References
- Shoemaker and Moisander, 2017 Shoemaker, K. M. & Moisander, P. H.
Microbial diversity associated with copepods in the North Atlantic
subtropical gyre. FEMS Microbiology Ecology 91, (2015).https://doi.org/10.1093/femsec/fiv064.
Assessed on 15-01-2020. Reproduced from NCBI/SRA (PRJNA248671).
- Datta, M. S. et al. Inter-individual variability in copepod
microbiomes reveals bacterial networks linked to host physiology. ISME
J 12, 2103–2113 (20https://doi.org/10.1038/s41396-018-0182-1.
Data Assessed on 15-01-2020. Reproduced from NCBI/SRA (PRJNA322089).
- Steinberg, D. K. et al. Zooplankton vertical migration and the active
transport of dissolved organic and inorganic carbon in the Sargasso
Sea. Deep Sea Research Part I: Oceanographic Research Papers 47,
137–158 (2000).
- Chen, M., Kim, D., Liu, H. & Kang, C.-K. Variability in copepod
trophic levels and feeding selectivity based on stable isotope
analysis in Gwangyang Bay of the southern coast of the Korean
Peninsula. Biogeosciences 15, 2055–2073 (2018).
- Tang, K. Copepods as microbial hotspots in the ocean: effects of host
feeding activities on attached bacteria. Aquat. Microb. Ecol. 38,
31–40 (2005).
- De Corte, D. et al. Linkage between copepods and bacteria in the North
Atlantic Ocean. Aquat. Microb. Ecol. 72, 215–225 (2014).
- Grossart HP, Dziallas C, Leunert F, Tang KW. Bacteria dispersal by
hitchhiking on zooplankton. Proc Natl Acad Sci USA 107: 11959−11964
(2010).
- Tang, K., Turk, V. & Grossart, H. Linkage between crustacean
zooplankton and aquatic bacteria. Aquat. Microb. Ecol. 61, 261–277
(2010).
- De Corte, D. et al. Metagenomic insights into zooplankton-associated
bacterial communities. Environ Microbiol 20, 492–505 (2017).
- Moisander, P. H. et al. Copepod-Associated Gammaproteobacteria Respire
Nitrate in the Open Ocean Surface Layers. Front. Microbiol. 9, (2018).
- Cregeen, S.J.J. . Microbiota of dominant Atlantic copepods:Pleuromamma sp. as a host to a betaproteobacterial symbiont.
Ph.D., Thesis, University of Southampton, pp-1-183.(2016).
- Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a
proposal. Microbiome 3, (2015).
- Tang, K. W., Glud, R. N., Glud, A., Rysgaard, S. & Nielsen, T. G.
Copepod guts as biogeochemical hotspots in the sea: Evidence from
microelectrode profiling of Calanus spp. Limnol. Oceanogr. 56,
666–672 (2011).
- Glud, R. N. et al. Copepod carcasses as microbial hot spots for
pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
- Proctor, L. Nitrogen-fixing, photosynthetic, anaerobic bacteria
associated with pelagic copepods. Aquat. Microb. Ecol. 12, 105–113
(1997).
- Scavotto, R. E., Dziallas, C., Bentzon-Tilia, M., Riemann, L. &
Moisander, P. H. Nitrogen-fixing bacteria associated with copepods in
coastal waters of the North Atlantic Ocean. Environ Microbiol 17,
3754–3765 (2015).
- Dong, Y., Yang, G.-P. & Tang, K. W. Dietary effects on abundance and
carbon utilization ability of DMSP-consuming bacteria associated with
the copepod Acartia tonsa Dana. Marine Biology Research 9,
809–814 (2013).
- Bolyen, E. et al. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857
(2019).
- Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions.
Nat Biotechnol 38, 685–688 (2020).
- Bolyen, E. et al. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857
(2019).
- Callahan, B. J. et al. DADA2: High-resolution sample inference from
Illumina amplicon data. Nat Methods 13, 581–583 (2016).
