < 0,261

“inverse Weibull”).262

The MEV distribution assumes that precipitation events are Weibull-263

distributed. The tail decay of this distribution is controlled by its shape264

parameter: for w < 1 its tail behavior is ”sub-exponential”, i.e., heavier than265

that of an exponential (recovered for w = 1), albeit with a characteristic266

scale (Laherrere and Sornette, 1998; Wilson and Toumi, 2005). For w > 1267

the Weibull tail is super-exponential, with a fast decaying tail, while still268

retaining an infinite upper end point. Hence, the shape parameter of the269

Weibull distribution encodes the propensity of a site to be subjected to large270

extreme events (Wilson and Toumi, 2005; Zorzetto et al., 2016). However,271

the tail decay of the MEV distribution is not only dependent on that of272

ordinary values (through w) but is also affected by the yearly number of273

events (Marra et al., 2018) and by the inter-annual variations of Cj, wj nj.274

In an effort to compare the heaviness between the distributions, we have275

come up with a measure of heaviness that is based on the return levels them-276

selves (Figure 1). The difference between the 1000-year return level and the277

10-year return level can be described as follows:278

T1000 = T10 + b+ b+ a (4)

Where b is the difference between the 100-year and 10-year return level,279

i.e.: b = T100−T10, and a is the additional increase caused by the heaviness280

of the tail (Figure 1). A positive a is indicative of heavy tails and a negative281

a of thin tails. For pure exponential tails it holds that a = 0. The value for282

a is highly dependent on the local precipitation systems, so we defined the283

heaviness amplification factor h to be a normalization of a:284

h =
a

b
=

T1000− 2× T100 + T10

T100− T10
(5)

In words, the meaning of h is the fractional additional increase between285

T1000 and T100 that is more than the increase that could be expected from286

a pure exponentially tailed distribution. A distribution has a heavy tail for287

h > 0 and a thin tail for h < 0.288
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Figure 1: Illustration of our method to measure the tail heaviness for any distribution
based on return levels only.
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3. Results and Discussion289

3.1. Hydrological Year290

Figure 2 shows the frequency distribution of 1000-year return levels esti-291

mated using calendar and hydrological years for GEV and MEV. The spatial292

distribution of these differences is presented in Supplementary Material Fig-293

ure S1b for GEV and Figure S1c for MEV. We found that in the case of GEV294

quantiles, the fraction of sites characterized by differences within ±0.5 % is295

larger than that observed for MEV. When the hydrological year starts in the296

winter months, the hydrological year is only shifted by a few months. In297

such instances, the annual maxima mostly stay the same between the cal-298

endar and hydrological years, though the included events could differ. For299

GEV this means that for many cells there is almost no difference in the T1000300

estimates, whereas for MEV the difference is small.301

On the other hand, when the offset with a calendar year is approximately302

6 months, around June, there are many different events included in the hy-303

drological years compared to the calendar years. This results in different304

annual maxima and large differences in the estimated extremes for GEV305

and MEV. The differences are most pronounced in the Southern hemisphere306

and in locations where the hydrological year starts around June, e.g., in307

the Mediterranean region, in the Middle-East, in Southern Africa, in Brazil,308

around Indonesia, and in the western US (Figure S1a). For MEV the overall309

sensitivity remains lower than that of GEV. In particular, the distribution310

of differences in Figure 2 exhibits thicker tails for GEV (e.g., as measured311

by the wider 5th to 95th percentile interval). This suggests that regional312

sensitivity to the definition of block maxima can be quite significant for the313

GEV approach.314

3.2. Extreme Precipitation Estimates315

Figure 3 shows the 100-year precipitation return levels for a 24-hour dura-316

tion. Extreme value estimates for other durations and return periods are fea-317

tured in the Global Precipitation EXtremes (GPEX) dataset (Gründemann318

et al., 2021). The spatial patterns of the extremes estimated by GEV and319

MEV are similar to Zorzetto and Marani (2020, their Figure 9), while the320

spatial pattern of the underlying GEV parameters are consistent with Courty321

et al. (2019, their Figure 1). The global spatial pattern of return levels for the322

three EV methods is similar, although large regional differences can be ob-323

served. The GEV and POT results are similar in magnitude and show similar324
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Figure 2: Weighted histogram showing the percentage difference in the values of T1000
quantiles calculated using calendar years and hydrological years. Included in the figure are
all cells where the start of the hydrological year is different than the calendar year (i.e.,
the hydrological year does not start in January, see Supplementary Material Figure 1a).
A negative difference indicates that the T1000 estimate is larger using hydrological years,
whereas a positive difference indicates that the T1000 estimate is larger using calendar
years.

