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Abstract20

Quantifying the magnitude and frequency of extreme precipitation events is key21

in translating climate observations to planning and engineering design. Current efforts22

have mostly focused on the estimation of daily extremes using gauge observations. Due23

to the recent development of high-resolution global precipitation products it is now also24

possible to estimate extremes globally. This research aims to calculate extreme precip-25

itation return levels for multiple durations on a global scale, using the global Multi-Source26

Weighted-Ensemble Precipitation (MSWEP) V2.2 dataset spanning the period 1979–201727

at 0.1◦ resolution. Both classical and novel extreme value distributions are used. The28

application of these different methods at the global scale provides valuable insight into29

the spatial patterns of extreme precipitation frequency. Our results show that estimates30

based on the traditional Generalized Extreme Value (GEV) distribution and Peak-Over-31

Threshold (POT) methods, which only use the largest events to estimate precipitation32

extremes, exhibit some spatial incoherence. The recently developed Metastatistical Ex-33

treme Value (MEV) distribution, on the other hand, includes all precipitation events and34

leads to smoother and more reliable spatial patterns of local extremes. Furthermore, for35

all three extreme value methods, a consistent shift from heavy to thin tails with increas-36

ing duration is observed and quantified. The generated extreme precipitation return lev-37

els and corresponding parameters are released as the Global Precipitation EXtremes (GPEX)38

dataset. We expect the dataset to be particularly relevant to serve as a benchmark, and39

to provide extreme precipitation estimates in otherwise data-sparse regions for local en-40

gineers and planners.41

1 Introduction42

Extreme precipitation events are a major contributor to natural disasters (CRED,43

2019). Accurate estimates of the severity of such intense precipitation events are needed44

for an enhanced disaster risk understanding, such as that of floods and landslides. The45

urgency of this is indicated as the first priority of the Sendai Framework for Disaster Risk46

Reduction (UNSIDR, 2015). The accurate quantification of extremes is also necessary47

for infrastructure planning and design. Such spatiotemporal estimates of extreme pre-48

cipitation, based on extreme value distributions (EVDs), are available, for example, for49

Australia (Ball et al., 2019), the Netherlands (Beersma et al., 2018), and the US (e.g.,50

Perica et al., 2015, 2018). However, many countries and regions do not have sufficient51

local data available (van de Giesen et al., 2014; Kidd et al., 2017; Gründemann et al.,52

2018), such that spatially-distributed extreme precipitation estimates are not possible.53

Several previous studies have developed global-scale datasets of extreme precipi-54

tation. Courty et al. (2019) calculated intensity-duration-frequency curves at the global55

scale and their scaling with different event durations using reanalysis data and the Gen-56

eralized Extreme Value (GEV) distribution with fixed tail behavior. Donat et al. (2013)57

produced the HadEx-2 dataset, which contains 29 generic precipitation and temperature58

indices, although these indices are not based on EVDs. Furthermore, this dataset has59

a coarse 2.50◦ latitudinal × 3.75◦ longitudinal resolution, with data-gaps due to insuf-60

ficient available gauge data. Other global studies mostly focused on examining which type61

of distribution is most suitable to capture the tail behavior of extreme precipitation (Papalexiou62

et al., 2013; Cavanaugh & Gershunov, 2015; Cavanaugh et al., 2015). In addition, the63

spatial patterns of the parameter controlling the tail decay have been studied for the GEV64

distribution (Papalexiou & Koutsoyiannis, 2013; Ragulina & Reitan, 2017), and the Gen-65

eralized Pareto (GP) distribution (Serinaldi & Kilsby, 2014). However, several issues re-66

main to be addressed in order to obtain a comprehensive global scale comparative bench-67

mark of extreme precipitation return levels: 1) the choice of dataset, 2) the focus on daily68

durations, 3) the choice of the time blocks over which block-maxima are determined, and69
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4) the exploration of possible alternatives to the classical EVDs and the associated un-70

certainty with respect to the tail behavior.71

1. Several (quasi-)global gridded precipitation datasets have been developed in the72

recent years, each with strengths and weaknesses. See Sun et al. (2018) and Beck,73

Pan, et al. (2019) for recent overviews of available datasets. Most of these datasets74

are based on gauge, reanalysis, or satellite sensor data. Notable examples of gauge-75

based datasets include GPCC-FDR (Becker et al., 2013; Schneider et al., 2011)76

and REGEN (Contractor et al., 2020). However, gauges are extremely unevenly77

distributed across the globe (Schneider et al., 2014; Kidd et al., 2017), and the num-78

ber of active gauges has been declining in recent decades (Mishra & Coulibaly, 2009).79

Satellite-based products such as CMORPH (Joyce et al., 2004), GSMaP (Ushio80

et al., 2009), IMERG (Huffman et al., 2015), and PERSIANN (Hong et al., 2004)81

have a relatively high spatio-temporal resolution. However, they do not cover re-82

gions outside of 60◦N/S, and are only available from 2000 onwards, which signif-83

icantly hinders their use for extreme value analyses. Precipitation products with84

a true global coverage and long records are reanalyses, such as ERA-5 (Hersbach85

et al., 2020), JRA-55 (Kobayashi et al., 2015), and MERRA-2 (Gelaro et al., 2017).86

However, reanalysis products tend to exhibit strong systematic biases in the mag-87

nitude and frequency of precipitation (Decker et al., 2012; Ménégoz et al., 2013;88

Liu et al., 2018).89

2. Global-scale analyses of precipitation extremes are generally based on daily pre-90

cipitation records (Koutsoyiannis, 2004b, 2004a; Papalexiou & Koutsoyiannis, 2013;91

Papalexiou et al., 2013; Serinaldi & Kilsby, 2014; Cavanaugh et al., 2015; Ragulina92

