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Abstract 21 

Low summer river flowsstreamflows can increase vulnerability to warming, impacting coldwater 22 
fish. Water managers need tools to quantify the complex linkagesthese impacts and predict future 23 
water temperatures. Contrary to most statistical models’ assumptions, many seasonally changing 24 
factors (e.g., water sources and solar radiation) cause relationships between flow and water 25 
temperature, yet statistical models often assume a constant relationship between these variables. 26 
In California’s snowmelt and groundwater-influenced Scott River where agricultural irrigation 27 
consumes most summer river flow, flow variation had stronger effects on water temperature in 28 
April–July than other months. Using 24 to vary throughout the year. Using 21 years of daily air 29 
temperature and flow data as predictors, we compared multiple statistical methods for 30 
modelingmodeled daily Scott River water temperatures, including in California’s snowmelt-31 
driven Scott River where agricultural diversions consume most summer surface flows. We used 32 
generalized additive models with non-linear interactions between flow and day of the year. to 33 
test time-varying and nonlinear effects of flow on water temperatures. Models withthat 34 
represented seasonally varying flow effects performed better than those with intermediate 35 
complexity outperformed simpler models assuming a constant relationshiprelationships between 36 
water temperature and flow. Cross-validation root mean squared errorserror of the selected 37 
models were ≤1 °C. model was ≤1.2 °C. Flow variation had stronger effects on water 38 
temperatures in April–July than in other months. We applied the modelsmodel to severalpredict 39 
effects of instream flow scenarios currently being consideredproposed by stakeholders and 40 
regulatory agencies. Relative to historic conditions, the most protectivehigher instream flow 41 
scenario would reduce average annual maximum temperature from 25.92 °C to 24.61 °C, reduce 42 
average annual degree-days exceedanceexceedances of 22 °C (a cumulative thermal stress 43 
metric) from 107106 to 5451 degree-days, and delay the onset of water temperatures greater than 44 
>22 °C during some drought years. Withdrawal of river water after 1 June, including for 45 
groundwater management purposes, could contribute toTesting the same modeling approach at 46 
nine additional exceedances of 22 °C.sites showed similar accuracy and flow effects. These 47 
methods can be applied to model any streamstreams with long-term flow and water temperature 48 
measurements, with applications including scenario prediction and infillingrecords to fill data 49 
gaps, identify periods of flow influence, and predict temperatures under flow management 50 
scenarios. 51 

 52 

Plain Language Summary 53 

Warm water threatenstemperatures threaten culturally and economically important salmon in 54 
Pacific Northwest rivers, including our Scott River study area, causing chronic stress or evenand 55 
direct mortality. Climate change and agricultural water use have reduced summer river 56 
flowflows in recent decades, intensifying water scarcity. Years with deep mountain snowpack 57 
and resulting high groundwater levels extend the high flow season and keep water temperatures 58 
cool through the end of July, whereas in drought years the river warms sooner. We used 2421 59 
years of river flow and air temperature data from the Scott River, California, to create computer 60 
models that simulate water temperatures, provide a tool for assessing the effects of water 61 
management. Our models allow the effect of flow on water temperatures to vary by season (i.e., 62 
stronger cooling effects in spring and summer), improving accuracy of the simulated 63 
temperatures. We used these modelsthe Scott River model to simulate water temperatures under 64 
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two alternative flow scenarios being considered in local water management plans. Our 65 
simulations indicate that relative to current conditions, the higher flow scenario would 66 
reducelower the summer’s hottestsummers’ highest temperatures. Diverting additional water 67 
from the river after 1 June could increase and decrease the number of days with warmthat river 68 
temperatures that are detrimental to fishexceed a biological threshold. Testing the same modeling 69 
approach at nine additional Klamath Basin sites showed similar accuracy and flow effects. Our 70 
model is freely available for public use. 71 

 72 

1 Introduction 73 

Water temperature in rivers and streams affects everything from water chemistrydrive physical, 74 
chemical, and physics to inter-species interactions (Wenger et al., 2011), food webs (Power and 75 
Dietrich, 2002), and whole-community metabolism (Bernhardt et al., 2017). Effects on 76 
individual species include development (Steel et al., 2012), thermal tolerances (Dahlke et al., 77 
2020), bioenergetics (Gibeau and Palen, 2020), and behavior (Sutton and Soto, 2012).  78 

The net balance of surface and streambed heat fluxes determine stream temperatures. These 79 
energy fluxes include shortwave radiation (primarily from the visible light spectrum), longwave 80 
radiation (i.e., heat radiated from objects including clouds, land, and vegetation), latent heat (i.e., 81 
evaporation), sensible heat (i.e., convection of heat from air to water), conduction of heat 82 
between the water and stream bed, and advection (i.e., movement of water) (Caissie, 2006; 83 
Moore et al., 2005a; Webb et al., 2008; Dugdale et al., 2017). Humans affect stream 84 
temperatures through water diversions (Bartholow, 1991; Dymond J.,biological processes 85 
(Ouellet et al., 2020).1984; Folegot et al., 2018; Gibeau and Palen, 2020; Meier et al. 2003, Null 86 
et al.; 2017), discharge of industrial wastewater and sewage (Erickson and Stefan, 2000), 87 
reservoir impoundments (Webb and Walling, 1993; Chandesris et al., 2019), removal or 88 
enhancement of riparian vegetation (Johnson, 2004; Moore et al. 2005a, Wondzell et al., 2019), 89 
and alteration of channel and floodplain morphology (Gu and Li, 2002) including urbanization 90 
(Tan and Cherkauer, 2013). Stream temperatures have warmed in recent decades in response to 91 
rising air temperatures resulting from anthropogenic greenhouse gas emissions, a trend that is 92 
expected to continue (Isaak et al., 2017, 2018; Liu et al., 2020; Wanders et al., 2019). 93 

determine species River flow rates (i.e., discharge) can affect stream temperatures. Higher flows 94 
increase a stream’s ability to store heat, reducing the temperature increase resulting from an 95 
equivalent amount of solar radiation (Brown, 1969; Meier et al., 2003; Sinokrot and Gulliver, 96 
2000). Higher flow rates reduce daily temperature maximums and ranges (Folegot et al., 2018). 97 
Summer, with alterations to natural temperature regimes causing deleterious effects to native 98 
species (Wenger et al., 2011). Stream temperatures are widely altered by human activities (Webb 99 
et al., 2008). Maintaining ecological integrity is a major stream temperature management goal, 100 
yet models used to predict stream temperature response to management interventions either lack 101 
predictive power or are time-consuming to develop.   102 

River flow rates (i.e., discharge) are a key driver of stream temperatures through multiple 103 
mechanisms. While stream temperatures are determined by surface and streambed energy fluxes 104 
and advected heat (Caissie, 2006; Moore et al., 2005), flows mediate these effects. Higher flows 105 
generally increase water volume and thus a stream’s capacity to store heat, reducing daily 106 
temperature fluctuations (Brown, 1969; Folegot et al., 2018; Meier et al., 2003; Sinokrot & 107 
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Gulliver, 2000). Higher flows speed downstream transit of water, reducing the time that a parcel 108 
of water is exposed to ambient heating at a given location and increasing the influence of 109 
upstream conditions (Bartholow, 1991; Dymond J., 1984; Folegot et al., typically negatively 110 
correlated with flow (Arora et al., 2016; Isaak et al., 2017; Luce et al., 2014; Mayer, 2012; 111 
McGrath et al., 2017; Moore, et al. 2005b; Neumann et al, 2003; Webb et al., 2003), with flow 112 
affecting daily maximum temperatures more strongly than daily mean temperatures2018). 113 
Channel geometry, including width/depth ratio, influences these effects (Dugdale et al., 2017). 114 

 (Asarian et al., 2020; Gu et al., 1998; Gu and Li, 2002). Stream temperature model fit often 115 
increases when flow is included as a predictor (Hilderbrand et al., 2014; Piotrowski and 116 
Napiorkowski, 2019; Rahmani et al., 2020; Sohrabi et al., 2017; van Vliet et al. 2011; Webb et 117 
al., 2003), although not always (Benyahya et al., 2008; Toffolon and Piccolroaz, 2015). Cooling 118 
effects of high flows are due to faster downstream transport of cold water (Bartholow, 1991; 119 
Dymond J., 1984; Folegot et al., 2018), greater depth and thermal mass which is more resistant 120 
to heating (Gu and Li, 2002; Meier et al., 2003; Sinokrot and Gulliver, 2000), and greater 121 
accretion of cool groundwater (Kelleher et al., 2012; Mayer, 2012; Isaak et al., 2017).   122 

The relationship between water temperature and flow varies seasonally. The source and flow 123 
paths of river water vary seasonally according to through time. Seasonal changes in precipitation 124 
formphase (i.e., snow and rain)(Siegel and Volk, 2019), groundwater dynamics of hillslope 125 
(Hahm et al., 2019) and alluvial (Foglia et al., 2013) aquifers, and irrigation management (i.e.,) 126 
affect water temperatures (Yan et al., 2021). The geographical source of water can shift 127 
seasonally, and can include tributaries, point sources, hillslopes, and alluvial aquifers, with each 128 
source having different temperatures and heating or cooling trajectories while en route to stream 129 
channels (Dugdale et al., 2017; Steel et al., 2017). Groundwater-surface water interactions and 130 
hyporheic exchange also affect temperatures (Hannah et al., 2009; Kurylyk et al., 2015). Water 131 
management, including reservoir releases, water withdrawals, and subsequent return flows back 132 
to the river via surface or groundwater)(Tolleyirrigation runoff can further alter temperature 133 
dynamics (Alger et al., 2021; Chandesris et al., 2019). Flow effects on water temperature are also 134 
seasonallyfurther mediated by variables that affect the amount ofseasonal changes to solar 135 
radiation strikingreceived by the water, includingstream. Day length, and solar angle, which 136 
affect topographic and riparian shading, remain consistent among years (Piotrowski and & 137 
Napiorkowski, 2019; Yard et al., 2005), cloud cover (Dugdale et al., 2017), wildfire smoke 138 
(Asarian et al., 2005). Other mediators of solar radiation including 2020; David et al., 2018), and 139 
leaf out and leaf fall of deciduous riparian vegetation, cloud cover (Dugdale et al., 2017), water 140 
vapor, dust (Theurer et al., 1984), wildfire smoke (Asarian et al., 2020; David et al.,  (Dugdale et 141 
al., 2018). Some of these variables2018) and other aerosols follow exactly the same seasonal 142 
trajectory each year while others fluctuate among years. seasonal trajectories that vary among 143 
years. Despite time-varying changes in how flow dynamics influence stream temperature, many 144 
stream temperature models do not account for these seasonal variations in the relationship 145 
between flow and stream temperatures. 146 

Given stream temperature’s importance and vulnerability to human alterations of river flow, 147 
water managers need predictive tools. to predict stream temperature models are often grouped 148 
into two categories: process-basedchanges associated with climate change and statistical 149 
(Caissie, 2006).flow management (Gibeau & Palen, 2020; Null et al., 2017). While process-150 
based (i.e., deterministic) models simulatesimulating stream energy budgets using physically 151 
based equations representing energy fluxes such as shortwave radiation, longwave radiation, 152 
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latent heat, sensible heat, conduction and advectioncan have high predictive accuracy, their use is 153 
limited by extensive data input requirements (Brown, 1969; Caissie, 2006; Dugdale et al., 2017). 154 
Statistical models that use empirical relationships between stream temperature and predictor 155 
variables, and typicallyenvironmental drivers require many fewer input variables as data inputs 156 
than process-based models do, so are often much simpler to develop (Benyahya et al., 2007; 157 
Caissie, 2006; Gallice et al., 2015; Ouellet et al., 2020; Piotrowski and Napiorkowski, 2019). 158 
Mohseni et al.’s (1998) non-linear regression of stream temperature and air temperature has been 159 
widely replicated (Arismendi et al. 2014; Jones al. 2016) and adapted (Piotrowski and 160 
Napiorkowski, 2019; Santiago et al., 2017; Segura et al. 2015; van Vliet et al. 2011). Recent 161 
advances in statistical models of stream temperature include spatial stream network models 162 
(FitzGerald et al., 2021; Isaak et al., 2017), generalized additive models (GAM) (Arora et al., 163 
2016; Jackson et al., 2018; Laanaya et al., 2017; Siegel and Volk, 2019; Yang and Moyer, 2020), 164 
Least Absolute Shrinkage and Selection Operator regression (St-Hilaire et al., 2018), functional 165 
data analysis (Boudreault et al., 2019), and machine learning (Rahmani et al., 2020; Zhu et al., 166 
2018, 2020). Daily stream temperatures are highly correlated with adjacent days’ temperatures. 167 
For measurements such as daily stream temperature that are not independent, it is besteasier to 168 
use a model that explicitly includes the correlation structure (Steel et al., 2013). For example, 169 
some stream temperature models include a first-order (AR-1) (Benyahya, 2007b; David et al., 170 
2018; Letcher et al., 2016; Jackson et al., 2018; Sohrabi et al., 2017), second-order, periodic 171 
(implement, but for scenario prediction they are generally not considered as reliable as process-172 
based models (Arismendi et al., 2014; Benyahya et al., 2007a, 2007b, 2008), or moving average 173 
autoregressive error structures (Yang and Moyer, 2020). 174 

