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Abstract19

Oceanography has entered an era of new observing platforms, such as biogeochemical20

Argo floats and gliders, some of which will provide three-dimensional maps of essential21

ecosystem variables on the North-West European (NWE) Shelf. In a foreseeable future op-22

erational centres will use multi-platform assimilation to integrate those valuable data into23

ecosystem reanalyses and forecast systems. Here we address some important questions24

related to glider biogeochemical data assimilation and introduce multi-platform data assim-25

ilation in a (pre)operational model of the NWE Shelf-sea ecosystem. We test the impact26

of the different multi-platform system components (glider vs satellite, physical vs biogeo-27

chemical) on the biogeochemical model skill. To characterize the model skill we focus on28

the period around the phytoplankton spring bloom, since the bloom is a major ecosystem29

driver on the NWE Shelf. We found that the timing and magnitude of the phytoplank-30

ton bloom is insensitive to the temperature and salinity glider assimilation, which is ex-31

plained in the study. To correct the simulated phytoplankton bloom one needs to assim-32

ilate chlorophyll observations from glider or satellite Ocean Color (OC) into the model.33

Although glider chlorophyll assimilation outperforms OC assimilation, we show that OC34

assimilation has a capability to correct the vertical chlorophyll profiles. Since the OC as-35

similation updates chlorophyll only in the mixed layer, improvements in the simulation of36

the chlorophyll vertical profiles are the result of the model dynamical response to the as-37

similation. We demonstrate that the multi-platform assimilation combines the advantages38

of its components and always performs comparably to its best performing component.39

1 Introduction40

Understanding the state and the future of shelf-sea ecosystems is essential from the41

point of view of economy, conservation and the global carbon cycle (Pauly et al. [2002];42

Borges et al. [2006]; Friedlingstein et al. [2006]; Jahnke [2010]). Reanalyses provide our43

best estimate of the ocean state by optimally combining the state-of-the-art knowledge44

from models with the most up-to-date observations. In marine biogeochemistry the pre-45

vailing approach is to assimilate into models the satellite products, either for Ocean Color46

(OC) derived total chlorophyll (e.g Ishizaka [1990]; Carmillet et al. [2001]; Natvik and47

Evensen [2003]; Hoteit et al. [2005]; Triantafyllou et al. [2007]; Nerger and Gregg [2007,48

2008]; Gregg [2008]; Fontana et al. [2010]; Ford et al. [2012]; Ciavatta et al. [2011, 2016];49

Kalaroni et al. [2016]; Ford and Barciela [2017]; Pradhan et al. [2019]), Phytoplankton50

Functional Type (PFT)-specific chlorophyll (Ciavatta et al. [2018, 2019]; Skákala et al.51

[2018, 2020]), or surface radiances (Shulman et al. [2013]; Ciavatta et al. [2014]; Jones52

et al. [2016]; Gregg and Rousseaux [2017]; Skákala et al. [2020]). Additionally a num-53

ber of studies assimilated biogeochemical data from in situ measurements, either using54

single-location profiles (e.g. Allen et al. [2003]; Hoteit et al. [2003]; Torres et al. [2006];55

Lenartz et al. [2007]), or using surface data from ships, floats and buoys (e.g Anderson56

et al. [2000]; Cossarini et al. [2009]; Song et al. [2016]). The typical disadvantage of the57

traditionally assimilated biogeochemical data-sets is that they are either constrained to the58

ocean surface (e.g. in the case of satellite data), or they are typically limited to a single59

location (in the case of vertically-measured data). Assimilating such data into the model60

has either only local impact, or its impact on biogeochemical fields is typically constrained61

to the upper oceanic layer, with uncertain impact on the vertical profiles of biomass, or62

nutrients.63

However, the situation on the data-front is rapidly changing, with new programmes64

(e.g. AtlantOS, Visbeck et al. [2015]) aiming at revolutionizing biogeochemical oceanog-65

raphy with novel observing platforms covering large parts of the ocean both horizontally66

and vertically, such as floats deployed in the Biogeochemical-Argo programme (e.g. John-67

son and Claustre [2016]; Johnson [2016]; Germineaud et al. [2019]), and gliders with68

optical and biogeochemical sensors (Telszewski et al. [2018]). Some of the Argo float69

oxygen data were already assimilated to constrain the biogeochemistry in the Southern70
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Ocean (Verdy and Mazloff [2017]) and Argo-measured chlorophyll was assimilated to im-71

prove phytoplankton dynamics in the Mediterranean Sea (Cossarini et al. [2019]). The72

new observational activity quite understandably focuses on the regions of high importance73

for fisheries, economy and climate, such as the North-West European (NWE) Shelf (e.g.74