differences when compared to MEV. The estimated precipitation extremes325

are generally lower for both GEV and POT compared to MEV quantiles.326

MEV estimates exhibit smooth spatial patterns, whereas the spatial pat-327

terns using GEV and POT are more irregular, consistent with the results of328

Zorzetto and Marani (2020) for the conterminous US. The reduced spatial329

coherence in patterns of extremes for GEV and POT is particularly evident in330

the Great Plains of North America, and in Northern Russia, Southeast Asia,331

and Central Africa. Furthermore, our analysis (Figure 3) reveals the pres-332

ence of a large number of circular areas with heavier extremes, corresponding333

to the location of gauges used for correcting precipitation estimates in the334
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Figure 3: Precipitation return levels with a duration of 24-hours for a 100-year return
period for different extreme value distributions: (a) the Generalized Extreme Value (GEV)
distribution, (b) the Peak Over Threshold (POT) method, and (c) the Metastatistical
Extreme Value (MEV) distribution. The black rectangles in panel a are the case studies
corresponding to the areas in Figure 4.
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Figure 4: Coefficient of variation for the difference in estimated T100 quantiles for the
three extreme value methods for 24-hour precipitation at selected case study areas. The
coefficient of variation is the standard deviation of the precipitation divided by the mean
precipitation. The locations of the case study areas are displayed in Fig 3a.

MSWEP algorithm (Beck et al., 2019b). The effect of these local correc-335

tions is much larger for traditional EV models (POT and GEV), while MEV336

appears less sensitive to these local corrections.337

In order to study the ability of the three distributions to capture the338

spatial coherence of precipitation extremes, we selected several case study339

areas. They collectively cover a wide range of climates and domain sizes, the340

locations of which can be found in Figure 3a. Within a single case study341

area, we expect the precipitation estimates to be statistically homogeneous342

because of their precipitation generating mechanisms (Cavanaugh and Ger-343

shunov, 2015; Cavanaugh et al., 2015) or elevation (Ragulina and Reitan,344

2017). Figure 4a shows the coefficient of variation (CV) of T100 extreme345

precipitation estimates for these case studies. The CV is the ratio of the346

standard deviation to the mean and is used to compare the relative variation347

between the study areas. The higher the CV, the higher the relative spread348

of the precipitation estimates within a spatial domain. This figure shows349

quite similar behavior for GEV and POT, though POT has a slightly lower350

spread. The CV for MEV is lower, which points to more spatially coherent351

T100 precipitation estimates based on single point time series (with 38 years352

of training data).353

To further investigate the global differences in magnitude between the354

three methods, we examine the extremes for each distribution using a spa-355

tially weighted mean over the global land surface. This is displayed for356
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multiple return periods and durations as depth-duration-frequency curves357

(Figure 5). We first compare the maximum precipitation observed in the358

dataset to the precipitation predicted from each distribution. As there are359

38 complete years of MSWEP data, the maximum empirically observed re-360

turn level is 39 years (T39 observed, the black dotted line in Figure 5). While361

locally the empirical T39 estimate could be very different from the true re-362

turn level, we expect the global average of this value to be representative363

of the true T39. For GEV and POT, we expected the estimated T39 to be364

close to the observed value since only the largest values are used to fit these365

distributions. For MEV, we did not necessarily expect a good agreement for366

T39, but its performance should be better for return levels greater than the367

length of the observation time series (Marra et al., 2018, 2019b; Schellander368

et al., 2019; Zorzetto et al., 2016). The results in Figure 5 show that for369

the lower duration events, the observed T39 is close to the T39 for all three370

distributions. For increasing durations, the deviation between empirically371

observed and EV modeled T39 quantiles increases, particularly for MEV.372

Both GEV and POT show an underestimation and MEV an overestimation.373

This figure also shows again that the differences between GEV and POT are374

small. The global average estimated extremes for GEV and POT are notably375

lower than for MEV, as was already visible from Figure 3. This difference is376

more pronounced for larger return periods and longer durations.377

One reason the quantiles estimated using MEV are higher than using378

GEV and POT is related to the increase in estimation uncertainty of Weibull379

parameters when the number of events per hydrological year is low. This is380

especially relevant in arid regions and for long durations. For instance, for 5381

and 10-day durations the average annual number of events is 36 and 21 events382

respectively. It is therefore possible that this leads to an overestimation by383