- Janssen, S. et al. Phylogenetic Placement of Exact Amplicon Sequences
Improves Associations with Clinical Information. mSystems 3, (2018).
- Anderson, M. J. Permutational Multivariate Analysis of Variance
(PERMANOVA). Wiley StatsRef: Statistics Reference Online 1–15 (2017)
doi:10.1002/9781118445112.stat07841.
- McDonald, D. et al. An improved Greengenes taxonomy with explicit
ranks for ecological and evolutionary analyses of bacteria and
archaea. ISME J 6, 610–618 (2011).
- Bokulich, N. et al. bokulich-lab/RESCRIPt: 2020.11. (Zenodo, 2020).
doi:10.5281/ZENODO.3891931.
- Mandal, S. et al. Analysis of composition of microbiomes: a novel
method for studying microbial composition. Microbial Ecology in Health
& Disease 26, (2015).
- Breiman, L. Machine Learning 45, 5–32 (2001).
- Friedman, J. H. machine. Ann. Statist. 29, 1189–1232 (2001).
- Roguet, A., Eren, A. M., Newton, R. J. & McLellan, S. L. Fecal source
identification using random forest. Microbiome 6, (2018).
- Dhoble, A. S., Lahiri, P. & Bhalerao, K. D. Machine learning analysis
of microbial flow cytometry data from nanoparticles, antibiotics and
carbon sources perturbed anaerobic microbiomes. J Biol Eng 12, (2018).
- Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP:
statistical analysis of taxonomic and functional profiles.
Bioinformatics 30, 3123–3124 (2014).
- Kruskal, W. H. & Wallis, W. A. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association 47, 583–621
(1952).
- Tukey–Kramer Method. in Encyclopedia of Systems Biology 2304–2304
(Springer New York, 2013). doi:10.1007/978-1-4419-9863-7_101575.
- Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Research 28, 27–30 (2000).
- Kanehisa, M. Toward understanding the origin and evolution of cellular
organisms. Protein Science 28, 1947–1951 (2019).
- Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. &
Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic
Acids Research (2020) doi:10.1093/nar/gkaa970.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X:
Molecular Evolutionary Genetics Analysis across Computing Platforms.
Molecular Biology and Evolution 35, 1547–1549 (2018).
- Wäge, J. et al. Microcapillary sampling of Baltic Sea copepod gut
microbiomes indicates high variability among individuals and the
potential for methane production. FEMS Microbiology Ecology 95,
(2019).
- Ohman, M. D. & Runge, J. A. Sustained fecundity when phytoplankton
resources are in short supply: Omnivory by Calanus finmarchicus in the
Gulf of St. Lawrence. Limnol. Oceanogr. 39, 21–36 (1994).
- Harris, R. Feeding, growth, and reproduction in the genusCalanus . ICES Journal of Marine Science 57, 1708–1726 (2000).
- Saage, A., Vadstein, O. & Sommer, U. Feeding behaviour of adultCentropages hamatus (Copepoda, Calanoida): Functional response
and selective feeding experiments. Journal of Sea Research 62, 16–21
(2009).
- Chen, M., Liu, H. & Chen, B. Seasonal Variability of Mesozooplankton
Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine
Waters. Front. Mar. Sci. 4, (2017).
- Dam, H. G. & Lopes, R. M. Omnivory in the calanoid copepodTemora longicornis : feeding, egg production and egg hatching
rates. Journal of Experimental Marine Biology and Ecology 292,
119–137 (2003).
- Buskey, E.J., Baker, K.S., Smith, R.C. & Swift, E. Photosensitivity
of the oceanic copepods Pleuromamma gracilis andPleuromamma xiphias and its relationship to light penetration
and daytime depth distribution. Marine Ecology Progress Series.
55:207–216 (1989).
- Wilson, S. & Steinberg, D. Autotrophic picoplankton in
mesozooplankton guts: evidence of aggregate feeding in the mesopelagic
zone and export of small phytoplankton. Mar. Ecol. Prog. Ser. 412,
11–27 (2010).