& Reitan, 2017). In practice, however, multiple durations are needed for the de-93

sign of infrastructure (e.g., Nissen & Ulbrich, 2017) or urban drainage networks94

(e.g., Mailhot & Duchesne, 2009). It is known that precipitation extremes of dif-95

ferent durations scale differently with temperature (Wasko et al., 2015), but lit-96

tle is known about the variation of EVD properties (tail behavior) for different97

temporal resolutions. Studies that did derive extreme precipitation statistics for98

durations ranging from minutes to a few days have mostly focused on small re-99

gions (McGraw et al., 2019; Nissen & Ulbrich, 2017; Overeem et al., 2008).100

3. Studies estimating return levels of extreme precipitation by using annual maxima101

typically use calendar years to delineate the annual periods from which maxima102

values are extracted (e.g., Villarini et al., 2011; Papalexiou & Koutsoyiannis, 2013;103

Marani & Zanetti, 2015; Ragulina & Reitan, 2017; De Paola et al., 2018). When104

the variable of interest is river discharge instead of precipitation, however, hydro-105

logical years are typically used instead of calendar years to determine the annual106

maxima (Ward et al., 2016). For discharge values this is important, since peak dis-107

charge and flooding could occur during 31 December to 1 January transition and108

one event would be included in two calendar years. Although not often considered,109

this could also happen for precipitation. The annual maxima method could pick110

multiple values from a single rainy season that may, for example, be highly influ-111

enced by the El Niño-/Southern Oscillation, which is known to impact precipita-112

tion extremes (Rasmusson & Arkin, 1993; Allan & Soden, 2008).113

4. The Generalized Extreme Value distribution (GEV), the most widely used EVD,114

is typically fitted through one of two approaches: a) using annual maximum pre-115

cipitation series and maximum likelihood (Coles, 2001) or L-moment (Hosking,116

1990) estimation approaches, or b) using a Peak-Over-Threshold (POT) method117

to fit a Generalized Pareto Distribution to excesses above the threshold and a Pois-118

son process to the sequence of threshold exceedances (Coles, 2001). In contrast119

to GEV and POT, the recently developed Metastatistical Extreme Value (MEV)120

distribution is fitted using all events with recorded precipitation instead of only121

the most severe. The inclusion of more events reduces the uncertainty due to sam-122

pling effects, which is important when dealing with short time series (Marani &123
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Ignaccolo, 2015; Zorzetto et al., 2016; Marra et al., 2018; Zorzetto & Marani, 2019;124

Miniussi & Marani, 2020). This is particularly advantageous when analyzing short125

remote sensing precipitation products, as the commonly applied GEV requires many126

years of data to accurately estimate the tail of the distribution (Papalexiou & Kout-127

soyiannis, 2013). Additionally, GEV parameter estimation depends heavily on a128

few large values, which makes it very sensitive to the possible presence of outliers,129

a relatively common occurrence in remote sensing estimates of precipitation amounts130

(Zorzetto & Marani, 2020). The GEV tail behavior is mostly controlled by its shape131

parameter, which is very sensitive to sampling effects and the choice of the method132

used for estimation. To overcome these problems, some studies have suggested to133

use one universal value of the shape parameter that is applicable to the whole world134

Koutsoyiannis (2004b, 2004a), or a shape parameter value within a narrow range135

between exponential and heavy-tail behavior (Papalexiou & Koutsoyiannis, 2013),136

or one shape parameter per region, that is similar within climate types and ele-137

vation ranges (Ragulina & Reitan, 2017). The estimation of the shape parame-138

ter is particularly difficult with short data series, though crucial for the accurate139

estimation of extremes.140

In this study we contribute to overcome these issues by 1) using a dataset that merges141

all three main sources of precipitation data, 2) estimating extremes for several event du-142

rations, 3) using hydrological years in our analyses, and 4) comparing results from three143

different extreme value methods (GEV, POT and MEV). Specifically, we are interested144

in exploring the global scale behavior of extreme precipitation and the spatiotemporal145

variation of extreme value distributional tails. Moreover, this study aims to provide a146

comparative benchmark of extreme precipitation return levels based on a state-of-the-147

art global precipitation data (MSWEP) for further research and application.148

2 Materials and Methods149

2.1 Data150

For the present study we selected the global gridded Multi-Source Weighted-Ensemble151

Precipitation (MSWEP-V2.2) dataset, due to its global coverage, long temporal span (1979–152

2017), high spatial (0.1◦) and temporal (3-hourly) resolution, and robust performance153

compared to other precipitation datasets in numerous evaluations (e.g., Alijanian et al.,154

2017; Beck et al., 2017; Sahlu et al., 2017; Bai & Liu, 2018; Casson et al., 2018; Beck,155

Pan, et al., 2019; Satgé et al., 2019; Zhang et al., 2019). We refer to Beck, Wood, et al.156

(2019) for a comprehensive description of the dataset. We used data from 1 January 1979157

to 31 October 2017 at a 0.1◦ latitude × 0.1◦ longitude resolution at 3-hourly time steps.158

MSWEP was derived by merging five different satellite- and reanalysis-based precipita-159

tion datasets globally. The dataset is one of the few with daily (as opposed to monthly)160

gauge corrections, applied using a scheme that accounts for gauge reporting times (Beck,161

Wood, et al., 2019). We selected all land-cells between 90◦N and 58◦S for our analysis.162

2.1.1 Quality Control163

The integration of erroneous gauge observations into MSWEP-V2.2 has sometimes164

resulted in implausible precipitation values. Therefore, we implemented a three-step qual-165

ity control procedure of the 3-hourly data prior to the analysis. We first discarded neg-166

ative values, which are physically impossible. The second step was to discard outliers,167

which we defined as the values deviating from the mean more than 30 standard devia-168

tions. We also discarded data surrounding the outliers for the same time step using a169