Process-based models account for the seasonal effects of flow by explicitly modeling energy 175 
fluxes, but it is infeasible to include all these individual fluxes in statistical model.; Caissie, 176 
2006). However, statistical models can represent the implicit aggregation of these fluxes by 177 
allowing the coefficients of hydroclimatic predictors to vary seasonally. One approach is to 178 
divide the year into multiple seasons and develop separate models for each (Mohseni et al., 1998, 179 
Sohrabi et al., 2017), but this may create abrupt changes at seasonal transitions. Recent 180 
approaches that allow smooth variation across seasons are time-varying coefficient models (Li et 181 
al., 2014), and GAMs that interact day of the year with predictor variables (Jackson et al., 2018; 182 
Siegel and Volk, 2019; Yang and Moyer, 2020modeling methods have evolved, improving 183 
prediction accuracy and temporal resolution (i.e., daily) (Ouellet et al., 2020; Piotrowski & 184 
Napiorkowski, 2019). Year-round daily temperature models are especially valuable because they 185 
match the time scales used in detailed biological studies and water quality regulations (Imholt et 186 
al., 2010; Railsback et al., 2015; USEPA, 2003).  187 

Statistical stream temperature models have long relied on air temperature as the primary 188 
predictor (Mohseni et al., 1998), but year-round daily models should incorporate additional 189 
mechanisms to improve accuracy and reflect physical processes (Letcher et al., 2016). Statistical 190 
stream temperature models use air temperature to represent net radiative flux (Caissie 2006). 191 
Time lags between air temperatures and water temperature reflect heat exchange processes 192 
(Koch and Grünewald, 2010; Soto, 2016; Webb et al., 2003), while temporal autocorrelation 193 
acknowledges that stream temperature on a given day is in part a result of stream temperature the 194 
previous day (Benyahya et al., 2007a, 2007b, 2008; Yang & Moyer, 2020). Inclusion of flow can 195 
improve model accuracy (Piotrowski & Napiorkowski, 2019; Santiago et al., 2017; Sohrabi et 196 
al., 2017; van Vliet et al., 2011; Webb et al., To test the hypothesis that statistical models with 197 
seasonally varying effects of river flow would perform better than models with a constant 198 
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relationship between stream temperature and flow, we modeled daily stream temperatures in the 199 
Scott River of Northern California where low flows and high temperatures are limiting factors 200 
for culturally and economically important coldwater fish. We compared multiple statistical 201 
approaches that: 1) include all days in a single model rather than dividing the year, 2) use 202 
interactions to allow the influence of predictors to vary smoothly by day of the year, 3) allow 203 
non-linear relationships, 4) have error structures that include temporal autocorrelation, and 5) are 204 
all implemented within the R software environment with simple, publicly accessible code. After 205 
model selection and validation which confirmed our hypothesis, we applied our final model to 206 
predict daily stream temperatures under flow scenarios being considered by local water 207 
managers. Results indicated that stream temperatures under these flow scenarios would be more 208 
favorable for coldwater fish than the historic flow scenario. Our accessible modeling approach 209 
could be widely replicated in other geographic areas to provide accurate stream temperature 210 
predictions to inform river management. Paired with air temperatures from a nearby weather 211 
station, our methods can be applied in any river or stream with long-term measurements of flow 212 
and stream temperature. Other potential applications include imputing missing measurements for 213 
analyses that require continuous temperature time series. 214 

2003). The relationship between air and stream temperatures is nonlinear and differs among 215 
seasons (Arismendi et al., 2014, Caissie et al., 2001; Mohseni et al., 1998). Including time-216 
varying effects could improve the predictive accuracy of stream temperature models across 217 
variable conditions. 218 

Several methods allow seasonal variation in the relationship between environmental covariates 219 
and stream temperatures. These methods not only improve model accuracy but also identify the 220 
times when effects are strongest. While time-varying covariate effects can be represented using 221 
separate models for each season (Mohseni et al., 1998; Sohrabi et al., 2017), this may cause 222 
unnatural, abrupt changes at seasonal transitions. Time-varying coefficients, including those used 223 
in generalized additive models (GAMs) (Pedersen et al., 2019; Wood, 2017) use continuous 224 
functions that avoid these abrupt changes (Li et al., 2014; Jackson et al., 2018; Siegel & Volk, 225 
2019). While GAMs have been used in daily stream temperature modeling for single-site 226 
prediction (Boudreault et al., 2019; Coleman et al., 2021; Glover et al., 2020; Laanaya et al., 227 
2017), spatiotemporal prediction (Jackson et al., 2018; Siegel & Volk, 2019), identifying 228 
extreme events (Georges et al., 2021), and trend assessment (Yang & Moyer, 2020), few studies 229 
have used GAMs to model seasonally varying flow effects or identify when stream temperatures 230 
are most affected by flow variation (Glover et al., 2020; Yang & Moyer, 2020). With flexible 231 
model structures and easy implementation, GAMs could be a powerful tool for predicting stream 232 
temperatures under flow management scenarios, but to our knowledge these models have not 233 
been previously used for this purpose.  234 

Our objectives were to predict mean and maximum daily stream temperatures under management 235 
flow scenarios and new environmental conditions, and to identify periods when flow has the 236 
strongest influence on stream temperatures. We compared 11 GAM structures using flow, air 237 
temperature, and day of year as covariates that incorporated combinations of linear, nonlinear, 238 
and seasonally-varying effects. Our model selection and validation procedures included 239 
extrapolation tests evaluating predicted stream temperatures with flows and air temperatures 240 
outside the calibration range, designed to favor models that had enough complexity to represent 241 
the key patterns in the data, but not so complex that they overfit the data. We applied the top 242 
model to proposed management flow scenarios and extreme flow and air temperature conditions. 243 
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The models are intended to be used as a tool to inform water management, making the relatively 244 
simple model structure and coding of GAMs our choice of modeling technique. We focused our 245 
analyses on the Scott River of Northern California, where low flows and high temperatures are 246 
limiting factors for coldwater fish and water managers are considering implementing regulations 247 
to protect instream flows. To demonstrate wider applicability, we evaluated similar models in 248 
nine additional sites in the Klamath River Basin.  249 

 250 

2 Study Area 251 

The Scott River is a tributary of the Klamath River in Siskiyou County, California, USA (Figure 252 
1).Our study area is the lower Klamath River Basin, California, USA, focusing on one large 253 
tributary—the Scott River (Figure 1). The Scott River study site is located at the outlet of Scott 254 
Valley, with a drainage area of 1,714 km2. The other nine sites are near USGS gaging stations 255 
with drainage areas ranging from 58 km2 to 31,300 km2 (Figure 1, Table S1). The climate is 256 
Mediterranean with precipitation occurring primarily in winter and spring as rain at low 257 
elevations and snow at higher elevations. The mountainous headwaters are primarily National 258 
Forest, with elevations exceeding 2500m (Foglia (VanderKooi et al., 20132011). The human 259 
population lives primarily on private land in the alluvialalong watercourses including Scott 260 
Valley, where irrigated agriculture is the dominantdominates land use, utilizing groundwater and 261 
surface water (Foglia et al., 2018). Other land uses include timber harvest and mining. There are 262 
many water diversions but The Scott River has no major dams or reservoirs. , but there are large 263 
dams on the Klamath River and two tributaries (Shasta and Trinity rivers), influencing some 264 
study sites.  265 

The Scott Valley aquifer fills during the high flows of winter rainstorms and spring snowmelt-266 
driven runoff. As runoff recedes through the summer, most surface water is diverted for 267 
irrigation and river water at the Scott Valley outlet becomes increasingly composed of 268 
groundwater from valley alluvium. Minimum flows occur in early September before rising due 269 
to fall rains (Figure 22b). In late summer of drought years, portions of the Scott River have no 270 
surface flow (Tolley et al.., 2019). Summer and fall river flows have declined in recent decades 271 
(Kim and Jain, 2010; Asarian and Walker, 2016) due to a combination of climate change (Drake 272 
et al., 2000) and increased withdrawal of groundwater for irrigationwithdrawals, especially since 273 
1977 (Van Kirk and Naman, 2008). Climate change is expected to further reduce summer flows 274 
by decreasing snowpack and increasing irrigation demand (Persad et al., 2020). There are 275 
ongoing efforts to model interactions between groundwater and surface water (Foglia et al., 276 
2013, 2018; Tolley et al., 2019). Pursuant to California’s Sustainable Groundwater Management 277 
Act (SGMA), Siskiyou County is developing a groundwater sustainability plan for the valley.  278 

Management flows have been proposed for the Scott River has the Klamath Basin’s largest 279 
population ofto protect Endangered Species Act-listed coho salmon (Oncorhynchus kisutch) 280 
population, despite currently impaired habitat (NMFS,and other coldwater salmonid fishes.  281 
2014). High water temperatures are stressful to coho salmon, chinook salmon (Oncorhynchus 282 
tshawytscha) and steelhead (Oncorhynchus mykiss) (NCRWQCB, 2005). These fishes’ 283 
importance to local Native American tribes has led to contention over water management. 284 
Government agencies, tribes,River water temperatures in May–July are much cooler in high-flow 285 
years than low-flow years (Figure 2), and local organizations have studied Scott River stream 286 
temperatures for several decades (Asarian et al., 2020; KNF, 2010; Quigley et al., 2001; QVIR, 287 
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2016). The river iswater extraction has contributed to the Scott River being listed as impaired for 288 
water temperature under the Clean Water Act, (NCRWQCB, 2005). The U.S. Forest Service has 289 
a first-priority Schedule D water right for Scott River instream flow that varies by month and 290 
California’s North Coast Regional Water Quality Control Board developed Total Maximum 291 
Daily Loads (TMDLs) for water temperature day from 30–200 ft3/s (0.85–5.67 m3/s) (Superior 292 
Court of Siskiyou County, 1980) (Figure 3b), but does not exercise its legal authority to curtail 293 
lower-priority water uses when flows drop below these levels. The California Department of Fish 294 
and sediment (NCRWQCB, 2005). Wildlife (CDFW) proposed interim Scott River instream 295 
flow targets that vary by month and day from 62–362 ft3/s (10.3–1.75 m3/s) (CDFW, 2017) 296 
(Figure 3b), but these have no legal force. 297 

Our 298 

 299 

 300 

Figure 1. Klamath Basin study site is located at the outlet of Scott Valley,sites with a drainage 301 
area of 1,714 km2 (Figure 1). Despite simulated total valley-wide streamflow depletion (i.e., 302 
decreased streamflow due to groundwater pumping) of approximately 150,000 m3d-1 (60 ft3/sec) 303 
in August (Foglia et al., 2013), the 10 kilometers of river directly upstream of our study site are 304 
primarily a gaining reach, receiving groundwater from the alluvial aquifer (Tolley et al., 2019).  305 
  306 
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 307 

Figure 1. Maps of study site and weather station within the Scott River Watershed, the Klamath 308 
Basin, and California. outlined in red. Source map credits: Esri , Earthstar Geographics, NOAA, 309 
and USGS. 310 

 311 
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 313 

Figure 2. Time series of (a) daily mean air temperature, (b) daily mean flow, (c) daily maximum 314 
stream temperature (DMxSTTmax), and (d) daily mean stream temperature (DMST) for the years 315 
1995Tmean) at Scott River from 1998–2020. 316 