Legge et al. [2020]), where a number of gliders have been deployed as a part of the Al-75

ternative Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterECO)76

programme (http://projects.noc.ac.uk/altereco/ ). The rapid development of these new au-77

tonomous observation systems opens up an entirely new range of possibilities on how to78

optimally integrate multi-platform observing networks with our present oceanographic79

models (Lellouche et al. [2013]; Bell et al. [2015]). The observational work on the NWE80

Shelf from the AlterECO project is coupled to a sister programme, the CAMPUS (Com-81

bining Autonomous observations and Models for Predicting and Understanding Shelf seas,82

https://www.campus-marine.org/ ) project, aiming to consistently combine the different83

sources of information, such as gliders, satellite OC data and models, in order to improve84

our capability to understand, represent and forecast the NWE Shelf biogeochemistry (e.g85

spring bloom, carbon and nutrient cycle, oxygen depletion events). Future plans, based on86

CAMPUS and in line with the European operational Copernicus Marine Service, are to87

have a multi-platform assimilative system on the NWE Shelf, where the autonomous vehi-88

cles will navigate to specific locations using a combination of Artificial Intelligence (AI)89

and model forecast, e.g. to detect onset of the phytoplankton bloom, or harmful events.90

Trying to establish glider data assimilation as part of such a multi-platform assim-91

ilative system often leads to two non-trivial problems: a) how to consistently combine92

high resolution glider data with much coarser model resolution, b) how to achieve rea-93

sonable consistency between the assimilation-corrected variables and the coupled physical-94

biogeochemical model dynamics. The problem of dynamical consistency needs special95

mention, since both physical and biogeochemical fields have typically much larger gradi-96

ents in the vertical than in the horizontal dimension. The vertical correlation length scales97

have large spatio-temporal variability and model dynamics can be quite sensitive to spu-98

rious vertical gradients (Doney [1999]; Oschlies and Garçon [1999]; Doney et al. [2004]).99

Such model sensitivity is often noticed when physical data (such as sea surface height, or100

temperature and salinity) are assimilated into the model, as the spurious vertical mixing101

introduced by such assimilation is known to often degrade the skill of the biogeochemi-102

cal model (e.g Berline et al. [2007]; While et al. [2010]; El Moussaoui et al. [2011]; Holt103

et al. [2014]; Raghukumar et al. [2015]; Park et al. [2018]). However, similar issues can104

be easily overlooked when we assimilate surface biogeochemical data (except extreme re-105

gions with substantial small-scale horizontal variability, such as the Gulf Stream, Anderson106

et al. [2000]), since the horizontal distributions of biogeochemical fields are in relative107

terms smooth and stable. For the gliders, it is of vital interest to understand the potentially108

complex interaction between the physical and the biogeochemical data assimilation, or the109

interplay between the different biogeochemical variables updated by the assimilative sys-110

tem.111

In this study we extend the operational assimilative system on the NWE Shelf to112

successfully produce a multi-platform reanalysis (temperature, salinity, total chlorophyll113

a, oxygen from an AlterECO glider and chlorophyll a from a satellite OC product). The114

main focus of the paper is to assess the impact of the different assimilative system com-115

ponents (satellite vs glider, physical vs biogeochemical) on the model skill to simulate116

ecosystem processes in relation to the phytoplankton spring bloom. Understanding the117

impact of the different system components is important, since it indicates what will be118

the reanalysis skill in the regions where only a specific type of data (e.g. satellite OC,119

physical variables) is available. The focus on the processes around the spring bloom is120

a natural choice due to a) the availability of high quality chlorophyll glider data, and b)121

because the spring bloom is on the NWE Shelf a key driver of the ecosystem dynamics122

(Lutz et al. [2007]; Henson et al. [2009]). The results of this study should form a basis for123

the integrated multi-platform assimilative system, that will optimize the available infor-124
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mation from observations and models in order to improve our understanding of the NWE125

Shelf biogeochemistry. The paper uses hindcast versions of the operational models for the126

NWE Shelf run by the Met Office in the framework of the European Copernicus Marine127

