References
Bábek, O., Briestenský, M., Přecechtělová, G., Štěpančíková, P., Hellstrom, J.C., Drysdale, R.N., 2015. Pleistocene speleothem fracturing in the Western Carpathian orogenic foreland: A case study from transtensional setting at the eastern margin of the Bohemian Massif. Geol. Q. 59(3), 491-506. https://doi.org/10.7306/gq.1225.
Bella, P., Bosák, P., Braucher, R., Pruner, P., Hercman, H., Minár, J., Veselský, M., Holec, J., Léanni, L., 2019. Multi-level Domica–Baradla cave system (Slovakia, Hungary): Middle Pliocene–Pleistocene evolution and implications for the denudation chronology of the Western Carpathians. Geomorphology 327, 62–79. https://doi.org/10.1016/j.geomorph.2018.10.002.
Bleil, U., von Dobeneck, T., 1999. Geomagnetic Events and Relative Paleointensity Records — Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments?, in: Fischer, G., Wefer, G. (Eds.), Use of Proxies in Paleoceanography. Springer, Berlin Heidelberg, pp. 635-654. https://doi.org/10.1007/978-3-642-58646-0_26.
Butler, R.F., 1992. Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific Publications, Boston.
Channell, J.E.T., Hodell, D.A., Singer, B.S., Xuan, C., 2010. Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem Geophy Geosy. 11(12), Q0AA12. https://doi.org/10.1029/2010GC003203.
Cohen, K.M., Gibbard, P.L., 2019. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500, Quat. Int. 500, 20-31. https://doi.org/10.1016/j.quaint.2019.03.009.
Ge, J., Deng, C., Shao, Q., Wang, Y., Tang, R., Zhao, B., Cheng, X., Jin, C., Olsen, J.W., 2021. Magnetostratigraphic and uranium-series dating of fossiliferous cave sediments in Jinyuan Cave, Liaoning Province, northeast China. Quat. Int. 591, 5-14. https://doi.org/10.1016/j.quaint.2020.11.031
Giaccio, B., Castorina, F., Nomade, S., Scardia, G., Voltaggio, M., Sagnotti, L., 2013. Revised Chronology of the Sulmona Lacustrine Succession, Central Italy. J. Quat. Sci. 28(6). 545–551. https://doi.org/10.1002/jqs.2647.
Gibert, L., Scott, G.R., Scholz, D., Budsky, A., Ferràndez, C., Ribot, F., Martin, R.A., Lería, M., 2016. Chronology for the cueva victoria fossil site (se spain): Evidence for early pleistocene afro-iberian dispersals. J. Hum. Evol. 90, 183-197. https://doi.org/10.1016/j.jhevol.2015.08.002.
Gubbins, D., Herrero-Bervera, E., 2007. Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6.
Haneda, Y., Okada, M., Suganuma, Y., Kitamura, T., 2020. A full sequence of the Matuyama–Brunhes geomagnetic reversal in the Chiba composite section, Central Japan. Prog. Earth Planet. Sci. 7, 44. https://doi.org/10.1186/s40645-020-00354-y.
Jaqueto, P., Trindade, R.I.F., Hartmann, G.A., Novello, V.F., Cruz, F.W., Karmann, I., Strauss, B.E., Feinberg, J.M., 2016. Linking speleothem and soil magnetism in the Pau d’Alho cave (central South America). J. Geophys. Res. Solid Earth.. 121(10), 7024-7039. https://doi.org/10.1002/2016JB013541.
Jin, C., Liu, Q., 2011. Revisiting the stratigraphic position of the Matuyama-Brunhes geomagnetic polarity boundary in Chinese loess. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(1), 309–317. https://doi.org/10.1016/j.palaeo.2010.11.011.
Kadlec, J., Chadima, M., Pruner, P., Schnabl, P., 2005. Paleomagnetické datování sedimentů v jeskyni “Za Hájovnou” v Javoříčku - předběžné výsledky. Přírodovědné studie Muzea Prostějovska 8, 75–82.
Kadlec, J., Čížková, K., Šlechta, S., 2014. New updated results of paleomagnetic dating of cave deposits exposed in Za Hájovnou Cave, Javoříčko Karst. Acta Musei Natl. Pragae, Ser. B - Hist. Nat. 70, 27-34. https://doi.org/10.14446/AMNP.2014.27.
King, J.W., Channell, J.E.T., 1991. Sedimentary Magnetism, Environmental Magnetism, and Magnetostratigraphy. Rev. Geophys. 29, 358-370. https://doi.org/10.1002/rog.1991.29.s1.358.
Kirschvink, J.L., 1980. The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc. 62(3), 699-718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x.