- Hirche, H. J. Overwintering of Calanus finmarchicus andC. helgolandicus . Mar. Ecol. Prog. Ser. 11 , 281–290
(1983).
- Tande, K. S. An evaluation of factors affecting vertical distribution
among recruits of Calanus finmarchicus in three adjacent
high-latitude localities. in Biology of Copepods 115–126 (Springer
Netherlands, 1988). doi:10.1007/978-94-009-3103-9_10.
- Dorosz, J., Castro-Mejia, J., Hansen, L., Nielsen, D. & Skovgaard, A.
Different microbiomes associated with the copepods Acartia
tonsa and Temora longicornis from the same marine environment.
Aquat. Microb. Ecol. 78, 1–9 (2016).
- Heidelberg, J. F., Heidelberg, K. B. & Colwell, R. R. Bacteria of the
γ-Subclass Proteobacteria Associated with Zooplankton in Chesapeake
Bay. AEM 68, 5498–5507 (2002).
- Jayakumar, A. & Ward, B. B. Diversity and distribution of Nitrogen
Fixation Genes in the Oxygen Minimum Zones of the World Oceans. (2020)
doi:10.5194/bg-2019-445.
- Stingl, U., Desiderio, R. A., Cho, J.-C., Vergin, K. L. & Giovannoni,
S. J. The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine
Bacteria Possessing Proteorhodopsin. AEM 73, 2290–2296 (2007).
- Sadaiappan, B. et al. Metagenomic 16S rDNA amplicon data of microbial
diversity and its predicted metabolic functions in the Southern Ocean
(Antarctic). Data in Brief 28, 104876 (2020).
- Yao, M., Henny, C. & Maresca, J. A. Freshwater Bacteria Release
Methane as a By-Product of Phosphorus Acquisition. Appl. Environ.
Microbiol. 82, 6994–7003 (2016).
- Stawiarski, B. et al. Controls on zooplankton methane production in
the central Baltic Sea. Biogeosciences 16, 1–16 (2019).
- Ditchfield, A. et al. Identification of putative methylotrophic and
hydrogenotrophic methanogens within sedimenting material and copepod
faecal pellets. Aquat. Microb. Ecol. 67, 151–160 (2012).
- de Angelis, M. A. & Lee, C. Methane production during zooplankton
grazing on marine phytoplankton. Limnol. Oceanogr. 39, 1298–1308
(1994).
- Howard, E. C., Sun, S., Biers, E. J. & Moran, M. A. Abundant and
diverse bacteria involved in DMSP degradation in marine surface
waters. Environmental Microbiology 10, 2397–2410 (2008).
- Tang, K. W., Visscher, P. T. & Dam, H. G. DMSP-consuming bacteria
associated with the calanoid copepod Acartia tonsa (Dana).
Journal of Experimental Marine Biology and Ecology 256, 185–198
(2001).
- Ploug, H., Kühl, M., Buchholz-Cleven, B. & Jørgensen, B. Anoxic
aggregates - an ephemeral phenomenon in the pelagic environment?
Aquat. Microb. Ecol. 13, 285–294 (1997).
- Tamas, I., Smirnova, A. V., He, Z. & Dunfield, P. F. The (d)evolution
of methanotrophy in the Beijerinckiaceae—a comparative genomics
analysis. ISME J 8, 369–382 (2013).
- Rawlings, T. K., Ruiz, G. M. & Colwell, R. R. Association of Vibrio
cholerae O1 El Tor and O139 Bengal with the Copepods Acartia
tonsa and Eurytemora affinis. AEM 73, 7926–7933 (2007).
- Liu, J. et al. Diverse effects of nitric oxide reductase NorV onAeromonas hydrophila virulence-associated traits under aerobic
and anaerobic conditions. Vet Res 50, (2019).
- Gardette, M., Daniel, J., Loukiadis, E. & Jubelin, G. Role of the
Nitric Oxide Reductase NorVW in the Survival and Virulence of
Enterohaemorrhagic Escherichia coli during Infection. Pathogens
9, 683 (2020).