 317 

 318 

a 

b 

c 

d 
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 319 

Figure 3. Inputs to Scott River “quantile air temperature” scenarios representing 15 320 
combinations of (a) three air temperature inputs and (b) five flow inputs that vary by day. 321 
Observed values for 1998–2020. Colored are shown as gray lines are days in four example high-322 
flow (red) and low-flow years (blue). Gray lines are other years. 323 

 324 

3 Methods 325 

At each of the 10 sites, we developed GAMs to predict daily mean stream temperature (Tmean) 326 
and daily maximum stream temperature (Tmax) using flow, air temperature, and day of year as 327 
covariates. We compared models across a range of complexity, including those with seasonally 328 
varying flow effects, to models with a constant relationship between stream temperature and 329 
flow. We selected a final model based on the best overall performance averaged across the 10 330 
sites. We then applied that model to flow management scenarios at one site– the Scott River. 331 

3.1 Data sources and data preparation 332 

3.1.1 Water temperature and river flow 333 

Since 2007,We obtained water temperature data from six sources (Table S1). For the Scott River 334 
site, we used Quartz Valley Indian Reservation (QVIR) Environmental Department has been 335 
using YSI (Yellow Springs, Ohio) 6600 multi-parameter datasondes to monitor Scott River water 336 
temperatures at the U.S. Geological Survey (USGS) gage 11519500 near the outlet of Scott 337 
Valley (QVIR, 2016; Asarian et al., 2020) (Figure 1). Temperature measurements are recorded 338 
every 30 minutes with a reported accuracy of ±0.15 °C. We combined QVIR’s dataset with 339 
additional temperature data collected at the same sitedata, supplemented by the U.S. Forest 340 
Service (USFS) in the years 1995–1998, 2003–2005, 2010–2016, and 2019 (KNF, 2010),, 2011) 341 
and U.S. Bureau of Reclamation (USBR) for the years 1998–2000.(Smith et al., 2018) data. For 342 
the nine other sites, we used data from the U.S. Fish and Wildlife Service (USFWS) (Manhard et 343 
al., 2018; Romberger and Gwozdz, 2018), USFS (KNF, 2010, 2011), USBR, U.S. Geological 344 
Survey (USGS), and California Department of Water Resources (CDWR). Following 345 
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compilation, we reviewed the data and removed any suspicious values (e.g., when there were 346 
calibration issues or probes appear to have been exposed to air). We then calculated daily mean 347 
stream temperature (DMST)Tmean and daily maximum stream temperature (DMxST).Tmax. For 348 
days when data were available from multiple entities, we averaged values (Text S1). Data 349 
availability ranged from 3540–5684 days and 16–21 years per site. We paired daily temperatures 350 
at each site with daily average streamflow data from nearby USGS gages (Figure 1, Table S1).  351 

Daily average streamflow for gage 11519500 were downloaded from the USGS National Water 352 
Information System. 353 

3.1.2 Air temperature 354 

We retrieved daily mean air temperature data from USFS’ Quartz Hill weather station located 355 
approximately 8 km southeast of the flow gage (Figure 1) are available as Global Historical 356 
Climatology Network - Daily station USR0000CQUA (Menne et al., 2012a, 2012b). We 357 
excluded all dates with a quality flag. For days lacking Quartz Hill measurements (0.5% of days 358 
with measured stream temperatures and 3.8% of the all days 1995–2020), we infilled missing 359 
values by linear regression with nearby weather stations or thetemperatures for each site from the 360 
4-km resolution gridded PRISM dataset (Daly et al., 2008) (Text S2). 361 

). Because stream temperatures are correlated with air temperaturestemperature at multiple time 362 
scales. The optimal number of days to average for regression modeling varies (Webb et al., 363 
2003). In addition to simple averages across varying numbers of days, other approaches include 364 
applying exponential weights (Koch and Grünewald, 2010; , we initially explored many metrics 365 
(Piotrowski and & Napiorkowski, 2019; Soto, 2016) or including separate terms for air 366 
temperatures on the day of interest and preceding days (Siegel and Volk 2019). We tested five 367 
categories of air temperatures covariates in our models, where Ai is the). In these initial 368 
explorations at Scott River, we found that two-day weighted air temperature (A2w) resulted in 369 
good model fits (Text S2), so we used A2w for all models except one that used a seven-day 370 
average (A7) to mimic Mohseni et al.’s (1998) widely-implemented model. A2w is calculated as 371 
follows, where A is mean air temperature on the day i, using Equations (1), (2), (3), (4), and (5):  372 

Single-day average A1: 373 

𝐴ଵ  ൌ  𝐴௜      (1) 374 

 375 

Multi-day averages A2 … A7: 376 

𝐴ଶ  ൌ  ሺ
஺೔ ା ஺೔షభሻ

ଶ
, … ,  𝐴଻  ൌ  

ሺ஺೔ ା ஺೔షమ … ஺೔షలሻ

଻
   (2) 377 

 378 

Multi-day weighted averages A2w and A3w, with preceding days discounted by 50% per day::   379 

𝐴ଶ௪  ൌ  𝐴௜  ൅  ሺ଴.ହ∗஺೔షభሻ

ଵ.ହ
   and   𝐴ଷ௪  ൌ  ሺ஺೔ ା ଴.ହ஺೔షభ ା ଴.ଶହ஺೔షమሻ

ଵ.଻ହ
  (3ൌ  ஺೔ ା ሺ଴.ହ∗஺೔షభሻ

ଵ.ହ
    380 

     (1) 381 

 382 

Lagged averages AL3 and AL5:   383 
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𝐴௅ଷ ൌ  
ሺ஺೔షభ ା ஺೔షమ ା ஺೔షయሻ

ଷ
     and    𝐴௅ହ  ൌ  

ሺ஺೔షభ ା ஺೔షమ ା ஺೔షయା ஺೔షరା ஺೔షఱሻ

ହ
  (4) 384 

 385 

Differences between lagged average and day i:  386 

𝐴∆ଷ  ൌ ሺ𝐴௜  െ  𝐴௅ଷሻ     and    𝐴∆ହ  ൌ  ሺ𝐴௜ – 𝐴௅ହሻ     (5) 387 

To improve numerical stability, we standardized each air temperature (°C) and flow predictor 388 
variable(log10 m3/s) by centering and scaling (i.e., subtracting the mean) and scaling (i.e., , then 389 
dividing by the standard deviation). 390 

 391 

3.1.3 Flow and air temperature quantiles 392 

At each site, we used smooth additive quantile regression models (Cade and Noon, 2003; Fasiolo 393 
et al., 2020) to calculate the air temperature associated with three quantiles (0.1, 0.5, and 0.9, 394 
equivalent to 10%, 50%, 90% exceedance probabilities) for each day of the year (Figure 3a), 395 
using the qgam R package (Fasiolo et al., 2020) with a 12-knot cyclic cubic regression spline 396 
(“cc”). We refer to the 0.1, 0.5, and 0.9 air temperature quantiles as Coolest, Typical, and 397 
Hottest, respectively. We also derived three flow quantiles, with the 0.1 quantile representing 398 
Lowest flows, 0.5 quantile representing Typical flows, and the 0.9 quantile representing Highest 399 
flows (Figure 3b). These quantiles were used to generate model scenarios (Section 3.4). 400 

We used similar quantile regression models at each site to categorize each date into one of nine 401 
categories based on combinations of flow quantiles (High is >0.67 quantile, Moderate is 0.33–402 
0.67 quantile, Low is <0.33 quantile) and air temperature quantiles (Cool is <0.33 quantile, 403 
Moderate is 0.33–0.67 quantile, Warm is > 0.67 quantile). These categories were used to define 404 
cross-validation blocks (Section 3.3). 405 

 406 

3.2 Model development and calibration 407 

We At each of the 10 sites, we developed statistical11 models to predict DMxSTof Tmax and 408 
DMSTTmean using combinations of river flow and, air temperature, and day of year (D) as 409 
predictors covariates, including interactions (Table 1). We tested three classes of models: non-410 
linear logistic regression, harmonic regression, and generalized additive models (GAM). 411 
ModelsGAMs were developed in R version 4.02 (R Core Team 2020). 412 

 413 

 414 

3.2.1 Generalized additive models (GAMs) 415 

We focused our stream temperature modeling on GAMs because they offer powerful flexibility 416 
including non-linear smoothers (Pedersen et al., 2019; van Rij et al., 2019). We used the bam 417 
function in the the mgcv R package version 1.8-31 36 using the bam function (Wood, 2017) to 418 
develop GAM models,), fit using fast restricted maximum likelihood (fREML). GAMWe also 419 
re-fit using maximum likelihood (ML) solely to obtain Bayesian information criterion (BIC) 420 
scores. Model terms can bewere either linear coefficients or smooth non-linear functions (Wood, 421 
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2017; Pedersen et al., 2019). The non-linear functions are smooth curves with the amount of 422 
wiggliness automatically determined by a smoothing penalty. (Pedersen et al., 2019; Wood, 423 
2017). We used cyclic cubic regression splines (“cc”) as the smoother for day of the year D and 424 
thin plate regression splines (“tp”) as smoothers for other covariates. To To improve prediction 425 
under new conditions and avoid overfitting (Jackson et al., 2018; Siegel and & Volk, 2019)), we 426 
limited smoothers for most variablesair temperature and flow to a maximum of 3three knots, 427 
except D whichin the one-covariate model “GAM11” where air temperature was allowed six 428 
knots. D was allowed up to 5six knots, except in three-dimensional tensors where it was 429 
restricted to five knots. 430 

We compared GAMs that Some models included interactions between D and other covariates 431 
(i.e., flow or air temperature) to allow the relationships between covariates and the response 432 
variable to that covariate’s effect to vary seasonally to GAMs where those relationships are 433 
seasonally constant. Our GAM models represented interactions between variables as . These 434 
interactions were either partially non-linear or fully non-linear. For a partially non-linear 435 
interactioninteractions, the linear slope of one variable (e.g., flow) changedvaried as a smooth 436 
non-linear function of another variable (i.e., D), an approach used by  (Jackson et al. (., 2018) 437 
and Siegel, Siegel &and Volk (2019) and specified in mgcv using the “by” option., 2019). Fully 438 
non-linear relationships between two or more variables were specified as tensor product smooths 439 
in mgcv using the syntax “te()” (Wood, 2017). If  main effects were included as separate terms, 440 
then we used “ti()”to specify aor tensor product interactioninteractions (Wood, 2017). 441 

All our GAM models included a random effect for year and all but one (“except “GAM11,” 442 
Section 4.2)”, the simplest model structure tested, included an AR-1 autocorrelation error 443 
structure. The bam function cannot automatically derive the AR-1 coefficient (rho), so it must be 444 
manually assigned. Following Baayen et al. (2018) and van Rij et al. (2019, 2020), and a random 445 
effect for year. We initially fit each model without an autocorrelation term, and then re-ran the 446 
modelfit with an autocorrelation term, assigning a rho value based on the initial model’s lag-1 447 
autocorrelation from the residuals of the initial model. (Baayen et al. (., 2018) and; van Rij et al. 448 
(., 2019) advise testing several rho values using model-comparison procedures, which in our case 449 
always confirmed the initial values were optimal., 2020) (Text S3). 450 

 451 

3.2.2 Harmonic regression 452 

As an alternative to compare to GAMs, we use harmonic regression (also known as 453 
trigonometric or periodic regression) (Cox, 2006) with paired sine and cosine interaction terms 454 
that allow the slope of covariates to vary as a smooth cycle over the course of the year (Bodeker 455 
et al., 1998). For daily periodicity, we multiplied day of the year D by 2π/365 (Helsel et al., 456 
2020). We developed these models using the lme function in the nlme R package version 3.1-148 457 
(Pinheiro et al., 2020) with an AR-1 autocorrelation term and a random intercept for year, fit 458 
using maximum likelihood (ML). Harmonic regression of stream temperature is common 459 
(Kothandaraman, 1971; Johnson et al., 2020), but we are not aware of previous applications of 460 
harmonic interactions between D and other covariates for stream temperatures. 461 

 462 
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3.2.3 Non-linear logistic regression 463 