Environment Monitoring Service (CMEMS), i.e. the physical model Nucleus for European128

Modelling of the Ocean (NEMO, Madec et al. [2015]) coupled through the Framework129

for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding [2014]) with the130

biogeochemical model European Regional Seas Ecosystem Model (ERSEM, Baretta et al.131

[1995]; Blackford [1997]; Butenschön et al. [2016]). We used measurements from an Al-132

terEco glider that operated in the central North Sea between May-August 2018 providing133

data for temperature, salinity, chlorophyll (derived from fluorescence) and oxygen concen-134

trations. In multi-platform assimilation the glider data were complemented with Ocean135

Color-Climate Change Initiative (OC-CCI) satellite product of the European Space Agency136

(ESA) for total chlorophyll (version 3.1, Sathyendranath et al. [2019]) and assimilated on a137

daily basis into NEMO-FABM-ERSEM model using NEMOVAR (the assimilative system138

used operationally by the Met Office, Mogensen et al. [2009, 2012]; Waters et al. [2015];139

King et al. [2018]). The assimilated glider variables were selected based on the data avail-140

ability, but both chlorophyll and oxygen are expected to play an important role in the fu-141

ture multi-platform operational assimilation: chlorophyll is a natural proxy for primary142

productivity and marine life, while oxygen needs to be monitored and forecast in order to143

identify oxygen depletion events (hypoxia, Vaquer-Sunyer and Duarte [2008]), which can144

have disastrous impacts on marine life.145

2 Methods146

2.1 The physical component: Nucleus for European Modelling of the Ocean (NEMO)147

The NEMO ocean physics component (OPA) is a finite difference, hydrostatic, prim-148

itive equation ocean general circulation model (Madec et al. [2015]). The NEMO config-149

uration used in this study is similar to the one used by Ford et al. [2017]; Skákala et al.150

[2018], and identical to Skákala et al. [2020]: we use the CO6 NEMO version, based on151

NEMOv3.6, a development of the CO5 configuration explained in detail by O’Dea et al.152

[2017]. The model has 7 km spatial resolution on the Atlantic Margin Model (AMM7)153

domain using a terrain-following z∗ − σ coordinate system with 51 vertical levels. The lat-154

eral boundary conditions for physical variables at the Atlantic boundary were taken from155

the outputs of the Met Office 1/12° North Atlantic model (NATL12, King et al. [2018]);156

the Baltic boundary values were derived from a reanalysis produced by the Danish Meteo-157

rological Institute for the CMEMS. The model (including biogeochemistry) was initialized158

from the free run of Skákala et al. [2020].159

As Skákala et al. [2020], we use river discharge that has been updated to cover more160

recent years using data from Lenhart et al. [2010]. The model was forced at the surface161

by atmospheric fluxes provided by a high (hourly) temporal and (31 km) spatial resolution162

realisation (HRES) of the ERA5 data-set (https://www.ecmwf.int/ ).163

2.2 The biogeochemical component: European Regional Seas Ecosystem Model164

(ERSEM)165

ERSEM (Baretta et al. [1995]; Butenschön et al. [2016]) is a lower trophic level166

ecosystem model for marine biogeochemistry, pelagic plankton, and benthic fauna (Black-167

ford [1997]). The model splits phytoplankton into four functional types largely based on168

their size (Baretta et al. [1995]): picophytoplankton, nanophytoplankton, diatoms and di-169

noflagellates. ERSEM uses variable stoichiometry for the simulated plankton groups (Gei-170

der et al. [1997]; Baretta-Bekker et al. [1997]) and each Phytoplankton Functional Type171

(PFT) biomass is represented in terms of chlorophyll, carbon, nitrogen and phosphorus,172

with diatoms also represented by silicon. ERSEM predators are composed of three zoo-173

plankton types (mesozooplankton, microzooplankton and heterotrophic nanoflagellates),174
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with organic material being decomposed by one functional type of heterotrophic bacteria175

(Butenschön et al. [2016]). The ERSEM inorganic component consists of nutrients (nitrate,176

phosphate, silicate, ammonium and carbon) and dissolved oxygen. The carbonate system is177

also included in the model (Artioli et al. [2012]).178

We used in this study the ERSEM configuration from Skákala et al. [2020], based179

on the model parametrization described in Butenschön et al. [2016]. As Skákala et al.180