MEV. To overcome this, windows of two or more years could result in a384

better parameter estimation (Miniussi and Marani, 2020). A second factor385

which may be relevant relevant for MEV quantile estimates is the use of a386

fixed threshold for defining a precipitation event.387

3.3. Tail Behavior388

To better understand the differences between extremes estimated using389

the three extreme value methods, we analyze their tail behavior using the390

heaviness amplification factor h (Eq. 5). Figure 6 presents h for a 24-hour391

duration worldwide for each of the three distributions. We refer to Figures S5-392

S11 in Section 4 in the supplementary material for maps of h for the other393
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Figure 5: Area-weighted average depth-duration-frequency curves for the global land sur-
face. T39 Observed is the mean spatially weighted maximum precipitation observed in
the MSWEP-V2.2 dataset.

durations. Both GEV (Figure 6a) and POT (Figure 6b) exhibit a large394

spatial variability in addition to a low spatial coherence. This makes it395

difficult to discern clear spatial patterns with the exception of a few notable396

regions. For instance, in the Amazon, h is mostly negative, suggesting a397

tail with an upper limit, while in Eastern and Southern Australia h it is398

strongly positive, denoting strong heavy tail behavior. This map roughly399

corresponds to the spatial patterns of the daily GEV shape parameter shown400

by Papalexiou and Koutsoyiannis (2013, their Figure 13) and Ragulina and401

Reitan (2017, their Figure 4). We also find that for the GEV and POT402

methods, grid cells associated with heavy tails can be adjacent to cells with403

thin tails. Furthermore, GEV and POT do not always show the same type404

of tail, heavy or thin, in the same grid cells. In 72 % of the cases the sign of405

the underlying shape parameter agrees, while in 28 % of the cases the signs406

are different for daily precipitation. This highlights the large uncertainty407
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Figure 6: The heaviness amplification factor h (Eq. 5) for daily precipitation calculated for
different extreme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail,
white an exponential tail, and blue a heavy tail. See section 2.2.2 for more information on
the heaviness metric, and Figures S5-S11 for maps of h for the other durations.
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associated with estimating reliable tail parameters from short time series408

and the sensitivity of the GEV and POT methods to sampling effects.409

The heaviness of the MEV distribution (Figure 6c) shows a more coherent410

spatial pattern. At virtually all grid cells the heaviness amplification factor411

h (Eq. 5) indicates heavy tail behavior and there is a high consistency within412

geographic regions and for all durations (Figures S5-S11). Based on previous413

studies (Cavanaugh et al., 2015; Papalexiou and Koutsoyiannis, 2013; Pa-414

palexiou et al., 2013; Ragulina and Reitan, 2017), this predominantly heavy-415

tail behavior of daily precipitation was expected and is well captured by416

MEV. There are also topographical patterns visible in the heaviness amplifi-417

cation factor (Figure 6c), though they are not as clearly distinguishable as for418

the shape parameter itself (Figure S4). The heaviness tends to be higher in419

arid areas, and lower in mountainous areas. Examples of arid areas with high420

heaviness include the Sahara, the Namib and Kalahari in Africa, the Gobi,421

Thar and Taklamakan in Asia, the Atacama Desert in South America, large422

areas of Southwestern Australia, and the Arabian desert and other areas in423

the Middle East. This same pattern is to a lesser extent also visible for the424

heaviness of GEV (Figure 6a) and POT (Figure 6b).425

At high elevations a small h is usually found for MEV (Figure 6c). Exam-426

ples include the Rocky Mountains and the Sierra Madres in North America,427

the northern Andes and large areas of the Brazilian Highlands in South Amer-428

ica, the Ethiopian Highlands, the Scandinavian Mountains, and the Tibetan429

Plateau. These spatial patterns are in contrast with what Papalexiou et al.430

(2018, their Figure 6) found for hourly Weibull tails in the USA, where the431

heaviest tails are in the mountainous areas, and the thin tails are in the432

south-east. However, our results correspond well to Ragulina and Reitan433

(2017, their Figure 4), who showed that heaviness decreases with elevation.434

A comparison of the heaviness for different distributions and durations435

is presented as a boxplot in Figure 7. For spatial maps of the heaviness436

for the different durations we refer to Figures S5-S11. For GEV and POT,437

predominantly heavy tails are observed for short durations and thinner tails438

for long durations. Furthermore, GEV and POT both show a decreasing439

variability in the heaviness for longer durations, indicated by both shorter440

whiskers and boxes. The decrease of the heaviness of the tails for increasing441

durations is in line with the findings of Cavanaugh and Gershunov (2015),442

who found that longer duration extremes exhibit thinner tails. For GEV443

and POT the longer durations largely indicate tails with a finite upper end444

point. This occurs for instance in half of the cases for a duration of 10445
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Figure 7: Boxplots showing the distribution of the heaviness amplification factor h (-) for
different durations and extreme value methods: (a) GEV and POT, and (b) MEV. The
whiskers denote the 1st and 99th percentiles. The top and bottom of the boxes represent
the 75th and 25th percentiles, respectively. The dashed gray horizontal lines indicate
exponential tails. See section 2.2.2 for more information on the heaviness metric.
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days for GEV, and more than half for POT. One implication of this finding446