Since Mohseni et al.’s (1998) non-linear logistic regression of weekly air temperature and stream 464 
temperature has been so widely applied, we use it as a benchmark to compare our other model to. 465 
Many streams, including the Scott River (Manhard et al., 2018), exhibit hysteresis in which the 466 
relationship between stream temperature and air temperature differs between spring and fall 467 
(Mohseni et al., 1998). Following Jones et al.’s (2016) code using R’s optim function, we 468 
modeled the ascending (weeks 1–30) and descending (weeks 31–52) limbs separately, fitting 469 
models using weekly averages and then apply them to daily data. These models do not include 470 
flow, autocorrelation, or random effects. We used 7-day average air temperatures to match the 471 
original methodwidely applied and adapted (Piotrowski & Napiorkowski, 2019), we included a 472 
GAM equivalent of it as a benchmark for comparison. A7 is the only predictor in this “GAM11” 473 
model (i.e., no flow, autocorrelation, or random effects). 474 

We reviewed residual plots and autocorrelation function plots to verify assumptions. We 475 
evaluated each model’s concurvity using mgcv’s concurvity function. 476 

 477 

3.3 Model selection and validation 478 

We compared alternative model configurations (which variables and interactions are included, 479 
which are assigned random effects, etc.) to select a final model (Table 1). Initial exploration 480 
indicated that A2w (2-day weighted air temperature) provided better model fits than other air 481 
temperature variables, so we used A2w for most of our models. After final model selection, we 482 
developed a separate set of models to assess the sensitivity of model fits to using different air 483 
temperature variables (Figure S1). Rather than slavishly follow a pre-specified procedure such as 484 
forward-selection or backward selection, we took a more holistic approach to model selection. 485 
We selected a final model after considering multiple models using a variety of methods including 486 
Akaike information criterion (AIC), fREML (fast restricted maximum likelihood) scores for 487 
GAMs, goodness of fit metrics (root mean squared error [RMSE] and coefficient of termination 488 
[R2]), and review of residual plots and auto correlation function plots.  Concurvity, the non-linear 489 
equivalent of collinearity, is a potential concern for GAMs such as ours that contain smooths for 490 
time along with other time-varying covariates (Amodio et al., 2014; Wood, 2017), so we 491 
evaluated each GAM’s concurvity using mgcv’s concurvity function. 492 

Prior to modeling, we randomly selected and excluded all data from 4 (17%) of the 24 years. 493 
These data were not used in model selection but instead were retained for out-of-sample 494 
validation. 495 

We validated models using two methods. First, we used leave-one-year-out (LOYO) cross-496 
validation, a version of k-fold variation in which we withhold a year, re-fit the model using the 497 
19 remaining years, compare predictions for the withheld year against the measured data using 498 
goodness of fit metrics (RMSE and R2), and then repeat the same process for each year. Second, 499 
for out-of-sample validation, we compared model predictions (calibrated with 20 years of data) 500 
against data from the four removed years using goodness of fit metrics (RMSE and R2). 501 

 502 

3.5We used cross-validation (CV) for model selection and validation because it is preferred over 503 
information theoretic approaches when prediction is paramount (Pedersen et al., 2019). We 504 
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designed extrapolation CV tests to select models that performed well when applied to 505 
environmental conditions (i.e., flow and air temperature) outside the calibration range (Lute & 506 
Luce, 2017; Roberts et al., 2017). We split data into blocks based on quantiles of flow and air 507 
temperature (Section 3.1.3), withheld one block, and fit the model using the remaining block 508 
(Figure 4). We compared predictions for the withheld block against the measured data using root 509 
mean squared error (RMSE). These dual-variable differential split-sample tests (Klemeš, 1986) 510 
extrapolate not only into new combinations of flow and air temperature but also into new ranges 511 
of both individual variables.  512 

We selected the final model by averaging all 40 RMSE values from extrapolation tests (10 sites 513 
× 2 extrapolation tests × 2 parameters [Tmax and Tmean]) and choosing the model with lowest 514 
mean RMSE. We selected the same model structure for Tmax and Tmean (rather than optimizing 515 
separately) so predictions for both metrics could be used together. We present BIC scores to 516 
compare our extrapolation-based model selection to more commonly applied model selection 517 
methods. To facilitate comparisons to previous studies, we also use leave-one-year-out (LOYO) 518 
CV where data were split into annual blocks and then treated similarly to the extrapolation tests 519 
(i.e., steps repeated for each year: year withheld, model refit using remaining data, and 520 
predictions compared to withheld data). We assessed the relative importance of individual model 521 
terms by comparing performance among models with and without individual predictors and/or 522 
interactions. 523 

 524 

 525 

 526 

Figure 4. Configuration of data blocks used in extrapolation tests for model selection and 527 
validation. 528 

 529 

 530 

Calibration 
block 

Validation block 

Calibration 
block 

Validation block 
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3.4 Model application to hydroclimatic and flow scenarios assessing management 531 
scenarioseffects and timing of flow importance  532 

3.4.1 All sites 533 

To assess the seasonal response of stream temperatures to variation in flow and air temperatures, 534 
we applied our selected GAM models to a group of 15model to scenarios representing differing 535 
air temperatures and flows (Table 2, Figure 3). We ran nine “quantile air temperature” scenarios 536 
representing combinations of 3 air temperature inputs and 5 flow inputs (Table 2, Figure 3). All 537 
three air temperature inputs were derived using non-parametric quantile regression (Cade and 538 
Noon, 2003; Muggeo et al., 2013) to calculate the air temperature associated with three quantiles 539 
(0.051, 0.505, and 0.95, equivalent to 5%, 50%, 95% exceedance probabilities) for each day of 540 
the year (Figure 3a), using the quantregGrowth R package (Muggeo et al., 2013), with options 541 
described in Text S3. For air temperature, the 9 quantiles) and three flow inputs (0.50 quantile 542 
represented typical conditions, the 1, 0.05 quantile represented hottest conditions, and the 5, and 543 
0.95 quantile represented coolest conditions. Three of the five flow inputs were based on 544 
quantiles (0.05, 0.50, and 0.95) derived using similar methods as the air temperature inputs, with 545 
the 0.50 quantile representing typical conditions, the 0.05 quantile representing very low flow 546 
conditions, and the 0.95 quantile representing high flow conditions (Figure 3b). The remaining 547 
two of the five 9 quantiles) (Section 3.1.3) for each site. Replication is sparse for the co-548 
occurrence of extreme quantiles of both air temperature and flow inputs are based on the USFS 549 
water right and California Department of Fish and Wildlife (CDFW) Interim Instream Flow 550 
Criteria. The USFS first-priority Scheduled D water right varies by (e.g., mean 4.9 days of record 551 
per month and day, from a high of 200 ft3/sec (5.67 m3/sec) in November through March to a low 552 
of 30 ft3/sec (0.85 m3/sec) in August and September (Superior Court of Siskiyou County, 1980) 553 
(Figure 3b). The CDFW criteria vary by site with flow ≤0.1 quantile and air temperature ≥0.9 554 
quantile); however, ample data are available in nearby quantiles (e.g., mean 19.1 days per month 555 
and day, from a minimum of 62 ft3/sec (1.75 m3/sec) in September to a high of 362 ft3/sec (10.3 556 
m3/sec) in February (CDFW, 2017site with flow ≤0.2 quantile and air temperature ≥0.8 quantile) 557 
(Figure 3b).S1).  558 

 559 

3.4.2 Scott River 560 

At Scott River only, six additional scenarios were run that paired the three quantile air 561 
temperatures with the USFS water right and CDFW flow criteria (Section 2) as flow inputs 562 
(Table 2, Figure 3). The CDFW and USFS flows do not follow a particular flow quantile through 563 
the entire year, but instead are aligned with extreme drought conditions in April and May (0.051 564 
quantile) and high flows in August and September (0.505 to 0.959 quantile). 565 

To assess the realistic timing and magnitude of modeled exceedances of stream temperature 566 
thresholds, We also applied our selected GAM model to predict stream temperatures in a group 567 
of “observed air temperature” scenarios that pair the observed daily air temperature time 568 
seriestemperatures for 1995-dates 1998–2020 with eight flow conditions for the Scott River: 569 
observed USGS flows in addition to the five flows used in the “quantile air temperature” 570 
scenarios (low, typical, high, USFS, and CDFW) as well as two additional scenarios in which the 571 
CDFW and USFS , the five flows are used as minimums that are supplantedfrom the “quantile 572 
air temperature” scenarios (Lowest, Typical, Highest, USFS, and CDFW), and two additional 573 
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scenarios in which the CDFW and USFS flows were replaced by observed USGS flows on dates 574 
when the observed flows arewere higher than the management flows (Table 2). We expect that 575 
Using observed air temperatures instead of quantile air temperatures provides more realistic real-576 
world predictions because air temperatures fluctuate erratically from day to day (Figure 22a), 577 
instead of stayingremaining near the same quantile like flow does during the seasonal flow May–578 
September recession each year from May through September. 579 

. We summarized the results of each “observed air temperature” scenario by calculating: 1) 580 
annual maximum temperature, 2) first and last day each year in which water temperatures exceed 581 
22 °C, and 3) the annual degree days exceedance of 22 °C, calculated by subtracting 22 from all 582 
DMxSTTmax and summing all positive values by year. We chose 22 °C as an indicator of 583 
biological effects on juvenile salmonids that rear in the mainstem Scott River or outmigrate 584 
downstream using the river as a migratory corridor. Given the potential for local genetic 585 
adaptation to thermal regimes (Zillig et al., 2021), we prioritized, based on geographically 586 
proximal studies near the Scott River in selecting thresholds. When the Klamath River exceeds 587 
22–23 °C, juvenile salmonids move to tributary confluences (Brewitt & Danner, 2014; Sutton et 588 
al., 2007; Sutton and & Soto, 2012; Brewitt and Danner, 2014). Similar behavior was observed 589 
in the Shasta River (Nichols et al., 2014) and 22 °C was also used by McGrath et al). (2017). The 590 
22 °C threshold is not fully protective for coho salmon (Text S4) but we chose it because our 591 
study site is a mainstem river where temperatures are expected to be higher than a cool 592 
tributary.). 593 
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Table 1. ComparisonList of Scott River GAMs and model training statistics.  594 
 595 

  

 Daily maximum stream 
temperature 
(DMxSTTmax) 

 
Daily mean stream temperature  

(DMSTTmean) 

Model Name Predictor variables 

 fREM
LBIC 

AIC
AR1 

AR1
edfF 

edfe
dfR 

RMS
E R2  

 fREM
LBIC 

AIC
AR1 

AR1
edfF 

edfed
fR 

RMS
E R2  

GAM1: tensor Q-A2w-D te(Q, A2w, D)  500412
830 

9901
0.526 

0.58
723.

6 

46.5
18.1 

0.861.
06 

0.982
973 

 335485
62 

0.659
6607 

0.74
722.

8 

46.51
8.1 

0.778
0 

0.979
978 

GAM2: tensors Q-D & A2w-D s(A2w) + ti(A2w, D) + te(Q, D)  503612
734 

9973
0.529 

0.60
318.

4 

36.4
18.0 

0.881.
05 

0.981
974 

 336484
92 

6639
0.667 

0.76
917.

1 

35.61
8.0 

0.80 0.978
979 

GAM3: tensor Q-D & vary A2w s(D, by = A2w) + s(A2w) + te(Q, 
D) 

 503912
745 

9978
0.531 

18.0.
580 

39.3
18.0 

0.861.
05 

0.982
974 

 337384
82 

6649
0.672 

0.74
216.

3 

39.11
8.0 

0.758
0 

0.980
978 

GAM4: tensors Q-D & A2w-Q 
(final) 

s(D, by = A2w) + s(A2w) + ti(A2w, 
Q) + te(Q, D) 

 505312
717 

1002
20.53

1 

0.60
317.

2 

36.3
17.9 

0.891.
05 

0.981
974 

 340184
86 

6729
0.671 

0.76
316.

9 

35.41
8.0 

0.80 0.978 

GAM5: tensorstensor Q-D &no 
vary A2w-Qv2 

s(A2w) + ti(A2w, Q) + te(Q, D)  509512
724 

1011
60.53

7 

0.60
815.