[2020], the Atlantic boundary values for nitrate, phosphate and silicate were taken from181

World Ocean Atlas (Garcia et al. [2013]) and dissolved inorganic carbon from the GLO-182

DAP gridded dataset (Key et al. [2015]; Lauvset et al. [2016]), while plankton and detritus183

variables were set to constant values. The ERSEM underwater light field was calculated184

using a new bio-optical module implemented in the NEMO-FABM-ERSEM AMM7 con-185

figuration by Skákala et al. [2020]. The bio-optical module resolves light spectrally and186

distinguishes between downwelling direct and diffuse streams. The module is forced by187

the ERA5 atmospheric inputs (https://www.ecmwf.int/ ) for total vertically integrated ozone,188

water vapour, cloud cover, cloud liquid water, sea-level air pressure, as well as by a satel-189

lite product for aerosol optical thickness (MODerate resolution Imaging Spectroradiometer,190

MODIS, https://modis.gsfc.nasa.gov/data/dataprod).191

2.3 The assimilative system: NEMOVAR192

NEMOVAR is a variational Data Assimilation (DA) system (Mogensen et al. [2009,193

2012]; Waters et al. [2015]) used for operational ocean DA at the Met Office. In its bio-194

geochemical applications, assimilating satellite ocean-color derived (PFT) chlorophyll con-195

centrations, NEMOVAR is highly successful in improving the phytoplankton community196

structure, phytoplankton seasonal cycle, the timing and magnitude of the spring bloom197

and also the carbon cycle (Skákala et al. [2018, 2020]). The 3D-Var version applied in198

this study uses the First Guess at Appropriate Time (FGAT) approach and minimizes the199

cost function using the conjugate gradient method (Mogensen et al. [2012]). For physics200

variables, multivariate assimilation is performed as described for the NWE Shelf model201

by King et al. [2018]. For biogeochemical variables, the scheme starts with univariate as-202

similation of the observed variable. For total chlorophyll the assimilation is applied in203

log-space, since chlorophyll is typically log-normally distributed (Campbell [1995]). After204

calculating the total chlorophyll increments, we use a balancing module to split those in-205

crements into the model state variables. The applied scheme (Skákala et al. [2018, 2020])206

redistributes total chlorophyll increments into the 4 ERSEM PFTs based on background207

PFT-to-total chlorophyll ratios. The PFT chlorophyll is used to update the remaining PFT208

components (carbon, phosphorus, nitrogen for all PFTs, silicon for diatoms) following the209

background stoichiometric ratios. In the case of oxygen concentration the assimilation is210

straightforward, as only the ERSEM oxygen variable is updated. There were attempts to211

extend the currently applied balancing scheme to other ERSEM variables (e.g nutrients),212

but so-far this produced sub-optimal results degrading the biogeochemical model skill (see213

discussion in Skákala et al. [2018]). Any combined physical-biogeochemical assimilation214

in NEMOVAR is weakly coupled, which means that the physical and the biogeochemical215

variables are assimilated separately, with physical assimilation impacting biogeochemistry216

only through the model dynamics, and no feedback from biogeochemistry to physics.217

Satellite OC data assimilation typically uses a "2D method", which consists of a)218

calculating surface chlorophyll increments and b) propagating those surface increments as219

constants through the mixed layer. This methodology is applied operationally by the Met220

Office to assimilate OC data and has been used in Skákala et al. [2018, 2020]. Alterna-221

tively, surface data can be assimilated similarly to profile data with a "3D variant" based222

on Waters et al. [2015]; King et al. [2018]; Ford [2020], in which NEMOVAR calculates223

directly the set of 3D increments using flow-dependent vertical length-scales. The vertical224

length-scales are based on vertical gradient of water density with the surface length-scale225

equal to half of the mixed layer depth, decreasing with depth until at half of the mixed226

–5–



Confidential manuscript submitted to JGR - Oceans

layer depth, while beneath half of the mixed layer depth the length-scales correspond to227

the local vertical grid resolution. The vertical correlation length-scales are designed to228

minimise any spurious mixing of surface increments beneath the mixed layer (King et al.229

[2018]). Both 2D and 3D variants were used in this study and we have found that they230

produced almost identical results (not shown here). In this study we will present the out-231

puts of the 3D variant, but these are representative of both methods.232

In this work we use the development from Ford [2020] extending the operational233