11×11 grid-cell window, as erroneous gauge observations may have influenced surround-170

ing cells in the production of the MSWEP dataset. The third step was to discard years171

with > 30 missing days or < 5 ‘wet’ 3-hourly periods, identified using a threshold of172
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0.2 mm 3h−1 following Wasko et al. (2015), and to discard cells with < 30 years of data173

remaining, as a minimum record length of 30 years is customary and recommended to174

obtain reliable results (Arguez & Vose, 2011; Kendon et al., 2018; Westra et al., 2013).175

2.1.2 Durations176

We aggregated the 3-hourly data to create longer duration time series. The dura-177

tions we selected for our analysis are 3, 6, 12, and 24 hours, and 2, 3, 5, and 10 days. To178

avoid any overlap in the aggregated data, we took the n-hour window that contains the179

highest precipitation volume among all n-hour running windows that overlap with it, dis-180

carding the overlapping windows with lower precipitation volumes.181

2.1.3 Hydrological Year182

A common challenge in global-scale assessments is the delineation of the hydrolog-183

ical year, given the regional variability in the climatological precipitation seasonality. We,184

therefore, developed an uniform way to define the hydrological year. To avoid splitting185

one rainy season over two different years, we computed the median of the monthly pre-186

cipitation for each grid-cell, and defined the start of the hydrological year to be the first187

day of the driest month. Supplemental Figure S1a shows the starting month of the hy-188

drological year as determined by this method. As MSWEP-V2.2 spans 1 January 1979189

to 31 October 2017, we discarded the data prior to the start of the hydrological year and190

kept the 38 complete years. Only if the hydrological year starts in December there are191

just 37 complete years, which occurs in 5.8 % of the cells.192

We also investigated whether there is a significant difference between the use of cal-193

endar and hydrological years for the estimated daily extremes for GEV and MEV. The194

POT method is based on the values over a high threshold, irrespective of when they oc-195

curred. Therefore, there is by definition no difference in calculating the extremes using196

hydrological or calendar years for the POT method. To determine the difference for GEV197

and MEV, we first calculated the daily return levels for normal calendar years, using the198

MSWEP data from 1979 to 2016. Second, we calculated the return levels for the same199

distributions and the same years, by removing the months before the start of the hydro-200

logical year from the year 1979 and adding them to the year 2016. We did this in order201

to use the exact same data, so the differences in the return level estimates are solely due202

to a different starting month.203

2.2 Extreme Value Distributions204

Three extreme value distributions were fitted to the MSWEP data to calculate ex-205

treme precipitation return levels: the GEV, POT, and MEV. Annual (hydrological year)206

maxima were used to estimate the three parameters of the GEV using the L-moments207

approach, because of its robust performance for small samples (Hosking, 1990). The GEV208

cumulative distribution function (CDF) is given by:209

G(z) =

{
exp

{
−
[
1 + ξ

(
z−µ
σ

)]− 1
ξ

}
, ξ 6= 0

exp
{
−exp

[
−
(
z−µ
σ

)]}
, ξ = 0

(1)

with location parameter µ ∈ (−∞,∞), scale parameter σ > 0, and shape parameter210

ξ ∈ (−∞,∞).211

Another common approach for precipitation extremes is the POT method. Instead212

of annual maxima, values exceeding a high threshold are described using a GP distri-213

bution, while the frequency of threshold exceedances is modelled as a Poisson point pro-214

cess (Davison & Smith, 1990; Coles, 2001). This framework also yields GEV as the re-215

sulting extreme value distribution, which is then used to determine the quantile corre-216
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sponding to a given return period. The GP CDF is given by:217

H(y) =

1−
(

1 + ξy
β

)− 1
ξ

, ξ 6= 0

1− exp
(
− y
β

)
, ξ = 0

(2)

where the precipitation excess over threshold y > 0, and is defined by scale parame-218

ter β > 0 and shape parameter ξ ∈ (−∞,∞). The POT-threshold could be a fixed219

precipitation magnitude, or a fixed percentile to account for local variations in precip-220

itation climatologies. As we are interested in studying the distribution of precipitation221

extremes across many different climate regions, a fixed number is not suitable and the222

98th percentile of all ‘wet’ 3-hourly periods at a given location was chosen as a thresh-223

old. For dry areas and long aggregation time periods, the number of observations above224

the 98th percentile can be very small. For such instances, we lowered the threshold to225

equal the number of events to the number of years. The method used to fit the param-226

eters of the GP distributions was the Probability Weighted Moments (PWM; Hosking227

& Wallis, 1987).228

The MEV distribution is a recently developed statistical distribution (Marani &
Ignaccolo, 2015; Zorzetto et al., 2016; Hosseini et al., 2020; Miniussi, Marani, & Villar-
ini, 2020; Miniussi, Villarini, & Marani, 2020). All “ordinary” (as opposed to just ex-
treme) precipitation events, i.e. all events above a small threshold, are used to infer this
extreme value distribution. The threshold we applied is 0.2 mm 3h−1, coinciding with
the earlier defined threshold for a wet event. Weibull parameters were estimated for each
year based on all wet events using the PWM method (Greenwood et al., 1979), equiv-
alent to the use of L-moments, following the same approach as Zorzetto et al. (2016).
The MEV-Weibull CDF is given by:

ζm(x) =
1

M

M∑
j=1

{
1− exp

[
−
(

x

Cj

)wj
]}nj

(3)

where j is the hydrological year (j = 1, 2, . . . ,M), Cj > 0 is the Weibull scale param-229

eter, wj > 0 is the Weibull shape parameter, and nj is the number of wet events in hy-230

drological year j (Marani & Ignaccolo, 2015).231

2.2.1 Observed Return Period232

The MSWEP dataset analyzed here has 38 complete years of data. Therefore, the233

return period associated with the maximum value on record computed according to the234