is that, when computing return levels for a single location (see Figures S3447

and S12), it is possible for the very large return periods that the shorter448

duration quantiles are more intense than the longer duration quantiles. This449

is physically impossible (see Figure S12a,b,e and f), and we should thus be450

extremely careful when interpreting such results.451

MEV, on the other hand, shows different heaviness patterns than GEV452

and POT (Figure 7 and Figures S5-S11). MEV shows almost entirely a453

heavy-tail behavior, which remains consistent across the range of durations454

examined. Furthermore, also the variability for MEV is constant across du-455

rations, though with a slight increase for longer durations. The MEV distri-456

bution thus produces a spatially and temporally coherent heavy tail behavior457

based on a 38 years calibration sample and a single grid-cell analysis. This458

is a promising result, as MEV, in contrast to the traditional methods ana-459

lyzed, provides essential information on the spatial coherence of precipitation460

extremes without any prior hypothesis on its spatial structure, for example461

through a spatial clustering scheme (Demirdjian et al., 2018). In fact, the462

spatial structure of the tail heaviness obtained through the MEV analysis463

could be used as a measure of statistical homogeneity for regionalization464

studies.465

4. Conclusions466

The aim of this research was to quantitatively characterize the spatiotem-467

poral variation of global precipitation extremes and their associated extreme468

value distribution tails. We have fitted three different extreme value methods469

(GEV, POT, and MEV) to a global precipitation dataset, MSWEP V2.2, to470

estimate extreme precipitation return levels for several durations. In order471

to compare the tails of the three distributions, we introduced the heaviness472

amplification factor h (Eq. 5). Instead of using calendar years to delineate473

between different years, we used hydrological years. We demonstrated that474

there is a substantial difference in the extremes depending on the defini-475

tion of yearly blocks used in the extreme value analysis (Figure 2). These476

differences were most notable in the Southern hemisphere, and in locations477

where the driest month occurs around June (Figure S1). Although there is478

no systematic bias, we still recommend to apply the extreme value analyses479

for estimating extreme precipitation based on hydrological years in future480
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studies. Our analysis indicates that this can be particularly relevant in the481

Southern hemisphere and in regions characterized by marked seasonal cycles.482

It is well known that the traditional GEV and POT methods require very483

long data-series for accurate estimation of the tail behavior, and our study484

confirms that there is a low spatial coherence for the tail properties of both485

distributions (Figure 6a and b) using just 38 years of training data. The tail486

properties of the MEV distribution are spatially more coherent (Figure 6c)487

and hence the estimated return levels are more spatially coherent as well488

(Figure 3c). This spatially coherent behavior, consistent with previous results489

obtained over the conterminous US (Zorzetto and Marani, 2020), shows that490

the MEV distribution is able to capture spatially consistent tail behavior491

from short time series and by a single grid-cell analysis, without any prior492

information on the spatial precipitation structures. The analysis of the MEV493

tail behavior reveals distinct spatial patterns, as the heaviness appears to be494

controlled by climate zones and orography. Heavier tails are observed in arid495

areas, and thinner tails in mountainous regions. More in-depth analyses are496

necessary to draw definite conclusions on what exactly controls the heaviness497

of extreme value distribution tails. The performance of MEV is promising498

for regions without long local precipitation records. Furthermore, our study499

shows that the tail behavior captured by MEV is coherent and heavy both500

spatially and temporally (Figures 6, 7 and S5-S11). For GEV and POT, on501

the other hand, the tail behavior decreases with increased event duration,502

resulting in a thin tail with a finite endpoint for about half of the cells for a503

duration of 10 days.504

We also conclude that both GEV and POT generally underestimate the505

observed extremes, whereas MEV overestimates them (Figure 5). This occurs506

particularly for long-duration extremes and large return periods. We do507

consider it likely, however, that the results could be improved, for instance508

by changing the event threshold or by fitting the Weibull distribution over509

two or more years for dry areas (Miniussi and Marani, 2020), so as to reduce510

inter-annual variability of the parameters due to samples of limited length.511

Our results suggest that this issue is particularly relevant at the longest512

durations examined. For GEV and POT the results could also be improved513

by adopting spatial models (Davison et al., 2012; Huser and Wadsworth,514

2020).515

The data generated for this study are openly available as the GPEX516

dataset (Gründemann et al., 2021). These data include extreme precipitation517

return levels and extreme value distribution parameters for durations between518
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3 hours and 10 days at a global gridded 0.1◦ resolution. They could be used519