NEMOVAR set-up to include assimilation of biogeochemical profiles, as well as combined234

assimilation of satellite OC and profile data, by following a scheme previously applied235

to physical variables by Waters et al. [2015]. In the multi-platform assimilative system236

NEMOVAR combines satellite OC and in situ glider chlorophyll to calculate a single set237

of 3D chlorophyll increments, while allowing for different observation errors to be speci-238

fied for the different data sources (for the details see Waters et al. [2015]; Ford [2020]).239

The drawback of 3D-Var methods such as NEMOVAR is that the background vari-240

ances have to be often externally supplied and those do not always capture how the re-241

analysis approximates the true state. Improvements can be achieved by using hybrid meth-242

ods (e.g. background variances calculated as a weighted combination of the parameterised243

component and a flow-dependent component calculated from an ensemble), or iterative244

methods based on error diagnostics, such as the scheme of Andersson [2003]; Desroziers245

et al. [2005]. However, the current NEMOVAR relies on externally supplied variances: the246

background variances were estimated from the observational-to-free run differences, along247

the scheme of Skákala et al. [2020]. In case of glider data the total observational error248

(including representation error) was estimated as a difference between true variability and249

observed variability, where the true variability was estimated from the model outputs. This250

scheme assumes that (for the limited spatio-temporal range of glider data) the observa-251

tional errors and the true deviations from the mean are uncorrelated. After estimating the252

observational errors for gliders, one proceeds with the scheme from Skákala et al. [2020]253

to estimate the corresponding background errors. For both glider and satellite (where the254

observational errors are provided with the product) the estimated background and obser-255

vational errors turned out to have comparable values (ratios within 0.5-2). However, for256

the biogeochemical assimilation at AMM7 using the existing 3D-Var scheme, it has been257

observed (e.g Skákala et al. [2018]) that the reanalysis is relatively insensitive to the pre-258

cise value of the background-to-observational error ratio. Furthermore, the purpose of this259

study is to identify and resolve conceptual issues with glider data assimilation, rather than260

trying to produce the best estimate for the ocean state. The estimates for background and261

observational errors used in the assimilative runs are therefore deemed sufficient for the262

goals set in this work.263

2.4 Glider data264

The study used data from a glider named Cabot deployed during the AlterEco mis-265

sion (deployment 454). The glider moved in the central North Sea (see Fig.1), between266

May-August 2018, providing data for temperature, salinity, fluorescence and oxygen. After267

Quality Control (QC) the quenching-corrected chlorophyll (derived from fluorescence) and268

oxygen concentrations were available for slightly different periods: chlorophyll for 08/05 -269

15/08/2018 and oxygen for a shorter period of 08/05 - 30/06/2018. The Cabot glider was270

chosen because it provided high-quality data, but the period of the glider mission was also271

of special interest for assimilation, since it marks a known discrepancy between the timing272

of the spring bloom in the model and observations, with the model biased towards a late273

bloom (see Skákala et al. [2020]). The QC glider outputs contained a substantial number274

of data-points (2 · 106 for chlorophyll and 3 · 105 for oxygen) which were averaged to match275

the model AMM7 grid on a daily time-scale. The grid-averaging of glider observations is276

a practice adopted in the physical DA to avoid assimilating many observations at higher277

resolution than the model can represent. However, our tests have shown that the impact278
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Figure 1. The Figure shows the NEMO-FABM-ERSEM (AMM7) domain with the Cabot glider locations
marked by yellow diamonds, as well as glider horizontal area of impact on the reanalysis. The values shown
are the weekly (23-29-th June 2018) mean percentage (%) difference between reanalysis and free run in the
surface chlorophyll (left) and surface oxygen (right) concentrations. The percentage difference is calculated by
dividing the absolute value of the difference between reanalysis and the free run, with the free run. The black
lines show the boundary of the NWE Shelf (< 200 m bathymetry).
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of grid-averaging on the biogeochemical reanalysis was negligible. During each day the279

glider typically covered 3 model horizontal grid-cells and for each model horizontal loca-280

tion the glider scanned nearly the full vertical water column.281

The glider data (www.bodc.ac.uk) were processed using the GEOMAR slocum glider288

toolbox which includes a flight model regression and associated lag corrections for tem-289

perature, salinity and oxygen. The glider was fitted with a standard non-pumped SBE CT290

sensor, a WETLabs ECOpuck to measure chlorophyll fluorescence, and an Aanderaa 4330291

oxygen optode. Oxygen data were corrected based on comparisons between Winkler sam-292

ples and local crossings with the rest of the AlterEco glider fleet.293

The fluorescence sensor on Cabot (454) was calibrated prior to deployment, and294

recovered data were converted to chlorophyll concentration from raw voltages using the295

manufacturer supplied calibration routine. The derived chlorophyll record was filtered296

such that negative values were set to zero. Multiple quenching corrections were tested, in-297

cluding: Hemsley et al. [2015]; Swart et al. [2015]; Biermann et al. [2015] and Xing et al.298