Weibull empirical frequency estimate is T observed = 39 years. However, only 91 % of all235

cells had 38 complete years of data, so the maximum observed return period is some-236

times lower: for 7 % of the cells only 37 years were available, and for 2 % of the cells 36237

years or less were available. However, for simplicity we still refer to this maximum re-238

turn period as T39 in the results.239

2.2.2 Tail Behavior240

Both the GEV and MEV distributions are flexible and can describe different tail241

behaviors and can, therefore, be used to investigate how different locations may be more242

or less sensitive to large extremes. The tail behavior of the two distributions differs, as243

illustrated in Figure 1 for different combinations of scale and shape parameters. The shape244

parameter of the GEV distribution, ξ, obtained either through the annual maxima or245

POT approach, encodes the nature of the tail of the distribution. Based on the value of246

ξ, the GEV can take one of three forms: a positive GEV shape parameter (ξ > 0, “Fréchet”)247

corresponds to a power-law tail, i.e., to a slowly-decaying probability of large events. This248

heavy-tail behavior contrasts with the case of an exponential tail (ξ = 0, “Gumbel”),249
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Figure 1. (a) Behavior of the shape (ξ) and scale (σ) parameters of the GEV distribution,

with a constant location parameter (µ), and (b) behavior of the shape (w) and scale (C) param-

eters of the MEV-Weibull distribution, with a constant number of events (N). The results for

MEV have been obtained with constant w, C and N parameters for each year. The values of the

shape and scale parameter pairs have been chosen such that they all have a precipitation depth

of approximately 100 mm for a 10-year return period.

and with the case of a distribution with an upper end point, which corresponds to neg-250

ative values of the shape parameter (ξ < 0, “inverse Weibull”).251

The MEV distribution (Figure 1b) used here is based on the assumption of a Weibull252

distribution, which is not heavy-tailed, according to the traditional definition. However,253

when the shape parameter of the Weibull distribution w is less than one, it does induce254

a tail behavior which is intermediate between an exponential and a heavy-tail (algebraic255

decay), also known as sub-exponential, albeit with a characteristic scale (Laherrere &256

Sornette, 1998; Wilson & Toumi, 2005). When the Weibull shape parameter equals one,257

the exponential case arises. For a shape larger than one, the distribution becomes hyper-258

exponential with a fast decreasing tail, while still retaining an infinite upper end point.259

Hence, the shape parameter of the Weibull distribution can also be used to character-260

ize the propensity of a site to be subjected to large extreme events (Wilson & Toumi,261

2005; Zorzetto et al., 2016).262

3 Results and Discussion263

3.1 Hydrological Year264

Figure 2 shows the frequency distribution of the difference between the values of265

T1000 estimated using calendar and hydrological years for GEV and MEV. The figure266

shows more values centered around ±0.5 % difference for GEV than for MEV, indicat-267

ing that for GEV there are more cells that have the same T1000 estimate irrespective268

of which type of years is used. However, the figure also shows a larger spread of the 5th269

and 95th percentile as well as a wider decay of both tails for GEV compared to MEV.270

This implies that larger differences between hydrological and calendar years occur for271
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Figure 2. Weighted histogram showing the percentage difference in the values of T1000 cal-

culated using calendar years and hydrological years. Included in the figure are all cells where the

start of the hydrological year is different than the calendar year (i.e., the hydrological year does

not start in January, see Supplement Figure 1a). A negative difference indicates that the T1000

estimate is larger using hydrological years, whereas a positive difference indicates that the T1000

estimate is larger using calendar years.
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GEV. The spatial distribution of these differences is presented in Supplement Figure S1b272

for GEV and Figure S1c for MEV. The differences are most pronounced in the South-273

ern hemisphere, and at locations where the start of the hydrological year is around June274

(around the Mediterranean, in the Middle-East, in Brazil, around Indonesia, and in the275

western US).276

When the hydrological year starts around June, the hydrological year is offset by277

approximately six months compared to a calendar year. As a result, there could be many278

different events included in the hydrological years compared to the calendar years, re-279

sulting in different annual maxima. GEV only uses annual maxima of this relatively short280

time series, so when there is a large difference in the annual maxima of the hydrologi-281

cal and calendar years, the difference in their estimated extremes are large. When the282

hydrological year starts in the winter months, the hydrological year is only shifted by283

a few months. In such instances, the annual maxima mostly stay the same between the284

calendar and hydrological years. For GEV this means that for many cells there is little285

difference in the T1000 estimates.286

MEV, on the other hand, is fitted to all precipitation events in a year. Therefore,287

even if the hydrological year is only shifted by a couple months, there will be small dif-288

ferences in T1000 estimates. However, another implication of MEV being fitted to all289

precipitation events, is that it is not as sensitive to the inclusion or exclusion of very ex-290

treme events. When the hydrological year is offset by approximately six months, there291

are differences between the hydrological and calendar year estimates, but they are smaller292

than for GEV.293

3.2 Extreme Precipitation Estimates294

Figure 3 shows the 100-year precipitation return levels for a 24-hour duration. Other295

durations and return periods can be viewed by accessing the Global Precipitation EX-296

tremes (GPEX) dataset (Gründemann, 2020). The global spatial patterns of the extremes297

estimated by GEV and MEV are similar to Zorzetto and Marani (2020, their Figure 9),298

while the spatial pattern of the underlying GEV parameters are consistent with Courty299

et al. (2019, their Figure 1). The overall spatial pattern of return levels of all three meth-300

ods is similar, although large regional differences can be observed. The GEV and POT301

results are similar in magnitude and show similar differences when compared to MEV.302