by engineers as a reference of precipitation extremes for data-scarce regions520

in particular. For scientific purposes, all underlying parameters are also521

available and can be used to answer several outstanding questions, such as:522

what are the controls on the tail behavior of extremes, and what is driving523

the different changes in tail heaviness with duration for GEV, POT, and524

MEV?.525
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Ménégoz, M., Gallée, H., Jacobi, H.W., 2013. Precipitation and snow752

cover in the himalaya: from reanalysis to regional climate simulations.753

Hydrology and Earth System Sciences 17, 3921–3936. doi:10.5194/754

hess-17-3921-2013.755

Miniussi, A., Marani, M., 2020. Estimation of daily rainfall extremes through756

the metastatistical extreme value distribution: Uncertainty minimiza-757

tion and implications for trend detection. Water Resources Research 56,758

e2019WR026535. doi:10.1029/2019WR026535.759

Miniussi, A., Marani, M., Villarini, G., 2020a. Metastatistical Extreme Value760

Distribution applied to floods across the continental United States. Ad-761

vances in Water Resources 136, 103498. doi:10.1016/j.advwatres.2019.762

103498.763

Miniussi, A., Villarini, G., Marani, M., 2020b. Analyses Through the Metas-764

tatistical Extreme Value Distribution Identify Contributions of Tropical765

Cyclones to Rainfall Extremes in the Eastern United States Geophysi-766

cal Research Letters. Geophysical Research Letters 47, e2020GL087238.767

doi:10.1029/2020GL087238.768

Mishra, A.K., Coulibaly, P., 2009. Developments in hydrometric network769

design: A review. Reviews of Geophysics 47. doi:10.1029/2007RG000243.770

Nissen, K.M., Ulbrich, U., 2017. Increasing frequencies and changing charac-771

teristics of heavy precipitation events threatening infrastructure in Europe772

under climate change. Natural Hazards and Earth System Sciences 17,773

1177–1190. doi:10.5194/nhess-17-1177-2017.774

30



Overeem, A., Buishand, A., Holleman, I., 2008. Rainfall depth-duration-775

frequency curves and their uncertainties. Journal of Hydrology 348, 124–776

134. doi:10.1016/j.jhydrol.2007.09.044.777

Papalexiou, S.M., Aghakouchak, A., Foufoula-Georgiou, E., 2018. A diagnos-778

tic framework for understanding climatology of tails of hourly precipitation779

extremes in the United States. Water Resources Research 54, 6725–6738.780

doi:10.1029/2018WR022732.781

Papalexiou, S.M., Koutsoyiannis, D., 2013. Battle of extreme value distribu-782

tions: A global survey on extreme daily rainfall. Water Resources Research783

49, 187–201. doi:10.1029/2012WR012557.784

Papalexiou, S.M., Koutsoyiannis, D., Makropoulos, C., 2013. How extreme785

is extreme? An assessment of daily rainfall distribution tails. Hydrology786

and Earth System Sciences 17, 851–862. doi:10.5194/hess-17-851-2013.787

Perica, S., Pavlovic, S., St. Laurent, M., Trypaluk, C., Unruh, D., Martin,788

D., Wilhite, O., 2015. NOAA Atlas 14 Volume 10, Precipitation-Frequency789

Atlas of the United States, Northeastern States. Technical Report. NOAA,790

National Weather Service.791

Perica, S., Pavlovic, S., St. Laurent, M., Trypaluk, C., Unruh, D., Wilhite,792

O., 2018. NOAA Atlas 14: Precipitation-frequency atlas of the United793

States, Texas. Technical Report. NOAA, National Weather Service.794

Ragulina, G., Reitan, T., 2017. Generalized extreme value shape parameter795

and its nature for extreme precipitation using long time series and the796

Bayesian approach precipitation. Hydrological Sciences Journal 62, 863–797

879. doi:10.1080/02626667.2016.1260134.798

Rasmusson, E.M., Arkin, P.A., 1993. A global view of large-scale precipita-799

tion variability. Journal of Climate 6, 1495–1522.800

Sahlu, D., Moges, S.A., Nikolopoulos, E.I., Anagnostou, E.N., Hailu, D.,801

2017. Evaluation of high-resolution multisatellite and reanalysis rainfall802

products over East Africa. Advances in Meteorology 2017. doi:10.1155/803

2017/4957960.804
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