Kitaba, I., Hyodo, M., Katoh, S., Dettman, D.L., Sato, H., 2013. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. 110(4), 1215–1220. https://doi.org/10.1073/pnas.1213389110.
Lanza, R., Meloni, A., 2006. The Earth’s magnetism: An introduction for geologists. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27980-8.
Liu, J., Liu, Q., Zhang, X., Liu, J., Wu, Z., Mei, X., Shi, X., Zhao, Q., 2016. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea. Quat. Sci. Rev., 144, 1–15. https://doi.org/10.1016/j.quascirev.2016.05.025.
Lundberg, J., Musil, R., Sabol, M., 2014. Sedimentary history of Za Hájovnou Cave (Moravia, Czech Republic): A unique Middle Pleistocene palaeontological site. Quat. Int., 339, 11-24. https://doi.org/10.1016/j.quaint.2013.04.006.
Mochizuki, N., Oda, H., Ishizuka, O., Yamazaki, T., Tsunakawa, H., 2011. Paleointensity variation across the Matuyama-Brunhes polarity transition: Observations from lavas at Punaruu Valley, Tahiti J. Geophys. Res. Solid Earth 116, B06103. https://doi.org/10.1029/2010JB008093.
Morinaga, H., Yaskawa, K., Horie, I., 1992. A geomagnetic reversal recorded in a stalagmite collected in western japan. J. Geomagn. Geoelectr. 44(8), 661-675. https://doi.org/10.5636/jgg.44.661.
Musil, R., 2005. Jeskyně “Za Hájovnou”, výjimečná lokalita Javoříšského krasu. Přírodovědné studie Muzea Prostějovska 8, 9–42.Musil, R., 2014. The unique record of Za Hájovnou Cave. Acta Musei Natl. Pragae, Ser. B - Hist. Nat. 70, 7-26. https://doi.org/10.14446/AMNP.2014.7.
Musil, R., Sabol, M., Ivanov, M., Doláková, N., 2014. Middle pleistocene stratigraphy of the deposits in Za Hájovnou Cave (Javořičko Karst, Northern Moravia, Czech Republic). Acta Musei Natl. Pragae, Ser. B - Hist. Nat. 70, 107-119. https://doi.org/10.14446/AMNP.2014.107.
Muttoni, G., Sirakov, N., Guadelli, J.L., Kent, D.V., Scardia, G., Monesi, E., Zerboni, A., Ferrara, E., 2017. An early Brunhes (< 0.78 Ma) age for the Lower Paleolithic tool-bearing Kozarnika cave sediments, Bulgaria. Quat. Sci. Rev. 178, 1-13. https://doi.org/10.1016/j.quascirev.2017.10.034.
Nami, H.G., De La Peña, P., Vásquez, C.A., Feathers, J., Wurz, S., 2016. Palaeomagnetic results and new dates of sedimentary deposits from Klasies River Cave 1, South Africa. S. Afr. J. Sci. 112(11-12), 1-12. https://doi.org/10.17159/sajs.2016/20160051.
Oda, H., Shibuya, H., Hsu, V., 2000. Palaeomagnetic records of the Brunhes/Matuyama polarity transition from ODP Leg 124 (Celebes and Sulu seas). Geophys. J. Int. 142(2), 319–338. https://doi.org/10.1046/j.1365-246X.2000.00130.x.
Okada, M., Suganuma, Y., Haneda, Y., Kazaoka, O., 2017. Paleomagnetic direction and paleointensity variations during the Matuyama-Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan. Earth, Planets Sp. 69, 45. https://doi.org/10.1186/s40623-017-0627-1.
Pares, J.M., Arnold, L., Duval, M., Demuro, M., Pérez-González, A., Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J.L., 2013. Reassessing the age of Atapuerca-TD6 (Spain): New paleomagnetic results. J. Archaeol. Sci. 40(12), 4586–4595. https://doi.org/10.1016/j.jas.2013.06.013.
Pares, J.M., Álvarez, C., Sier, M., Moreno, D., Duval, M., Woodhead, J.D., Ortega, A.I., Campaña, I., Rosell, J., de Castro, J.B., Carbonell, E., 2018. Chronology of the cave interior sediments at Gran Dolina archaeological site, Atapuerca (Spain). Quat. Sci. Rev. 186, 1–16. https://doi.org/10.1016/j.quascirev.2018.02.004.
Pruner, P., Hajna, N.Z., Mihevc, A., Bosák, P., Man, O., Schnabl, P., Venhodová, D., 2010. Magnetostratigraphy and fold tests from Račiška pečina and pečina v Borštu caves (classical karst, Slovenia). Stud. Geophys. Geod. 54, 27–48. https://doi.org/10.1007/s11200-010-0002-1.