The estimated precipitation extremes are generally lower for both GEV and POT com-303

pared to MEV. MEV exhibits smooth spatial patterns, whereas the spatial patterns us-304

ing GEV and POT seem more irregular, consistent with the results of Zorzetto and Marani305

(2020) for the conterminous US. The lack of spatial coherence in patterns of extremes306

for GEV and POT is particularly evident in the Great Plains of North America, and in307

Northern Russia, Southeast Asia, and Central Africa. Furthermore, the figure shows a308

large number of distinct circular areas with heavier extremes, particularly for GEV and309

POT, reflecting the locations of gauges used in MSWEP for precipitation correction (Beck,310

Wood, et al., 2019). MEV has a reduced sensitivity to the presence of outliers and the311

most extreme events, which may dominate the fitting of GEV.312

In order to study the ability of the three distributions to capture the spatial co-313

herence of the estimated extremes, we selected several case studies. They collectively cover314

several climates, the locations of which can be found in Figure 3a. Within a single case315

study area, we expect the precipitation estimates to be similar because of their precip-316

itation generating mechanisms (Cavanaugh & Gershunov, 2015; Cavanaugh et al., 2015)317

or elevation (Ragulina & Reitan, 2017). Figure 4a shows the coefficient of variation (CV)318

for these case studies. The CV is the ratio of the standard deviation to the mean and319

is used to compare the relative variation between the study areas. The higher the CV,320

the higher the spread of the precipitation estimates within an area. This figure shows321

quite similar behavior for GEV and POT, though POT is slightly higher overall. The322
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Figure 3. Precipitation return levels with a duration of 24-hours for a 100-year return period

for different extreme value distributions: (a) the Generalized Extreme Value (GEV) distribution,

(b) the Peak Over Threshold (POT) method, and (c) the Metastatistical Extreme Value (MEV)

distribution. The black rectangles in panel a are the case studies corresponding to the areas in

Figure 4. –10–
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Figure 4. Coefficient of variation for the difference in estimated T100 quantiles for the three

extreme value methods for 24-hour precipitation at selected case studies. The coefficient of

variation is the standard deviation of the precipitation divided by the mean precipitation. The

locations of the case studies are displayed in Fig 3a.

CV for MEV is lower. This implies that the internal variability within the study areas323

is lower using MEV, and that MEV gives a more coherent estimate of the extremes.324

To further investigate the differences in magnitude between the three methods, we325

examine the extremes for each distribution using a spatially weighted mean over the global326

land surface. This is displayed for several return periods and durations as depth-duration-327

frequency curves (Figure 5). We first compare the maximum precipitation in the dataset328

to the predicted precipitation from each distribution. As there are 38 complete years of329

MSWEP data, the maximum observed return period is 39 years (T39 observed, the black330

dotted line in Figure 5). Doing this for individual grid cells would make little sense as331

the observed return level may be very different from the true return level, but globally332

averaged this should be close. For the lower duration events, the observed T39 is close333

to the T39 of all three distributions. Both GEV and POT show an underestimation and334

MEV overestimates in these cases. For increasing durations, the deviation between ob-335

served and estimated increases, particularly for MEV. This figure also shows again that336

the differences between GEV and POT are small. The global average estimated extremes337

for GEV and POT are notably lower than for MEV, as was already visible from Figure 3.338

This difference is more pronounced for larger return periods and longer durations.339

One reason for the higher estimations of MEV may be that MEV improves signif-340

icantly for return times that are much larger than the length of the observational time341

series. Zorzetto et al. (2016) and Marra et al. (2018, 2019) showed that MEV only has342

a 20 % estimation error for a return period greater than 5 times the length of the time343

series. Another potential reason for this could be our use of a fixed threshold for defin-344

ing a precipitation event. Zorzetto et al. (2016), Zorzetto and Marani (2019), and Zorzetto345

and Marani (2020) use a minimum of 1 mm day−1 for a precipitation event, and as we346

have 3-hour durations instead of solely daily we lowered this threshold. This results in347

a high number of sub-daily precipitation events per year. We also note that a running348

parameter based on auto-correlation to distinguish between separate events would have349

reduced the number of sub-daily events (Marra et al., 2018), but characterizing the tem-350

poral correlation of precipitation fields worldwide was outside the scope of our analysis.351

For a small number of events, occurring for long durations and dry regions, there are few352

events in each hydrological year to fit the distribution, which results in increased esti-353

mation uncertainty. It is, therefore, possible that this leads to an overestimation by MEV354

for particularly long durations and return periods. To overcome this, windows of two or355
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Figure 5. Area-weighted average depth-duration-frequency curves for the global land surface.

T39 Observed is the mean spatially weighted maximum precipitation observed in the MSWEP-

V2.2 dataset.
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more years could result in a better parameter estimation (Miniussi & Marani, 2020). There-356

fore, the high MEV extreme precipitation estimates are not necessarily a characteristic357

of the MEV distribution, but rather our application of it.358

3.3 Tail Behavior359

To better understand the differences between extremes estimated using the three360

extreme value methods, we analyze their shape parameters in more detail as they pro-361

vide information on the tail behavior (see section 2.2.2). Figure 6 presents the shape pa-362

rameter for a 24-hour duration worldwide for each of the three distributions. Both GEV363

(Figure 6a) and POT (Figure 6b) exhibit a large spatial variability in addition to a low364

spatial coherence. This makes it difficult to discern spatial patterns, though some can365

be distinguished. In the Amazon, for instance, the shape parameter is relatively low, sug-366

gesting a tail with upper limit, while in Southern Australia it is quite high, denoting heavy367

tail behavior. This map roughly corresponds to the spatial patterns of the daily GEV368

shape parameter shown by Papalexiou and Koutsoyiannis (2013, their Figure 13) and369