[2012]. The former three methods rely on the use of algal particle scattering to correct299

for quenching. However, these approaches proved unsatisfactory for use in case-2 waters300

(e.g. the North Sea). Consequently, the Xing et al. [2012] method was adopted. Under this301

approach the maximum value of chlorophyll concentration above the mixed layer depth302
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(MLD) is extrapolated to the surface for daytime profiles. Night-time chlorophyll profiles303

are not corrected. MLD is calculated from glider CTD profiles according to the method of304

Holte and Talley [2009].305

2.5 Used metrics (definitions)306

The paper uses two metrics: a) model-to-observation bias (∆Qmo) defined as307

∆Qmo = Q(model) −Q(observations) (1)

and b) Bias-Corrected Root Mean Square Difference (BC RMSD, ∆RDQmo) defined as308

∆RDQmo =

√
(Q(model) −Q(observations) − ∆Qmo)

2 . (2)

To compare the model with the observations, the observations were mapped into the model309

domain (each observation location to the nearest model grid point) and an average value310

was taken when multiple observations corresponded to the same model grid point.311

It should be noted that the metrics from Eq.1-2 are used to measure “the skill” of312

the assimilative runs by comparing the simulation outputs to the assimilated data, rather313

than to an independent validation data-set. There are two reasons for this: firstly, to get314

sufficient validation data for the limited spatio-temporal region of this study is nearly im-315

possible, however, most importantly, this study has no ambition to produce a skill-assessed316

reanalysis, its ambition is to test the impact of the assimilative system components on the317

simulated variables. Since the NEMOVAR reanalyses tend to converge under optimal con-318

ditions to the assimilated observations (Skákala et al. [2018, 2020]), the performance of319

the assimilative system can be measured by comparing the model to the assimilated data.320

3 Results and Discussion321

Fig.2 shows chlorophyll concentrations in the region measured by the glider between322

May and August 2018. The results shown in Fig.2 are consistent with previous studies323

(Skákala et al. [2018, 2020]): the NEMO-FABM-ERSEM model on the NWE Shelf shows324

a late and intense spring bloom (starting and peaking in May), whilst the satellite OC and325

in situ observations have spring bloom about 1 month earlier than the model (see Skákala326

et al. [2020]). When the assimilation starts in early May (Fig.2), the glider is in the post-327

bloom period showing some deep chlorophyll maxima, whereas the model free run has yet328

to see the onset of the bloom with chlorophyll concentrations predominantly in the mixed329

layer. Since the North Atlantic sees substantial seasonal patterns in primary productivity330

(e.g. Henson et al. [2009]), the late and intense model bloom has a large impact on the331

biogeochemical model skill.332

In Fig.3 we address the impact of physical-only (temperature and salinity) assimila-340

tion on the model biogeochemistry. It is shown that the physical reanalysis improves the341

model representation of both temperature and salinity (Fig.3). As the pycnocline is primar-342

ily controlled by temperature and salinity, we expect that assimilating those variables may343

improve vertical gradients in water density and consequently vertical mixing. However,344

much of the vertical mixing in the upper oceanic layer is controlled by the atmospheric345

wind stress, which is provided as an external model input. In the well-mixed nutrient-rich346

waters the onset of the spring bloom depends on the interplay between vertical mixing347

in the upper oceanic layer and the underwater light (e.g. Huisman et al. [1999]; Waniek348