7 

34.1
17.9 

0.901.
06 

0.989
74 

 345284
56 

6840
0.679 

15.6
0.76

4 

33.21
7.9 

0.828
0 

0.977
978 

GAM6: tensor Q-D no vary Q & 
A2w linear 

s(D, by = A2w) + te(s(D, by = Q, ) 
+ s(D) 

 510512
828 

1013
90.57

8 

0.61
113.

9 

30.4
17.8 

0.901.
12 

0.989
70 

 346685
94 

6873
0.728 

0.77
10.9 

28.61
7.3 

0.838
9 

0.976
973 

GAM7: varyingvary Q & A2w 
(final) 

s(D, by = A2w) + s(DA2w) + s(Q) 
+ s(D, by = Q) + s(D) 

 516012
754 

1025
40.54

4 

12.6
0.65

9 

28.2
17.9 

1.070.
96 

0.978
973 

 346485
38 

6871
0.695 

0.80
411.

8 

27.51
7.6 

0.888
4 

0.973
976 

GAM8: A2wvary Q & no 
varyingvary A2w 

s(A2w) + s(Q) + s(D, by = Q) + 
s(D) 

 544812
736 

1085
50.55

2 

0.77
312.

3 

23.1
17.8 

1.350
8 

0.956
973 

 362685
26 

7208
0.704 

0.83
411.

8 

23.81
7.5 

1.080.
84 

0.969
76 

GAM9: A2w no Q or varyingvary s(A2w) + s(Q) + s(D)  552513
105 

1101
00.67

3 

0.84
68.4 

22.3
17.6 

1.703
2 

0.931
959 

 374987
38 

0.764
7459 

0.87
58.1 

2117.
6 

0.961.
30 

0.941
969 

GAM10: A7 only with AR1 s(A7) 
 6606 1318

6 
0.88

6 
21.3 2.75 0.817  5044 1006

2 
0.905 21.2 2.29 0.819 
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GAM11: A7 onlyGAM10: A2w no 
AR1Q or vary 

s(A7A2w) + s(D)  104411
3313 

2082
30.78

0 

N/A
6.0 

23.2
17.3 

2.211.
62 

0.882
938 

 933091
50 

1860
20.84

0 

N/A
6.0 

23.11
6.6 

1.742
0 

0.895
952 

Harmonic12: varying Q & A2w A2w + A2w:sin(Dn) + A2w:cos(Dn) 
+ Q + Q:sin(Dn) + Q:cos(Dn) + 
cos(Dn) + sin(Dn) 

 N/A 1036
8 

0.73 N/A 1.04 0.969  N/A 6810 0.859 N/A 0.94 0.964 

Logistic13: Mohseni GAM11: 
A7 only no AR1 

Logistic regression with A7s(A7) 
 N/A22

668 
N/A N/A

5.8 
N/A

0 
2.344

0 
0.868
865 

 N/A20
265 

N/A N/A
5.8 

N/A0 1.848
8 

0.883
882 

Note: GAM Models are sorted by fREML scoreedfF for DMxST.Tmax, from most complex (GAM1) to least complex (GAM11). 596 
Except ‘GAM11 A7 only no AR1’, all GAM and LMM models also include an AR1 autocorrelation structure and a random effect of 597 
year. For models with italicized names, validation statistics are provided in Figures 4 (DMxST) and S5 (DMST). D = day of year from 598 
1 (1 January) to 366 (31 December in leap year), Q = daily mean flow in units of m3/s, see Section 3.1.122 for key to ‘A’ air 599 
temperature variables, ‘s()’ is a non-linear function, 's(D, by = )’ is a linear interaction that varies smoothly by D, ‘te()’ is a fully non-600 
linear tensor product smooth of two or three variables, ‘ti()’ is a tensor product interaction, ‘:’ is linear interaction, n = 2π/365, fREML 601 
= fast restricted maximum likelihood score, AIC = AkaikeBIC = Bayesian information criterion score, AR1 = autocorrelation 602 
coefficient, edfedfF = effective degrees of freedom (edf) for fixed effects, edfR = edf for random effects, RMSE = root mean squared 603 
error, of model training fit (not CV), and R2 = coefficient of determination. from model training fit (not CV). 604 
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Table 2. Matrix showing the 23 stream temperature model scenarios representing combinations 605 
of air temperature and flow inputs, and organized into two scenario groups. The first group (15 606 
scenarios in Group 1 use) used “quantile air temperature” inputs (6 were only run only at Scott 607 
River while 9 were run at all Klamath Basin sites) and the second group (8 scenarios in Group 2 608 
use) were run only at Scott River and used “observed air temperature” inputs. 609 
 610 

 

Air 
temperatur

e inputs 

Flow inputs 
Scenario 

group Lowest 
(0.051 

quantile
) 

Typical 
(0.505 

quantile
) 

Highest 
(0.959 

quantile
) 

USF
S 

exact
wate

r 
right  

CDFW 
exactfl

ow 
criteri

a  

Observed 

Maximum of 
observed or 

USFS as 
minimum 

Maximum 
of observed 
or CDFW 

as 
minimum 

Observe
d 

 Hottest  

(0.959 
quantile) 

Group 
1All 
sites 

Group 1 
All sites 

Group 
1 All 
sites 

Grou
p 

1Scot
t only 

Group 
1 Scott 

only 
   

Quantile 
air 

temperatu
re 

Typical  

(0.505 
quantile) 

Group 
1All 
sites 

Group 1 
All sites 

Group 
1 All 
sites 

Grou
p 1 

Scott 
only 

Group 
1 Scott 

only 
   

 Coolest  

(0.051 
quantile) 

Group 
1 All 
sites 

Group 1 
All sites 

Group 
1 All 
sites 

Grou
p 1 

Scott 
only 

Group 
1 Scott 

only 
   

Observed 
air 

temperatu
re 

Group 
2Observed 
(measured 
on date) 

Group 
2 Scott 

only 

Group 2 
Scott 
only 

Group 
2 Scott 

only 

Grou
p 2 

Scott 
only 

Group 
2Scott 
only 

Group 2 
Scott 
only 

Group 2 Scott  
only 

 Scott  
only 

Note: USFS = USFS Schedule D first-priority water right (Superior Court of Siskiyou County, 611 
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 617 

Figure 3. Inputs to Group 1 scenarios representing 15 combinations of (a) three air temperature 618 
inputs and (b) five flows inputs that vary by day. Observed values for 1995–2020 are shown as 619 
gray lines in both panels. Data values are labeled for 15 June and 1 August. 620 
 621 

4 Results 622 

4.1 Measured water temperature, air temperature, and flow 623 

From May–July, measured water temperatures were highly variable among years (Figure 2). For 624 
those months, the highest-flow years had DMxST averaging 6.8 °C cooler than during lowest-625 
flow years, while DMST averaged 5.3 °C cooler. In contrast, from August through October inter-626 
annual differences in water temperature much less pronounced. Annual maximum water 627 
temperatures occurred earlier in the season in low-flow years (i.e., early/mid-July) than in high-628 
flow years (i.e., late July or early August). These observations inspired us to develop seasonally 629 
varying models. 630 

 631 

4.2 Model selection and validation 632 

In extrapolation CV of the 11 models (Table 1), GAM7 had the lowest all-site mean RMSE (Tmax 633 
1.13 °C, Tmean 1.00 °C), as well as the lowest RMSE for Scott River (Tmax 1.20 °C, Tmean 1.00 634 
°C), so was selected as our final model (Figure 5). GAM7 features nonlinear smoothers for day 635 
of year (D), two-day weighted air temperature (A2w) , and flow (Q); a nonlinear smoother of D 636 
interacted with linear Q (i.e., linear slope of Q varies by D); and a nonlinear smoother of D 637 
interacted with linear A2w (Table 1, Figure S3, Figure 6). GAM7 has intermediate complexity, 638 
with 12.6 effective degrees of freedom for fixed effects (edfF) for Scott River Tmax, compared to 639 
23.6 for the most complex model (GAM1), and 5.8 for the least complex model (GAM11) (Table 640 
1). 641 

Extrapolation CV showed that at all sites, including Scott River, models with seasonally varying 642 
flow effects had much higher accuracy than models lacking that feature (Figure 5). For example, 643 

a 

b 
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for Tmax, all-site RMSE was 1.13–1.17 °C for models with seasonally-varying flow effects 644 
(GAM1–GAM8) and 1.66 °C for GAM9 that lacked seasonally varying flow. Models lacking 645 
flow (i.e., containing only D or A2w) performed the worst, with all-site RMSE values of 1.72 °C 646 
and 2.21 °C for GAM10 and GAM11, respectively, for Tmax. GAM7’s combination of a 647 
nonlinear smoother for flow and a partially nonlinear interaction of flow and D represented flow 648 
effects well, given that the additional complexity of tensors (fully nonlinear interactions of flow 649 
and D) in GAM1–GAM5 did not substantially improve model performance at most sites. Models 650 
interacting flow and air temperature (i.e., GAM1 and GAM4) did not outperform GAM7 which 651 
lacked this interaction. 652 

BIC scores (Figure S4) largely corroborate the extrapolation CV results identifying the 653 
importance of seasonally varying flow effects. Of eight models with seasonally varying flow 654 
effects, the most complex model (three-way tensor GAM1) had the worst overall (averaged 655 
across all sites) BIC score, but intermediate extrapolation CV RMSE. Averaging BIC ranks 656 
across sites, our extrapolation CV-selected model, GAM7, had the best BIC ranks for both Tmax 657 
and Tmean (Figure S4); however, at many individual sites including Scott River, other models had 658 
better BIC scores (Figure S4, Table 1). 659 

Scott River GAM7 LOYO CV predicted overall seasonal patterns in measured Tmax for dates 660 
stratified into combinations of differing quantiles of air temperatures and flows. RMSE was 661 
higher for dates with low (<0.33 quantile) flows (Figure S2c). Tmax Scott River GAM7 662 
extrapolation CV prediction accuracy was only slightly lower than LOYO CV prediction 663 
accuracy when averaged over the entire year (i.e., RMSE 1.20 °C vs. 1.18 °C, Figure 5), but 664 
were biased low during May and June during high (>0.67 quantile) flows, having only been 665 
calibrated with data from the low-flow and moderate-flow quantile (Figure S5). Complete time 666 
series of Scott River measured and LOYO CV Tmax and Tmean for all years are shown in Figures 667 
S6–S7. 668 

 669 
 670 

 671 

Figure 5. The sensitivity analysis of model training statistics for models using various air 672 
temperature metrics indicated similar performance for most of the metrics, except the longest 673 
multi-day air temperature averages which had higher RMSE (Figure S1). For DMxST, RMSE 674 

Range of two 
extrapolation tests 

Mean of two 
extrapolation tests 
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ranged from 0.88–0.90 °C for all air temperature metrics except the 3-day to 7-day averages 675 
which were 0.96–1.15 °C (Figure S1). For DMST, RMSE ranged from 0.79–0.82 °C for all air 676 
temperature metrics except the 4-day to 7-day averages which were 0.85–0.98 °C and the single-677 
day average (0.87 °C) (Figure S1). Given the excellent performance of the 2-day weighted air 678 
temperature (A2w) in predicting both DMxST and DMST (Figure S1), we use A2w for all models 679 
except Logistic13 and the two GAM models that mimic it (Table 1).  680 

Validation and training statistics indicate a wide range of performance (Table 1, Figure 4), with 681 
the tensor models (i.e., GAM1, GAM2, GAM3, GAM4, GAM5, GAM6) performing best while 682 
those models that used only Summary of RMSE from extrapolation and LOYO CV tests at 10 683 
Klamath Basin sites applying Tmax (top panels) and Tmean (bottom panels) models to years 684 
(LOYO) or flow and air temperature combinations (extrapolation) not used in model calibration. 685 
Models are sorted by overall RMSE (i.e., mean of all 10 sites and both temperature metrics). 686 
Data labels for top eight models in individual site panels are means from extrapolation tests, with 687 
asterisk marking lowest RMSE in each panel. Labels at right edge of graph are all-site means for 688 
each model and parameter. 689 
  690 
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 691 

 692 

Figure 6. Effects of flow (Q) and day of year (D) on predicted values of (a) Tmax and (b) Tmean in 693 
Scott River GAM7. Colors and labeled contour lines show predicted temperatures (°C). 694 
Underlying gray dots show calibration data.   695 
  696 
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4.2 Model scenarios assessing management effects and timing of flow importance 697 