GP shape parameter shown by Ragulina and Reitan (2017, their Figure 4), although the370

actual values differ. We also find that for GEV and POT cells associated with a heavy371

tail may be adjacent to cells with thin tails. This conflicts with the expected spatial cor-372

relation of precipitation regimes, which should lead to spatial coherence (Ragulina & Re-373

itan, 2017). Furthermore, GEV and POT do not always show the same type of tail, heavy374

or thin, at the same location. In 75 % of the cases the sign of the shape parameter agrees,375

while in 25 % of the cases the signs are different.376

The mean value of the shape parameters underlying the MEV-Weibull distribution377

(Figure 6c) shows a clear and coherent spatial pattern. At virtually all grid cells the av-378

erage MEV-Weibull shape parameter indicates a heavy sub-exponential tail (shape pa-379

rameter less than 1), and the spatial patterns of the shape parameter of MEV-Weibull380

are much smoother and there is more consistency in different geographic regions. This381

predominantly heavy-tail behavior for daily precipitation was expected based on previ-382

ous studies (Papalexiou & Koutsoyiannis, 2013; Papalexiou et al., 2013; Cavanaugh et383

al., 2015; Ragulina & Reitan, 2017), and is well captured by MEV. There are also clear384

topographical patterns visible, and Figure 6c has many similarities to a global elevation385

map. The mean shape values indicate thinner tails at higher elevations, such as the Rocky386

Mountains and Sierra Madres in North America, the Andes and large areas of the Brazil-387

ian Highlands in South America, the Ethiopian Highlands, the Scandinavian Mountains,388

and the Ural and Tibetan Plateau in Asia. These spatial patterns are in contrast with389

what Papalexiou et al. (2018, their Figure 6) found for hourly Weibull tails in the USA,390

where the heaviest tails are in the mountainous areas, and the thin tails are in the south-391

east. However, our results correspond well to Ragulina and Reitan (2017, their Figure 4),392

who showed that the GP shape parameter decreases with elevation.393

We find, however, that the relationship of the Weibull shape parameter with ele-394

vation is more complicated. Heavier tails are generally observed on the leeward side of395

large mountain ranges, and thinner tails on the windward side that is dominated by oro-396

graphically enhanced frontal precipitation (Figure 6c). This is for example visible in the397

Rocky Mountains, Indonesia, and Norway, and corresponds to findings of Cavanaugh and398

Gershunov (2015, their Figure 5), who showed that exponential tails are observed in re-399

gions where extreme precipitation is predominantly generated by one type of system. There400

are also some similarities with the main climate types of the Köppen-Geiger classifica-401

tion (Peel et al., 2007; Beck et al., 2018). We observe thinner tails in Western Europe,402

which has a warm temperate climate. Heavier tails are located in both hot and dry South-403

ern Europe and cold and snowy regions as parts of the Alps. Interestingly, in the USA404

this pattern is almost reversed, where the heavier tails are in the arid areas of the Great405

Plains and in the warm temperate climates in the southeast, whereas thinner tails are406

predominantly observed in the colder mountainous regions.407
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Figure 6. The shape parameter (−) for daily precipitation calculated for different extreme

value methods: (a) GEV, equation 1 — ξGEV, (b) POT, equation 2 — ξGP and (c) MEV, equa-

tion 3 — w. For MEV, the mean shape parameter of all yearly Weibull distributions is displayed.

Red indicates a thin tail (for GEV and POT with an upper limit, for MEV hyper-exponential),

white an exponential tail, and blue a heavy tail (power-law for GEV and POT, sub-exponential

for MEV, see section 2.2.2 and Figure 1).
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Figure 7. Boxplots showing the distribution of the shape parameter for different durations

and extreme value methods: (a) GEV and POT, and (b) MEV. The whiskers denote the 1st and

99th percentiles. The top and bottom of the boxes represent the 75th and 25th percentiles, re-

spectively. The dashed gray horizontal lines indicate exponential tails. Section 2.2.2 and Figure 1

explain the effect of the shape parameter on the tail behavior.

This demonstrates that the MEV method is able to produce spatially coherent tail408

behavior of precipitation extremes using a time series of just 38 years. This smoothness409

of MEV was obtained by doing a single-cell analysis, as opposed to the need to identify410

homogeneous regions using a clustering scheme (Demirdjian et al., 2018). This is a promis-411

ing result as MEV can thus be applied on a single grid-cell-basis using much shorter time412

series than GEV, enabling extreme value analysis in those regions of the world where only413

short precipitation time series are available.414

A comparison of shape parameters for different durations is presented in Figure 7.415

Heavier tails are observed for short durations, and thinner tails for long durations. This416

is in line with the findings of Cavanaugh and Gershunov (2015), who found that longer417

duration extremes exhibit thinner tails. For GEV and POT the longer durations largely418

indicate tails with an upper limit. This occurs for instance in half of the cases for a du-419

ration of 10 days. MEV shows some thin tails for long durations, but not as many as for420

GEV and POT. Furthermore, there are clear patterns for the variability of the shape pa-421

rameter. POT shows an increasing spatial variability of the shape for an increasing du-422

ration, indicated by longer whiskers. For GEV, on the other hand, the variability remains423
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Table 1. Variables included in the GPEX dataset.