- Cottrell, M. T., Wood, D. N., Yu, L. & Kirchman, D. L. Selected
Chitinase Genes in Cultured and Uncultured Marine Bacteria in the α-
and γ-Subclasses of the Proteobacteria. Appl. Environ. Microbiol. 66,
1195–1201 (2000).
- Donderski, W., & Trzebiatowska, M. Influence of physical and chemical
factors on the activity of chitinases produced by planktonic bacteria
isolated from Jeziorak Lake. Polish Journal of Environmental Studies,
9(2), 77–82 (2000).
- Subramanian, K. et al. Bioconversion of chitin and concomitant
production of chitinase and N-acetylglucosamine by novelAchromobacter xylosoxidans isolated from shrimp waste disposal
area. Sci Rep 10, (2020).
- Schmidt, K. et al. Zooplankton Gut Passage Mobilizes Lithogenic Iron
for Ocean Productivity. Current Biology 26, 2667–2673 (2016).
- Hutchins, D. A., Wang, W.-X. & Fisher, N. S. Copepod grazing and the
biogeochemical fate of diatom iron. Limnol. Oceanogr. 40, 989–994
(1995).
- Doxey, A. C., Kurtz, D. A., Lynch, M. D., Sauder, L. A. & Neufeld, J.
D. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin
production. ISME J 9, 461–471 (2014).
- Skovgaard, A., Castro-Mejia, J. L., Hansen, L. H. & Nielsen, D. S.
Host-Specific and pH-Dependent Microbiomes of Copepods in an Extensive
Rearing System. PLoS ONE 10, e0132516 (2015).
- Shoemaker, K. M. & Moisander, P. H. Microbial diversity associated
with copepods in the North Atlantic subtropical gyre. FEMS
Microbiology Ecology 91, (2015).
- Shelyakin, P. V. et al. Microbiomes of gall-inducing copepod
crustaceans from the corals Stylophora pistillata (Scleractinia) and
Gorgonia ventalina (Alcyonacea). Sci Rep 8, (2018).
Table 1. List of sequence libraries representing the
copepods-associated bacteribiome. Out of these, only seven libraries
(highlighted in red font) were analysed in this study.
Table 2. Details of the number of Illumina files, sequences
extracted, and quality filtered (Phred score <25). RP indicate
’relative proportion’.
Figure 1. Alpha diversity
composition and variation a) Shannon index (Richness and diversity
accounting for both abundance and evenness of the taxa present); b)
Evenness index (Relative evenness of species richness); c) Faith’s
Phylogenetic Diversity index (biodiversity incorporating phylogenetic
difference between species) corresponding to the CAB within five
different copepod genera.
Figure 2. a) Unweighted
Unifrac distance matrix (community dissimilarity that incorporates
phylogenetic relationships between the features); b) Weighted Unifrac
distance matrix (community dissimilarity that incorporates phylogenetic
relationships between the features); c) Jaccord distance-based
beta-diversity. The CAB of representative copepods are colour coded;
d)18S rDNA phylogenetic tree of five copepod genera used in the study.
Figure 3. Top two percentile of the CAB-bacterial genera
observed in the copepods obtained via ANCOM.
Figure 4. a) Confusion matrix for the RandomForest Classifier
(RFC) model; b) Confusion matrix for the Gradient Boosting Classifier
(GBC) model; c) Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC) for the RFC model; d) Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC) for the GBC model; e) Heatmap of
the predicted important s-OTUs in the five copepod genera using RFC; f)
Heatmap of the predicted important s-OTUs in the five copepod genera
using GBC.
Figure 5. PCA plot for overall diversity pattern of potential
functional genes observed among the CAB within the five copepod genera.
Figure 6. Overall representation of the potential functional
genes of CAB involved in biogeochemical cycles. The circle and the
colour represent the copepod genera contained in high proportion for
that particular biogeochemical process.