Water temperature predictions under quantile air temperature (e.g., Logistic13 and its GAM 698 
equivalent GAM11) performedscenarios on the worst.  699 

GAM4, chosen asScott River using our selected model for reasons discussed in Section 5.1, had 700 
a cross-validated RMSE of 1.01 °C for DMxST (Figure 4) and 0.93 °C for DMST (Figure S5), 701 
with similar values for out-of-sample validation. Similar to the measured data (Figure 2), in the 702 
May–July period the selected model predicts cool(GAM7) showed water temperatures during 703 
high-flow years and warm water temperatures during low-flow years (responded to changes in 704 
flow across all quantiles of air temperature, consistent with measured data (Figure S2). The 705 
effects plot for the selected models show that stream temperatures are relatively insensitive to 706 
flow from 1 December to 1 March, but that flow exerts a strong cooling influence from 1 April 707 
to 1 August (Figure 5, Figure S7). The complete time series of measured and modeled water 708 
temperature data for all years is available as Figure S3 and S4 for DMxST and DMST, 709 
respectively. 710 
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 711 

Figure 4. Comparison of measured DMxST to LOYO cross-validation predictions and out of 712 
sample validation predictions for 1995–2020. Solid lines are linear regression and dotted lines 713 
are the 1:1 (Y=X) lines. 714 
  715 
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 716 

 717 

 718 

Cooling effects ofFigure 5. Effects plot showing predictions from selected model “GAM4: 719 
tensors Q-D & A2w-Q” that uses 2-day weighted air temperature (A2w), flow (Q), and day of 720 
year (D) as predictors. Colors show predicted DMxST as function of Q and A2w, with DMxST 721 
labeled contour lines spaced 2 °C apart. Panels represent the first day of each month. Gray dots 722 
show position of calibration points within 5 days of first of each month.   723 
  724 
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 725 

4.3 Model application to hydroclimatic and flow management scenarios 726 

The “quantile air temperature” model scenarios show that flow and air temperature both had 727 
strong effects on water temperature (Figure 6). The cooling effect of high flow followed a 728 
seasonal pattern, rising in March to reach a peakmaximum effect size on 15 June (up to 9.5 °C 729 
for DMxST and 6.27.7 °C for DMSTTmax and 5.5 °C for Tmean), then diminishing to near zero by 730 
early September (Figure 6). Cooling effects of high flows were stronger when air temperatures 731 
were high than when air temperatures were low (e.g., 15 June difference in DMxST between 732 
highest-flow and lowest-flow scenarios is 9.5 °C with the hottest air temperatures and 8.0 °C 733 
with the coolest air temperatures). With less solar radiation (due to shorter days and lower solar 734 
angle) and lower air temperatures than earlier months, DMxST is almost always less than 22 °C 735 
by early September regardless of flow (gray lines in top panels of Figure 6).7). Consistent with 736 
the measured data (Figure 2S2), modeled annual maximum water temperatures occurred later in 737 
the season in high-flow yearsconditions (i.e., late July or early August) than in low-flow 738 
yearsconditions (i.e., early/mid-July) (Figure 67).  739 

In theTiming and magnitude of flow effects varied among the 10 Klamath Basin sites, but 740 
generally followed a similar seasonal trend of flow having the strongest cooling effects in April–741 
July, less cooling effects in March and August, and warming effects in November through 742 
February (Figure 8). Cooling effects of flow were strongest at Scott River and weakest at Shasta 743 
River.  744 

The Scott River “observed air temperature” scenarios, we modeled DMxST pairing thewhich 745 
paired observed air temperature time series for 1995–2020 with eight flow scenarios (Table 2, 746 
Figures 7 and S8). These scenarios provide an indication of the range (e.g., due to air 747 
temperatures) in daily water temperature associated with eachtemperatures with eight flow 748 
scenarios, demonstrated how flow variation influences stream temperature timing and 749 
magnitude. The lowest flow scenario. Compared to the lowest flow scenario (0.05 quantile), the 750 
highest flow scenario (0.95 quantile) has  (0.1 quantile) had annual maximum temperatures that 751 
are 3.73 °C coolerwarmer than the highest flow scenario (0.9 quantile) (Figure 7a)9a), and 752 
temperatures first reachreached 22 °C 5148 days laterearlier (Figure 7c); in contrast, there is only 753 
a 2-day difference in9c). The last day of the year that has with temperatures >22 °C differed by 754 
only 2 days (Figure 7d9d). The scenario with observed flows hasscenario had the most 755 
interannual variation in the annual maximum temperature (Figure 7a9a) and timing of 756 
exceedances of 22 °C (Figure 7c9c,d), because it includesincluded very low flows as well asand 757 
very high flows. WaterPredicted temperature responses to the CDFW and USFS flow scenarios 758 
are complex and depend on how the flows are implemented. If implemented as bypass flows, 759 
above which all additional water is diverted, then temperatures reachreached 22 °C 17 days 760 
earlier with the exact USFS flows than withthe observed flows flow scenario by 4 days for the 761 
CDFW flows and 13 days for USFS flows (Figure 7c9c and Figure S8) because the USFSthese 762 
management flows are much lower than average observed flows in May and June. In contrast 763 
(Figure 3). However, in the scenario in whichscenarios where the CDFW and USFS flows are 764 
treated as minimums (supplantedwere replaced by observed USGS flows on daysdates when the 765 
observed flows are higher), temperatures reach 22 °C on the same day as the observed flow 766 
scenario (Figure 7d). Due to high July and August flows in the CDFW scenarios, annual 767 
maximum water temperatures are 1.1–1.3 °C cooler in the CDFW scenarios than the observed 768 
flow scenario (Figure 7a). Relative to the observed flow scenario, the date that the CDFW as 769 
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minimum scenario first reaches 22 °C is only 3 days later average (2 July vs. 30 June), but were 770 
higher than the management flows, then predicted temperatures reached 22 °C later than the 771 
observed scenario by 4 days with CDFW flows and 2 days with USFS flows. In addition, the 772 
number of years with exceedances of 22 °C prior to 23 June 20 arewere reduced from 67 to 20 773 
(Figure 7c9c) because the CDFW flows arewere higher inthan observed flows in drought years. 774 
Patterns of inter-scenarioDue to higher July and August flows, annual maximum water 775 
temperatures were 1.0–1.1 °C cooler in the CDFW scenarios than the observed flow scenario 776 
(Figure 9a). Differences in annual degree-days exceedance of 22 °C between scenarios (Figure 777 
7b) are very9b) were similar to those of annual maximum temperature (Figure 7a). While the 778 
CDFW flows and USFS flows are both predicted to improve (i.e., cool) summer temperatures 779 
relative to current conditions, these improvements would be greater with the higher CDFW 780 
flows. 781 

 782 

 783 
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 784 

Figure 6. Predicted maximum7. Modeled Scott River Tmax and mean water temperaturesTmean 785 
under the 15 “quantile air temperature” scenarios representing combinations of 3three air 786 
temperature inputs (arranged in columns) and three quantile flow inputs and two management 787 
flow inputs (shown by color). Observed values for 19951998–2020 are shown as gray lines. 788 
Selected data values are labeled on 15 June and the first day of the months March–October. 789 
Horizontal dashed line at 22 °C DMxST is the salmonid temperature threshold. 790 
  791 
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 792 

 793 

794 

 795 
Figure 7. 796 

 797 

Figure 8. Modeled stream temperature differences between lowest flow (0.1 quantile) and 798 
highest flow (0.9 quantile) scenarios throughout the year for (a) Tmax and (b) Tmean at 10 Klamath 799 
Basin sites estimated using GAM7.  800 
 801 
  802 

a b 

c d 
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 803 

 804 

 805 

Figure 9. (a) Annual maximum stream temperature, (b) annual degree-days exceeding 22 °C, 806 
and (c) first day and (d) last day each year when DMxST exceedsTmax exceeded 22 °C predicted 807 
using a statisticalin Scott River model scenarios pairing observed air temperatures for 1995–2020 808 
with the same eight flow conditionsscenarios. Means of all years are shown in Figure S8. Points 809 
forwith black points and grey “x” show individual years are, offset slightly for clarity. Data 810 
labels are the mean of all years. 811 

 812 

 813 

5 Discussion 814 

Consistent with our hypothesisAt all 10 sites, models with seasonally varying flow effects of 815 
flowsubstantially outperformed models with a constant relationship between stream temperature 816 
and flow. High flows have a strong cooling effect on stream temperatures in April–July, but less 817 
influence during other months. The flexibility of GAMs, including non-linear and seasonally 818 
varying relationships between stream temperature and flow, produced more accurate predictions 819 
than harmonic regression models. Logistic regression of stream temperature with air 820 
temperature, based Mohseni et al.’s (1998) popular method,, indicating that the influence of flow 821 
changes throughout the year. Models containing only air temperature performed particularly 822 
poorly in comparison to the GAMs because itthey did not include flow as a predictor. Our results 823 
confirm previous findings that summer stream temperatures are negatively correlated with 824 
covariate, while models with a linear effect of flow (Arora et al., had intermediate accuracy. 825 



manuscript submitted to Water Resources Research 

 

Flow had the strongest effect on water temperatures in April–July. The highest Scott River 826 
management flow evaluated would substantially decrease exceedances of 22 °C and reduce 827 
annual water temperature maximums.  2016; Isaak et al., 2017; Luce et al., 2014; Neumann et al, 828 
2003), and that flow more strongly affects DMxST than DMST (Asarian et al., 2020; Gu et al., 829 
1998; Gu and Li, 2002). 830 

5.1 Model selection and the importance of seasonally varying and non-linear relationships 831 

After considering 13 models, we selected the GAM model with a two-day weighted air 832 
temperature (A2w) whose slope varies by day of the year (D), a tensor product smooth of flow 833 
and day of the year (Q-D), and an A2w-Q tensor product interaction (Table 1, Figure 4). We 834 
chose this model (GAM4 “tensors Q-D & A2w-Q”) based on a combination of model fit (low 835 
RMSE, high R2, and low fREML score) and fewer effective degrees of freedom (edf) than other 836 
models with similar fit. This structure allowed modeled stream temperatures to respond flexibly 837 
to varying conditions in all three variables (D, A2w, and Q). Although the three-way tensor 838 
GAM1 “tensor Q-D-A2w” had the lowest fREML score, making it an appealing choice, it also 839 
had the highest edf, increasing the risk of being overfit. Indeed, when we experimented with 840 
applying GAM1 to model scenarios (not shown), the coolest air temperature scenarios (0.05 841 
quantile) had mid-July temperatures that were higher in the typical flow (0.50 quantile) than 842 
either the lowest flow (0.05 quantile) or highest flow (0.95 quantile) scenario, which seemed 843 
implausible.  844 

Comparing the relative performance of models with different smoothers and interactions 845 
provides insight into which are most important (Table 1, Figure 4, Figure S5). All models 846 
lacking seasonally varying flow effects (i.e., GAM8, GAM9, GAM10, GAM11, and Logistic13) 847 
performed worse than any model with seasonally varying flow effects, highlighting the 848 
importance of this feature. Modeled temperatures were biased high in April–June in models 849 
without seasonally varying flow effects, an issue that is diminished but still present in the 850 
Harmonic12 model that represents seasonal effects as perfectly symmetrical sine waves, and 851 
completely absent in the models that represents seasonal effects as flexible GAM smoothers 852 
(Figure S6). Models with tensors (i.e., GAM1, GAM2, GAM3, GAM4, GAM5, GAM6) had 853 
better fit than models with seasonally varying but linear relationships (e.g., GAM7), though the 854 
difference was not as great as the difference between seasonally constant models and seasonally 855 
varying models. For example, relative to the GAM7 model which is seasonally varying but 856 
linear, the GAM8 model with non-linear but seasonally constant relationships had a RMSE 0.4 857 
C° lower (0.96 °C  vs. 1.35 °C) for DMxST and 0.2 C° lower (0.88 °C vs. 1.08 °C) for DMST 858 
(Table 1). The selected model, GAM4, which has a fully non-linear tensor product smooth of D 859 
and Q, and a tensor product interaction of A2w and Q, has improved (relative to GAM8) RMSE 860 
of 0.89 °C for DMxST and 0.80 °C DMST and improved rREML scores (Table 1). In addition, 861 
the results for GAM3 (seasonally varying A2w and Q-D tensor product smooth) and GAM5 (A2w-862 
D tensor product interaction and Q-D tensor product smooth), suggests that most of the 863 
improvement between GAM7 and GAM4 comes from the Q-D tensor product smooth rather 864 
than from the D-varying A2w or Q-A2w tensor product interaction (Table 1).  865 