Sagnotti, L., Budillon, F., Dinarès-Turell, J., Iorio, M., MacRì, P., 2005. Evidence for a variable paleomagnetic lock-in depth in the Holocene sequence from the Salerno Gulf (Italy): Implications for “high- resolution” paleomagnetic dating, Geochemistry. Geophys. Geosyst. 6, Q11013. https://doi.org/10.1029/2005GC001043.
Sagnotti, L., Cascella, A., Ciaranfi, N., Macrì, P., Maiorano, P., Marino, M., Taddeucci, J., 2010. Rock magnetism and palaeomagnetism of the montalbano jonico section (Italy): Evidence for late diagenetic growth of greigite and implications for magnetostratigraphy. Geophys. J. Int. 180(3), 1049–1066. https://doi.org/10.1111/j.1365-246X.2009.04480.x.
Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J.C., Nomade, S., Renne, P.R., Sprain, C. J., 2014. Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal. Geophys. J. Int. 199(2), 1110–1124. https://doi.org/10.1093/gji/ggu287.
Shaar, R., Matmon, A., Horwitz, L.K., Ebert, Y., Chazan, M., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., 2021. Magnetostratigraphy and cosmogenic dating of Wonderwerk Cave: New constraints for the chronology of the South African Earlier Stone Age. Quat. Sci. Rev. 259, 106907. https://doi.org/10.1016/j.quascirev.2021.106907.
Simon, Q., Suganuma, Y., Okada, M., Haneda, Y., 2019. High-resolution 10Be and paleomagnetic recording of the last polarity reversal in the Chiba composite section: Age and dynamics of the Matuyama–Brunhes transition. Earth Planet. Sci. Lett. 519, 92-100. https://doi.org/10.1016/j.epsl.2019.05.004.
Singer, B.S., Jicha, B.R., Mochizuki, N., Coe, R.S., 2019. Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal. Sci. Adv. 5(8), eaaw4621. https://doi.org/10.1126/sciadv.aaw4621.
Stock, G.M., Granger, D.E., Sasowsky, I.D., Anderson, R.S., Finkel, R.C., 2005. Comparison of U-Th, paleomagnetism, and cosmogenic burial methods for dating caves: Implications for landscape evolution studies. Earth Planet. Sci. Lett. 236(1), 388–403. https://doi.org/10.1016/j.epsl.2005.04.024.
Suganuma, Y., Yokoyama, Y., Yamazaki, T., Kawamura, K., Horng, C. S., Matsuzaki, H., 2010. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary. Earth Planet. Sci. Lett. 296(3), 443–450. https://doi.org/10.1016/j.epsl.2010.05.031.
Suganuma, Y., Okada, M., Horie, K., Kaiden, H., Takehara, M., Senda, R., Kimura, J.I., Kawamura, K., Haneda, Y., Kazaoka, O., Head, M.J., 2015. Age of Matuyama-Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra. Geology 43(6), 491-494. https://doi.org/10.1130/G36625.1.
Valet, J.P., Fournier, A., Courtillot, V., Herrero-Bervera, E., 2012. Dynamical similarity of geomagnetic field reversals. Nature 490, 89-93. https://doi.org/10.1038/nature11491.
Valet, J.P., Bassinot, F., Bouilloux, A., Bourlès, D., Nomade, S., Guillou, V., Lopes, F., Thouveny, N., Dewilde, F., 2014. Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments. Earth Planet. Sci. Lett. 397, 67–79. https://doi.org/10.1016/j.epsl.2014.03.053.
Valet, J.P., Bassinot, F., Simon, Q., Savranskaia, T., Thouveny, N., Bourlés, D.L., Villedieu, A., 2019. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments. Earth Planet. Sci. Lett. 506, 323-331. https://doi.org/10.1016/j.epsl.2018.11.012
Žák, K., Lipták, V., Filippi, M., Orvošová, M., Hercman, H., Matoušková, Š., 2018. Cryogenic carbonates and cryogenic speleothem damage in the za hájovnou cave (Javoříčko karst, Czech Republic). Geol. Q. 62(4), 829-839. https://doi.org/10.7306/gq.1441.
Zijderveld, J.D.A., 1967. AC demagnetization of rocks: analysis of results, in: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods in Paleomagnetism. Elsevier, Amsterdam, pp. 254–286.
Zupan Hajna, N., Mihevc, A., Bosák, P., Pruner, P., Hercman, H., Horáček, I., Wagner, J., Čermák, S., Pawlak, J., Sierpień, P., Kdýr, Š., Juřičková, L., Švara, A., 2021. Pliocene to Holocene chronostratigraphy and palaeoenvironmental records from cave sediments: Račiška pečina section (SW Slovenia). Quat. Int. in press. https://doi.org/10.1016/j.quaint.2021.02.035.