[2003]; Smyth et al. [2014]). Such interplay is closely related to the model atmospheric349

forcing, but even greater issue is the model response to the used atmospheric forcing,350

which consists here mostly of the ERSEM underwater light attenuation, the phytoplankton351

response to specific light conditions and the model vertical mixing scheme. The ERSEM352

response to the atmospheric forcing is known to be sensitive to the forcing temporal reso-353

lution, leading to important shifts in the timing of the phytoplankton bloom (Powley et al.354
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Figure 2. The Figure shows Hovmöller diagrams for the model free run and the observations. The left
panel (A) shows the model free run outputs for total chlorophyll a (mg/m3) horizontally averaged through the
area covered by the glider during each day (the plot is depth vs time). The middle panel (B) shows the same
for the glider-observed chlorophyll concentrations and the right panel (C) shows the satellite OC chlorophyll
observations at the glider locations. The satellite observations are plotted in the upper 10 m, which broadly
corresponds to the satellite optical depth (Skákala et al. [2020]) and the several missing data are due to the
cloud cover.
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334

335

336

337

338

339

[2020]). Since neither the model forcing, nor the model response to the forcing, change355

with the assimilation, neither there is much change to the MLD (Fig.3:C), assimilating356

temperature and salinity was found to have very little impact on the model skill to simu-357

late chlorophyll (see Fig.4:A,E). The Tab.1 shows that the impact of physical assimilation358

on the (daily, time series) BC RMSD was for chlorophyll negligible (< 2%). The rela-359

tive impact of physical assimilation on the model bias appears slightly larger (Tab.1), but360

that is due to the small values of the model bias, rather than large impact of physical as-361

similation. However, the impact of temperature and salinity assimilation on the simulated362

phytoplankton could become more substantial within a strongly coupled system (Goodliff363

et al. [2019]). In such system we mutually update the biogeochemical and the physical364

increments within a balancing scheme, which could be ideally defined using a two-way365

coupled physical-biogeochemical model (e.g. Lengaigne et al. [2007]). Such development366

is planned on the NWE Shelf in the foreseeable future.367

In Fig.5 we analyse the impact of different components of the assimilative system396

on the skill of the reanalysis in representing chlorophyll. In particular, Fig.5 shows what397

changes to the model free run are required to better match the glider observations and398

how these changes are carried through by the different components of the multi-platform399

system. The satellite OC chlorophyll reanalysis from Fig.5:B is skilled not only in repre-400

senting surface chlorophyll concentrations (Fig.6), but also in estimating the chlorophyll401

vertical profiles. Because the glider moved on the model grid dominantly in the verti-402

cal dimension, the model skill to represent vertical profiles of glider chlorophyll can be403

quantified using the spatial BC RMSD (Fig.4:F and Tab.1). Comparison of the spatial404

BC RMSD between the satellite OC chlorophyll assimilation and the free run (Tab.1) has405

shown that the spatial BC RMSD was improved in satellite OC assimilation by 17%. This406

is an encouraging result, even if it is outperformed by the glider chlorophyll assimilation,407

which improves the spatial BC RMSD by 62% (Tab.1). The positive impact of satellite408

chlorophyll assimilation on the model representation of chlorophyll vertical profiles can409

be understood from relatively simple chlorophyll dynamics: The satellite-only assimila-410

tive run removes the intense late model bloom in May, removing chlorophyll from the411

mixed layer and increasing the light penetrating into the water column. Although the ver-412

tical length-scales used in the satellite OC assimilation update chlorophyll only inside the413

mixed layer, the increased underwater light combined with nutrient availability produces414

deep chlorophyll maxima around the pycnocline. Furthermore, the removal of the late415