Variable Description

GEV estimate Extreme precipitation return levels estimated using GEV (mm)
POT estimate Extreme precipitation return levels estimated using POT (mm)
MEV estimate Extreme precipitation return levels estimated using MEV (mm)
Observed estimate Observed extreme precipitation return levels (mm)
GEV location parameter Location parameter of the GEV distribution
GEV scale parameter Scale parameter of the GEV distribution
GEV shape parameter Shape parameter of the GEV distribution
POT location parameter Location parameter for a GEV distribution estimated by fitting the GP distribution
POT scale parameter Scale parameter for a GEV distribution estimated by fitting the GP distribution
POT shape parameter Shape parameter for a GEV distribution estimated by fitting the GP distribution
MEV scale parameter Scale parameter of the MEV distribution for each hydrological year
MEV shape parameter Shape parameter of the MEV distribution for each hydrological year
MEV number of events Number of events per hydrological year, n parameter of the MEV distribution
Annual maxima Annual maximum precipitation for each hydrological year (mm)
Start hydrological year Number indicating the month in which the hydrological year starts
Land mask Mask used for this study to indicate land cells and ocean cells

constant for different durations. For MEV, an increasing duration shows first a slight424

decrease of the variability with a heavier tails, and then after 12 hours a steady increase425

of the spread with thinner tails.426

4 Dataset Usage Notes427

The GPEX dataset created in this study is available at the 4TU repository (Gründemann,428

2020). It provides openly accessible and readily available hydrologically relevant return429

levels of extreme precipitation estimates worldwide. It contains the precipitation esti-430

mates of the three extreme values distributions, the observed estimates, the parameters431

of the three distributions, as well as a few other variables used in this study (Table 1).432

In this section we provide some possible uses of the dataset, and instructions and dis-433

claimers for proper use, both for large or regional-scale usage as well as for a single cell434

or point-scale.435

4.1 Large-Scale Applications436

The GPEX dataset contains global scale extreme precipitation estimates and its437

parameters at a spatial resolution of 0.1◦, covering 3-hourly to 10-day durations. The438

dataset contains information about precipitation extremes for the entire Earth’s land sur-439

face except Antarctica. The estimates of three distributions as well as the return lev-440

els as observed are included in the dataset. Among the three distributions, the traditional441

GEV and POT provide comparable large-scale average extremes, although differences442

can be substantial at smaller scales. When using the dataset at regional scales, we ad-443

vise taking the average of the precipitation estimates, as neighboring cells could differ.444

Note that since only 38 years of data were available, the fitted model parameters and445

associated return values are subject to considerable uncertainty. Furthermore, we acknowl-446

edge that the use of just one dataset does not represent the true uncertainty in the gen-447

eration of the dataset created. We do not think this affects our results for observed global448

spatial patterns significantly, but in a practical setting we recommend verifying the es-449

timates with local observations if available, and to reproduce the precipitation return450

level estimates with a full uncertainty range estimation.451
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Figure 8. Return level plots for specific locations and different distributions. a–d) Vienna,

Austria (48.234◦N, 16.415◦E) and e–g) San Francisco, California, USA (37.784◦N, 122.400◦W).

Observed (d & h) are the annual maxima converted to return periods.

The novel MEV distribution provides more spatially coherent patterns of the ex-452

tremes. Its mean shape parameter for daily events captures the (heavy-)tail behavior,453

and follows orographic patterns. The extremes estimated by MEV are higher than those454

estimated by GEV and POT. However, for large return periods and long durations, MEV455

can overestimate the extremes, due to the small number of events available for the fit-456

ting. We, therefore, recommend analyzing the extremes of all three distributions to ob-457

tain an indication of the uncertainty.458

4.2 Small-Scale Applications459

The dataset is also suitable for small-scale applications either in comparative stud-460

ies or for direct use in data sparse regions, but one should be aware of the different sta-461

tistical characteristics of point-scale and grid-scale. Due to averaging effects in gridded462

datasets, precipitation extremes of point-scale observations are higher (Sivapalan & Blöschl,463

1998; De Michele et al., 2001; Ensor & Robeson, 2008; Cavanaugh & Gershunov, 2015;464

Zorzetto & Marani, 2019). Illustrative examples of two locations, Vienna and San Fran-465

cisco, are included in Figure 8. Analysis of the return level plots shows the estimates of466

the three distributions compared to the observed ones. We converted the annual max-467

imum precipitation to ’observed’ return levels (Figure 8d+h). It should be kept in mind468

though that these ’observed’ return levels are also different from the ’true’ return lev-469

els. For (sub-)daily durations and low return periods, there is generally a good agree-470

ment between the observed return levels and the estimates of the three EVDs. For longer471
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durations and return periods, however, the estimated extremes deviate from the observed472

extremes. This is seen in San Fransisco (Figure 8e-h) where MEV overestimates and GEV473

and POT underestimate the extremes.474

Furthermore, increasing event durations result in lower shape parameters, which475

was seen for all three distributions (Figure 7). An implication of this is that for long-476

durations the shape parameter indicates a finite endpoint (GEV and POT), or a very477

thin tail (MEV), while heavier tails are generally observed for short-durations. When478

estimating very large return periods (e.g., T500), it is therefore possible for shorter du-479

ration estimates to be more intense than the corresponding quantiles computed for longer480

durations, which is physically impossible (see also Figure 8a,b,e and f). We should thus481

be careful when calculating very large return periods for multiple durations based on short482

records and interpreting the estimated extremes.483

To get a better understanding of the range and uncertainty of a single cell loca-484

tion, we recommend to look at return level plots of the three distributions at the cell of485

interest in combination with its neighboring cells. This is particularly important for GEV486

and POT, due to the absence of coherent spatial patterns and the erratic manifestation487

of the tail behaviors. Previous results (Zorzetto et al., 2016) show that the benefits of488