The GAMs work well because they are able to represent the non-linear relationships and 866 
interactions between predictor variables present in our dataset. Heeding guidance from previous 867 
researchers we prevented overfitting by limiting the number of knots in the tensors (Jackson et 868 
al., 2018; Siegel and Volk, 2019). Our flexible approach takes maximal advantage of our multi-869 
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decade daily calibration dataset featuring a range of environmental conditions (i.e., hot and cool 870 
air temperatures and high and low flows) over the 4696 days. Our validation results suggest that 871 
we have enough data to support our rather complex selected model GAM4. Future researchers 872 
modeling temperatures at other sites may not have as much data, so should exercise caution and 873 
may want to use the simpler GAM7 model. 874 

 875 

5.3 Snow and groundwater mediate the effects of river flow Model accuracy of our top model 876 
and similar model structures were high for both Tmax and Tmean. For Tmean, our selected model’s 877 
LOYO CV RMSE ranged from 0.80–1.17 °C at 10 sites (Figure 5), better than the 0.75–1.75 °C 878 
RMSE in Mohseni-based models at 14 sites within our study area (Manhard et al., 2018). In 879 
additional to outperforming other models applied within our study area, our selected Tmean model 880 
also had better LOYO CV RMSE than most single-station year-round daily statistical models 881 
from around the world (all-site average model validation RMSE for each analysis’s best 882 
performing class of models: Ahmadi-Nedushan et al. [2007] 0.51 °C, Boudreault et al. [2019] 883 
1.45 °C, Coleman et al. [2021] 1.3 °C, Koch and Grünewald [2010] 1.25 °C, Laanaya et al. 884 
[2017] 1.44 °C, Letcher et al. [2016] 1.16 °C, Sohrabi et al. [2017] 1.25 °C, van Vliet et al. 885 
[2011] 1.8 °C, and Soto et al. [2016] 1.20 °C). Our high model accuracy was achieved despite 886 
using PRISM air temperatures instead of local measurements—favoring ease of replicability.  887 

GAMs were a useful modeling approach because they represented the nonlinear relationships 888 
and interactions between stream temperature and covariates. Our approach used >15-year 889 
calibration datasets spanning environmental conditions (i.e., hot and cool air temperatures and 890 
high and low flows). We prevented overfitting by restricting the number of knots in GAM 891 
smoothers (Section 3.2), basing model selection on extrapolation tests that evaluate prediction 892 
under expanded ranges of covariates (Section 3.3), and confirming that covariate responses and 893 
interactions matched scientific hypotheses regarding underlying physical processes (Section 5.3). 894 
Our selected model, GAM7, represented flow with two terms—a nonlinear smoother and a 895 
partially nonlinear interaction between flow and day of year—whose combined effects (Figure 6) 896 
provided enough flexibility for accurate predictions without overfitting. This two-term structure 897 
incrementally improves upon previous methods for representing flow effects, with GAM7’s 898 
overall extrapolation CV RMSE 0.04 °C better than GAM6, the model with a simpler flow 899 
effects structure nearly identical to Glover et al. (2020). Consistent with warnings from Siegel & 900 
Volk (2019), tensors (fully nonlinear interactions) were too flexible and did not perform as well 901 
as GAM7 when applied to conditions differing from the calibration dataset (i.e., extrapolation 902 
tests), although tensor models still outperformed models without seasonally varying flow effects. 903 

 904 

5.2 Magnitude and timing of flow effects on water temperature 905 

Consistent with physical expectations, our results corroborate previous findings from northern 906 
temperate rivers that during seasons when air temperatures are typically high and flows are 907 
typically low (i.e., summer in our study area), lower flows are often temporally correlated with 908 
higher stream temperatures (Arora et al., 2016; Isaak et al., 2017; Luce et al., 2014; Neumann et 909 
al., 2003), and flow more strongly affects Tmax than Tmean (Asarian et al., 2020; Gu and Li, 2002; 910 
Gu et al., 1998; Gu and Li, 2002). In our study streams, high flows had a strong cooling effect on 911 
stream temperatures in April–July, but less influence during other months. Multiple linear 912 
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regression (MLR) models using monthly flow and air temperature at 239 Northwestern USA 913 
sites not regulated by dams (Isaak et al., 2018) and spatial stream network models for eight 914 
regions of the Western USA (FitzGerald et al., 2021) showed monthly timing and direction of 915 
flow effects on stream temperatures (Figures S9–S10) similar to our results (Figure 8b), with the 916 
exception of similar cooling in April and August whereas our models show weaker cooling in 917 
August than in April. Monthly MLR modeling in 17 sites in Canada’s Frasier River Basin found 918 
flow-mediated cooling effects on summer water temperatures were stronger in July than August 919 
and weakest in September (Islam et al., 2019). In Poland, where inter-season flow differences are 920 
less pronounced than in our study area, high flows were correlated with cooler water 921 
temperatures in April–September, with the strongest relationships occurring in July–September 922 
at mountainous snowmelt-fed rivers (Wrzesiński and Graf, 2022). An Eastern USA river study 923 
using a daily year-round GAM found that water temperature decreased with increased flow from 924 
April through mid-October (Yang & Moyer, 2020). Previous studies evaluating year-round 925 
changes in the relationship between stream temperature and flow generally used monthly time 926 
steps. Our daily model provides a more nuanced understanding of seasonal dynamics by 927 
allowing this relationship to change smoothly at sub-monthly time scales, facilitating 928 
identification of changes within a month, as well as the rate of change. 929 

Flow-induced cooling in snowmelt-dominated rivers is common. Process-based modeling of a 930 
Sierra Nevada river indicated early summer stream temperatures up to 16 °C cooler in a record 931 
wet year relative to a dry year (Null et al., 2013). In steep Alaskan streams, average summer 932 
stream temperatures were 3–5 °C cooler in high-snowpack years than low-snowpack years (Cline 933 
et al., 2021). In the conterminous USA, including flow as a covariate improved daily stream 934 
temperature predictions over air temperature only models in April–August, but only in 935 
snowmelt-dominated streams (Sohrabi et al., 2017). Stronger flow effects occurred in inland 936 
regions than coastal regions of the Western USA (Figure S10) (FitzGerald et al., 2021), 937 
consistent with a greater percent of precipitation falling as snow (Klos et al., 2014). Climate 938 
change studies have not parsed the separate influences of hydrology and air temperature on 939 
stream temperature, but in snowmelt-dominated areas of western North America, predictions for 940 
disproportionate spring and summer stream temperature warming are nearly ubiquitous and 941 
attributed to snowpack declines causing lower flows in those seasons (Caldwell et al., 2013; 942 
Crozier et al., 2020; Ficklin et al., 2014; Leach & Moore, 2019; Lee et al., 2020; Luo et al., 2013; 943 
Null et al., 2013). 944 

 945 

5.3 Model correspondence to physical mechanisms 946 

We used air temperature and flow as the major predictors in our model, recognizing that these 947 
predictors represent many processes that collectively determine stream temperatures. Air 948 
temperature is not the most important component of stream heat budgets (Johnson, 2004; 949 
Dugdale et al., 2017), but it has high predictive power because it is correlated with net radiative 950 
flux, a key driver of stream heat budgets (Caissie 2006). Air temperature data resulted in high 951 
model accuracy in our study, and are widely attainable unlike radiative fluxes.  952 

The effects of flow on stream temperature vary throughout the year in response to the physical 953 
mechanisms affecting stream energy balances. High flows speed downstream transit of water and 954 
provide increased thermal mass that resists heating (or cooling). While flow has strong effects on 955 
water temperature in April–July in our study area, its effects are substantially weaker—though 956 
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still present—in August. High flow can exert a dominant influence on water temperature, but this 957 
influence wanes as flow recedes, leading to progressively greater influence of solar radiation and 958 
air temperature. The relationship between flow and water temperature in our top-preforming 959 
model is nonlinear and varies with day. Marginal effects of decreasing flow diminish as flow 960 
approaches 0 m3/s (Figure 6). At Scott River, August flows were much lower than July (Figure 2, 961 
Figure 6), and by 15 August were always below 2.6 m3/s (92 ft3/s). These low August flows have 962 
shallow water depth, low thermal mass, and slow transit times resulting in residence time 963 
sufficient for water to heat up to equilibrium temperature (Bogan et al., 2003; Nichols et al., 964 
2014; Tague et al., 2007). During hot, dry conditions such occurs in our study area during 965 
summer, evaporative cooling limits how high stream temperatures can rise even when flows are 966 
extremely low (Mohseni & Stefan, 1999; Mohseni et al., 1998; Shaw et al., 2017). Flow 967 
magnitude and seasonality at our study site isWildfire smoke could also reduce warming of 968 
August stream temperatures (David et al., 2018). Widespread fire is more likely during drought 969 
conditions (Westerling, 2016), suggesting potential for smoke to confound low flow effects on 970 
temperature by decreasing solar radiation. We did not include smoke in our models because the 971 
data are difficult to process and we wanted easily replicable methods, but smoke effects on 972 
stream temperatures peaked in August in our study area (Asarian et al., 2020). With less solar 973 
radiation and cooler air temperatures than earlier months, Tmax is almost always less than 22 °C 974 
at Scott River by early September regardless of flow (Figure 7). In October–November, a period 975 
of hydrologic transition when precipitation ends seasonal baseflow recession, flows had little 976 
influence over stream temperature (Figure 8), but Scott River and two other sites had weak, 977 
modal flow-temperature relationships (i.e., highest water temperatures at moderate flows) (Text 978 
S5).   979 

Groundwater contributes to the relationship between flow and stream temperature at our Scott 980 
River site, as it does in many driven by a mix of valley groundwater dynamics and snowmelt-981 
driven mountain runoff (Foglia et al., 2013; Van Kirk and Naman, 2008). Groundwater 982 
contributes to the relationship between flow and stream temperature at our study site, as it does 983 
in many other rivers (Briggs et al., 2018; Isaak et al., 2017; Kelleher et al., 2012; Mayer, 2012; 984 
Nichols et al., 2014; Isaak et al., 2017). Thermal infrared imagery, field measurements 985 
(NCRWQCB, 2005), and a groundwater model (Tolley et al., 2019) confirm that the 10 km of 986 
river directly upstream of our study site are a gaining reach where valley constriction forces 987 
substantial groundwater into the Scott River, a common phenomenon at the outlet of alluvial 988 
valleys (Stanford and Ward, 1992). Scott River flows are driven by a mix of valley groundwater 989 
dynamics and snowmelt-driven mountain runoff (Foglia et al., 2013; Van Kirk and Naman, 990 
2008). 2019) all confirm that substantial groundwater is forced into the Scott River where the 991 
valley constricts upstream of our site, a common phenomenon at the outlet of alluvial valleys 992 
(Stanford and Ward, 1992). Process-based model scenarios predicted a doubling of groundwater-993 
derived flow would cool peak summer Scott River temperaturesAs mountain runoff recedes and 994 
tributaries are almost fully diverted for irrigation, the relative contribution of groundwater to 995 
surface flow at the valley outlet increases over the summer and becomes dominant (NCRWQCB, 996 
2005). Sediments underlying the river and its tributaries have high hydraulic conductivity, so 997 
groundwater and surface water are strongly connected (Tolley et al., 2019). During the May–998 
September recession period when temperatures are of greatest biological concern, flows are 999 
related to aquifer levels, and the relative proportions of valley outlet flow derived from mountain 1000 
runoff and groundwater are well-predicted by flow and day of year. Thus, even though these two 1001 
sources have different temperatures and our model does not explicitly differentiate them, the 1002 
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model performs well because the interaction of flow and day of year implicitly characterizes 1003 
these dynamics adequately. Scenarios from a short-term process-based surface water model 1004 
predicted doubling groundwater-derived flow would cool 30 July 2003 Scott River Tmax by 2 °C, 1005 
and a 50% reduction of groundwater-derived flow would warm temperatures by 2 °C 1006 
(NCRWQCB, 2005). For comparison, applying our model to scenarios doubling or halving the 1007 
3.03 m3/s (107 ft3/s) gaged flow for that same date predicts Tmax 1.0 °C cooler or 0.7 °C warmer, 1008 
respectively. 1009 

The timing and magnitude of flow-induced cooling indicated by our models are similar to other 1010 
snowmelt-dominated rivers. A process-based model of a Sierra Nevada river indicated early 1011 
summer stream temperatures up to 16 °C cooler in an extreme wet year relative to a dry year 1012 
(Null et al., 2013). Relative to a statistical model with only air temperature, including flow as a 1013 
predictor improved stream temperature predictions in April through August in Idaho streams 1014 
(Sohrabi et al. 2017). Most studies predicting climate change effects do not parse the separate 1015 
contributions of hydrology and air temperature on stream temperature, but in snow-dominated 1016 
areas of the western North America, predictions of disproportionate stream temperature warming 1017 
expected in the summer and/or spring are nearly ubiquitous and attributed to earlier runoff timing 1018 
from declining snowpack (Caldwell et al., Statistical models typically require many fewer 1019 
variables as data inputs than process-based models do, so are often much simpler to develop 1020 
(Caissie, 2006; Ouellet et al., 2020); however, this ease has tradeoffs. For example, our model 1021 
does not differentiate between specific sources of inflows, which may have quite different 1022 
temperature influences, nor how alternative management scenarios would spatially and 1023 
temporally alter those inflows. If fundamental characteristics of valley hydrology (i.e., 1024 
management or climate) changed dramatically, model accuracy could suffer. Similarly, applying 1025 
the model to covariate combinations beyond those used in calibration will degrade predictive 1026 
accuracy (Section 5.5). To avoid overly complex models that overfit calibration data, we used 1027 
extrapolation tests to favor selection of simpler more generalizable models. Our model does not 1028 
incorporate longer-term (e.g., annual to decadal) variation in air temperature that affects 1029 
groundwater temperatures and precipitation phase (e.g., snow or rain), so may underestimate 1030 
responses relative to predictions from integrated process-based models (Leach & Moore 2019).  1031 

2013; Crozier et al., 2020; Ficklin et al., 2014; Lee et al., 2020; Leach and Moore, 2019; Luo et 1032 
al., 2013; Null et al., 2013). 1033 

 1034 

5.4 Biological implications  1035 

The prolonged snowmelt-driven flow recession in high-flow years keepsHigher Scott River 1036 
temperatures cooler longer into the summer than in low-flow years, extendingflows extend the 1037 
period when cool water habitat is available for fish (i.e., temperatures less than 22 °C)((Figure 1038 
7). These cooler water temperatures give9), giving juvenile salmonids additional time to migrate 1039 
downstream and reduce overall thermal stress for fish that rear in the Scott River through the 1040 
entire summer. Climate change will likely continue to reduce snowpack and summer flows 1041 
(Persad et al., 2020), increasing duration of detrimentally warm temperatures. Mean diel range in 1042 
June–August exceeds 5 °C, providing hours every day whendaily with temperatures are less than 1043 
<22 °C even if DMxSTwhen Tmax exceeds 22 °C. Salmonids can potentially persist by using 1044 
thermal refugia where cool tributaries, groundwater, or hyporheic flow enters the river during the 1045 
hotter parts of the dayhours and then moving intoforage in the mainstem to feed when 1046 
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temperatures are cooler (Brewitt & Danner, 2014; Sutton et al., 2007; Sutton and & Soto, 2012; 1047 
Brewitt and Danner, 2014). However, substantial portions of the Scott River and tributaries lack 1048 
surface flow during summer, especially in dry years, reducing habitat connectivity between 1049 
thermal refugia and mainstem habitats.  1050 

 1051 

5.5 Applications and management implications  1052 

These models can be used not only to identify the seasonally varying influence of flow, but also 1053 
to predict future stream temperatures based on managed flow recommendations. and to impute 1054 
missing data. Instream flow management frameworks are evolving (Mierau et al., 2017; Poff et 1055 
al., 2017; Yarnell et al., 2020) and accurate stream temperature models provide a valuable tool 1056 
for use in those processes. to predict management outcomes.  1057 

Our modeling approach is relatively easy to implement, especially in comparison to a process-1058 
based models, which we hope willcould facilitate water managers’ ability to include stream 1059 
temperature as a management target. in areas that do not currently have operational process-1060 
based models. For example, Siskiyou County is currently developing a groundwater 1061 
sustainability plan for the Scott Valley (Foglia et al., 2018). The current groundwater model 1062 
(Tolley et al., 2019) does not simulate water temperatures (Tolley et al., 2019). , so our 1063 
temperature Our model couldcan be a used to assess thepredict effects of groundwater 1064 
management on groundwater-dependent ecosystems. Our results quantify the effect of flow on 1065 
streamScott River temperatures, including the CDFW and USFS flow thresholds under 1066 
consideration, and could inform state agencies’ development of new flow objectives. The CDFW 1067 
and USFS flows arewere both predicted to improve (i.e., cool) summer maximum annual 1068 
temperatures relative to current conditions, but improvements would be greater with the higher 1069 
CDFW flows. (Figure 9). We caution that while the CDFW and USFS flows are relatively high 1070 
compared tohigher than typical observed flows in late summer and early fall, for March to early 1071 
June they represent extreme drought conditions (Figure 2b), which has two implications. First, in 1072 
dry years temperatures reach 22 °C in early or mid-June in the observed flow scenario, which is 1073 
only delayed in a small number of years in the scenarios with CDFW and USFS flows as 1074 
minimums. Second, if river flows were diverted down to the CDFW and USFS flows in May and 1075 
June, then the 22 °C threshold would be reached an average of approximately two weeks earlier 1076 
than occurred with the observed flows (Figure 7c).that could cause earlier exceedances of 22 °C 1077 
(Figure 2b). Surface water diversions for in lieu recharge (switching irrigation source from 1078 
groundwater to surface water) or managed aquifer recharge (Dahlke et al., 2018; Foglia et al., 1079 
2013) should not use the CDFW and USFS flows to guide maximum diversion rates, but instead 1080 
be tailored to reduce deleterious effects on instream habitat including temperatures, such as 1081 
ceasing diversions by 1 June, the first date when measured (Figure 2) and modeled temperatures 1082 
(Figure 79) reach 22 °C.  1083 

As with any regressionstatistical model, prediction accuracy is likely towill degrade when 1084 
applied to conditions more extreme than those present in the calibration dataset. Our selected 1085 
model interacts day of year with flow and air temperature, so extrapolation caution applies not 1086 
just to the range of individual variables but also their combined distributions. Our calibration 1087 
dataset includes a wide range of hydrologic conditions, but no years without surface water 1088 
diversions or groundwater pumping because those activities occur every year. Groundwater 1089 
modeling efforts suggest that sStreamflow depletion from groundwater pumping would be is 1090 
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greater in dry years than wet years, because in dry years pumping starts earlier, cumulative 1091 
amounts pumped are greater, and the aquifer is drawn down lower (Foglia et al., 2013; Tolley et 1092 
al., 2019). Simulated total valley-wide streamflow depletion peaks around 150,000 m3d-1 (60 1093 
ft3/secs) in July and –August (Foglia et al., 2013), exceeding streamflow in dry years. Our model 1094 
should be suitable for modeling stream temperatures in dry years for scenarios with reduced 1095 
pumping and/or diversions, which would presumably have flows similar to existing wet years 1096 
(and hence are within the range of calibration flows); however, in wet years such scenarios 1097 
would likely exceed the range of calibration flows and therefore be subject to considerably 1098 
higher levels ofmore uncertainty. Any Future application of our model to scenarios with flows 1099 
higher than observed should be done carefully and interpreted with appropriate caveats. 1100 

Flow records are typically less available than water temperature records, so may constrain where 1101 
our modeling approach can be applied. However, if site-specific flows were not available, data 1102 
from a nearby site could be used if they were likely to be highly correlated (i.e., similar 1103 
watershed characteristics). We did not systematically explore that issue, but the one site (South 1104 
Fork Trinity River) where we used flows from an upstream station had prediction accuracy 1105 
similar to the other nine sites (Figure 5). In addition, although our modeling approach should 1106 
work well with records shorter than the >15-year datasets we used, we recommend further 1107 
research to determine the minimum required period of record.  1108 

These models can also be used to fill gaps in stream temperature data records needed for other 1109 
analyses (Glover et al., 2020). Their high accuracy suggests they would compare well with 1110 
imputation methods used in recent daily year-round stream temperature analyses (Isaak et al., 1111 
2020; Johnson et al., 2021).     1112 

 1113 

6 Conclusions 1114 

Statistical models indicate Long-term daily stream temperature datasets enabled development of 1115 
generalized additive models (GAMs) that include nonlinear and seasonally varying effects of 1116 
flow and air temperature on stream temperature. Cross-validation indicated these models had 1117 
higher accuracy than models that did not account for seasonally variable effects of flow, 1118 
providing evidence that flow is important in controlling stream temperatures and that the 1119 
influence of flow is variable through time. Results from these models indicated that high river 1120 
flow hashad a strong cooling effect on river temperatures during April through July in 1121 
California’s Scott River, at 10 sites in the Klamath Basin of California, corroborating similar to 1122 
previous findings from process-based models in many snow-dominated rivers in western North 1123 
America. A 24-year dataset of daily streams temperatures allowed us to develop a generalized 1124 
additive model using tensor product smooths and interactions 1125 

Results from extrapolation cross-validation tests show that our selected model is robust in 1126 
estimating stream temperatures under environmental conditions moderately outside of the range 1127 
of conditions used to train the model (although see cautions in Section 5.5). We applied the 1128 
model to instream flow management scenarios proposed by regulatory agencies at our focal 1129 
study site, the Scott River, finding that these scenarios would improve stream temperatures. 1130 
Relative to represent the non-linear and seasonally varying effects of flow and air temperature on 1131 
stream temperature. Our model also includes the correlation structures inherent in the data, 1132 
namely daily temporal autocorrelationhistoric conditions, the higher instream flow scenario 1133 
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would reduce annual maximum temperature from 25.2 °C to 24.1 °C, reduce annual exceedances 1134 
of 22 °C (a cumulative thermal stress metric) from 106 to 51 degree-days, and random effects for 1135 
annual variation. Validation indicated excellent model performance, with average errors ≤1 °C. 1136 
This project contributesdelay onset of water temperatures >22 °C during some drought years.   1137 

These models contribute to an emerging body of work demonstrating the benefitsuse of 1138 
generalized additive models (GAMs) for modelingpredicting daily river temperatures. Given the 1139 
flexibility of GAMs, there is a risk of overfitting data, but this risk can be minimized by 1140 
restricting the number of knots in GAM smoothers, confirming that smoother shape matches 1141 
scientific hypotheses regarding the underlying physical processes,Our models are easy to 1142 
implement and considering whether sample size is adequate for the complexity of the 1143 
modelimprove prediction accuracy of stream temperature responses to flow changes over models 1144 
without seasonally variable effects of flow, providing tools that managers can use to select flow 1145 
solutions most likely to protect species and ecosystems. The models are implemented in the R 1146 
software environment with publicly accessible code. Testing at 10 streams in our study region 1147 
indicated that models with seasonally variable flow effects had high prediction accuracy across 1148 
all streams, suggesting that these models have broad applicability over a range of stream types. 1149 
Our selected model, GAM7, incrementally improves upon previous methods for representing 1150 
flow effects. Model applications include those explored here (i.e., scenario prediction and 1151 
identifying periods of flow importance), as well as filling gaps in temperature time series. We 1152 
suggest that GAM7, as well as similar model structures (i.e., GAM6, GAM8) will perform well 1153 
across a range of streams. Model validation procedures, including extrapolation-based methods 1154 
when models are applied to new data, should be conducted to test model accuracy at new sites 1155 
and for datasets of variable periods of record.  1156 

These models identify the specific periods of the year when flow has greatest influence on 1157 
stream temperatures, and can be used to evaluate the thermal effects of alternative flow 1158 
management scenarios and prescriptions. The models are implemented in the R software 1159 
environment with publicly accessible code, and could be applied to model year-round daily 1160 
temperature in any stream with long-term measurements of flow and water temperature, 1161 
provided that air temperatures are available from a nearby weather station. 1162 
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