MEV over GEV are greater for large return periods relative to the sample size available489

for the fit. Hence, for the estimation of large quantiles, MEV may be presumed to be490

more accurate. Depending on the practical application one could then choose to use the491

most extreme value, use the MEV value, or a spatial average of the GEV and POT es-492

timates.493

5 Conclusions494

In this study we have fitted three different extreme value methods (GEV, POT,495

and MEV) to a global precipitation dataset, MSWEP V2.2, to estimate extreme precip-496

itation return levels for several durations. The estimated precipitation extremes for the497

three approaches as well as their parameters have been published in the openly avail-498

able GPEX dataset (Gründemann, 2020). Instead of using calendar years to delineate499

between different years, we used hydrological years. We demonstrated that there is a sub-500

stantial difference in the extremes depending on the definition of yearly blocks used in501

the extreme value analysis (Figure 2). These differences were most notable in the South-502

ern hemisphere, and in locations where the driest month is around June (Figure S1). Al-503

though there is no systematic bias, we still recommend to apply the extreme value anal-504

yses for estimating extreme precipitation based on hydrological years in future studies.505

Our analysis indicates that this issue can be particularly relevant in the Southern hemi-506

sphere and in regions characterized by marked seasonal cycles.507

It is well known that the traditional GEV and POT methods require very long data-508

series for accurate estimation of the tail parameter, and our study confirms that there509

is a low spatial coherence for the tail properties of both distributions (Figure 6a and b).510

The tail properties of the MEV distribution are spatially more coherent (Figure 6c) and511

hence the estimated return levels are spatially coherent as well (Figure 3c). In partic-512

ular, the analysis of the MEV-Weibull shape parameter reveals distinct spatial patterns.513

The shape parameter appears to be significantly controlled by orographic patterns, with514

the Weibull tail becoming thinner at higher elevations, as well as on the windward side515

of large mountain ranges. This behavior, consistent with previous results obtained over516

the conterminous US (Zorzetto & Marani, 2020), shows that the MEV distribution is able517

to capture spatially consistent tail behavior from short time series, a promising result518

for regions without long local precipitation records. Furthermore, our study shows that519

for all three distributions, the tail behavior decreases with increased event duration (Fig-520

ure 7). For GEV and POT for instance, about half of the cells have a thin tail with a521

finite endpoint for a duration of 10 days. We also conclude that both GEV and POT gen-522
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erally underestimate the observed extremes, whereas MEV overestimates them (Figure 5).523

This occurs particularly for long-duration extremes and large return periods. We do con-524

sider it likely, however, that the results of the MEV estimation could be improved, for525

instance by changing the event threshold, by using a running parameter to separate events526

(Marra et al., 2018), or by fitting the Weibull distribution over two or more years for dry527

areas and long durations.528

The global gridded 0.1◦ GPEX dataset we created covers extreme precipitation re-529

turn levels and its parameters for durations between 3 hours and 10 days. The dataset530

is freely available and could be used as a benchmark of precipitation extremes for data-531

scarce regions in particular. The dataset can be used for a single location, to obtain re-532

turn level plots for planning and engineering design. For scientific purposes, not only the533

extreme precipitation estimates can be useful, but also the underlying parameters, al-534

lowing a more in-depth analysis of the local or regional circumstances. GPEX thus serves535

as a benchmark of global precipitation extremes with applications in global- and local-536

scale research as well as a reference for engineering practitioners in data sparse environ-537

ments.538
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Ménégoz, M., Gallée, H., & Jacobi, H. W. (2013). Precipitation and snow cover in729

the himalaya: from reanalysis to regional climate simulations. Hydrology and730

Earth System Sciences, 17 (10), 3921–3936. doi: 10.5194/hess-17-3921-2013731

Miniussi, A., & Marani, M. (2020). Estimation of daily rainfall extremes through732

the metastatistical extreme value distribution: Uncertainty minimization733

and implications for trend detection. Water Resources Research, 56 (7),734

e2019WR026535. doi: 10.1029/2019WR026535735

Miniussi, A., Marani, M., & Villarini, G. (2020). Metastatistical Extreme Value736

Distribution applied to floods across the continental United States. Advances737

–22–



manuscript submitted to Water Resources Research

in Water Resources, 136 , 103498. doi: 10.1016/j.advwatres.2019.103498738

Miniussi, A., Villarini, G., & Marani, M. (2020). Analyses Through the Metas-739

tatistical Extreme Value Distribution Identify Contributions of Tropical740

Cyclones to Rainfall Extremes in the Eastern United States Geophysical741

Research Letters. Geophysical Research Letters, 47 , e2020GL087238. doi:742

10.1029/2020GL087238743

Mishra, A. K., & Coulibaly, P. (2009). Developments in hydrometric network design:744

A review. Reviews of Geophysics, 47 (2). doi: 10.1029/2007RG000243745

Nissen, K. M., & Ulbrich, U. (2017). Increasing frequencies and changing char-746

acteristics of heavy precipitation events threatening infrastructure in Europe747

under climate change. Natural Hazards and Earth System Sciences, 17 (7),748

1177–1190. doi: 10.5194/nhess-17-1177-2017749

Overeem, A., Buishand, A., & Holleman, I. (2008). Rainfall depth-duration-750

frequency curves and their uncertainties. Journal of Hydrology , 348 , 124–134.751

doi: 10.1016/j.jhydrol.2007.09.044752

Papalexiou, S. M., Aghakouchak, A., & Foufoula-Georgiou, E. (2018). A diagnostic753

framework for understanding climatology of tails of hourly precipitation ex-754

tremes in the United States. Water Resources Research, 54 (9), 6725–6738. doi:755

10.1029/2018WR022732756

Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distribu-757

tions: A global survey on extreme daily rainfall. Water Resources Research,758

49 , 187–201. doi: 10.1029/2012WR012557759

Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme760

is extreme? An assessment of daily rainfall distribution tails. Hydrology and761

Earth System Sciences, 17 , 851–862. doi: 10.5194/hess-17-851-2013762

Peel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the763
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