(May) bloom in the satellite OC reanalysis means the assimilation also removes the grad-416
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Figure 3. The Figure uses Hovmöller diagrams to demonstrate the impact of physical (temperature and
salinity) assimilation on the model variables. The upper row (A and B) shows the difference between glider
("G" in the title) and free run ("F") outputs for temperature (A) and salinity (B). The middle row (C and D)
shows differences for the same variables between physical reanalysis ("R") and the free run. The bottom row
(E and F) shows the same differences between physical reanalysis and the free run, but for the two biogeo-
chemical variables addressed by this study: total chlorophyll and oxygen. The two lines in the panel C mark
the mixed layer depth of the free run (yellow) and of the physical reanalysis (black). The mixed layer depth
has been obtained in both cases from the model outputs.
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Figure 4. The Figure shows the impact of different multi-platform system components on the model chloro-
phyll concentrations. The panels A-B compare the daily chlorophyll values spatially averaged throughout the
upper 10 meters of the water column, within the part of the model domain visited by the glider. The panels
C-D show the daily values spatially averaged throughout the whole water column, within the part of the model
domain visited by the glider (daily typically around 150 model grid points), and the remaining panels E-F
show the daily BC RMSD (Eq.2) for the same part of the model domain than the panels C-D. The panels dis-
play the skill of the following system components: temperature and salinity assimilation (grey color), satellite
OC chlorophyll assimilation (orange) and oxygen assimilation (brown). These components are compared with
the multi-platform assimilative run (joint glider temperature-salinity-chlorophyll-oxygen and satellite OC
chlorophyll assimilation, green color), the free run (blue), the glider observations (red) and the satellite OC
data (pink).
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Table 1. The Table demonstrates the skill measured by bias (Eq.1) and BC RMSD (Eq.2) of the free run and
the relative (%) changes to the skill carried by the different assimilative system components. The skill com-
pares the model simulations with the glider data. The “spatial BC RMSD” is just time-averaged value of the
daily BC RMSD, i.e. calculated as a time-average from the 100 (chlorophyll), or 54 (oxygen) data points of
the series shown in Fig.4:E-F and Fig.7:D. The “temporal BC RMSD” is the BC RMSD calculated from the
time-series of the daily averages across all the spatial locations covered by the glider (the time series shown
in Fig.4:A-D and Fig.7:A-C). The percentage changes in the columns for the assimilative runs are calculated
relative to the free run skill. The negative percentage means that the bias, or BC RMSD is reduced by the
specific system component, whilst the positive percentages mean that bias, or BC RMSD, increases.

376

377

378

379

380

381

382

383

384

variable free run temp+sal DA sat Chl a DA glid Chl a DA O2 DA multi DA

Chl a bias 0.32 mg/m3 +4.8% -82.7% -46.4% 0% -42.2%

Chl a temporal BC RMSD 0.77 mg/m3 +0.1% -54.3% -70.7% 0% -71.9%

Chl a spatial BC RMSD 1.14 mg/m3 -1.3% -17.3% -61.7% 0% -60.4%

O2 bias -3.73 mmol/m3 +25.7% -59.2% -27.8% -81.7% -86.9%

O2 temporal BC RMSD 11.97 mmol/m3 -2.7% +13.8% -0.3% -42.3% -55.2%

O2 spatial BC RMSD 26.89 mmol/m3 -4.3% -7.9% -12.8% -37.1% -47.1%

ually deepening chlorophyll maxima (the July-August period in Fig.2:B), as the nutrients417

become confined deeper in the water column. The satellite OC assimilation has a substan-418

tial impact on the (spatial mean) chlorophyll time series, improving the free run skill by419

more than 50% (temporal BC RMSD in Tab.1). There are two combined reasons for this420

improvement: the satellite OC data are reasonably consistent with the glider measurements421

(Fig.2, Fig.4:C-D), and the patterns in surface chlorophyll time series are a reasonable422

proxy for the time series of the vertically averaged chlorophyll concentrations.423

Comparison between Fig.5:C and Fig.5:D shows that the chlorophyll concentra-446

tions around the glider locations are very similar between the multi-platform reanalysis447

(Fig.5:D) and the glider chlorophyll assimilation (Fig.5:C). This confirms that near the448

glider locations the glider chlorophyll assimilation is by far the most essential compo-449

nent of the multi-platform system in representing chlorophyll. The horizontal impact of450

glider assimilation (e.g. Fig.1) depends on the horizontal correlation length-scales and on451

the propagation of the assimilation increments with the advection. The Fig.8 shows that452

the impact of the glider assimilation on the reanalysis is mostly constrained within a 100453

km horizontal radius, with the dominant part of the impact constrained within 30-50 km454

around the glider. The satellite assimilation has little impact on the multi-platform reanal-455

ysis near the glider locations, but plays naturally a major role in the regions away from the456

glider locations, where it substantially improves surface chlorophyll (Fig.6) and, as pre-457

viously noted, improves chlorophyll vertical profiles (Fig.5). Both the multi-platform and458

glider chlorophyll assimilative runs lead to a major improvement in model skill to repre-459

sent chlorophyll near the glider locations (Fig.4:B,F), with spatial BC RMSD improved460

by more than 70% and the temporal BC RMSD by more than 60% (Tab.1). Finally, we461

have observed that assimilating glider oxygen into the model has a negligible impact on462

the simulated chlorophyll concentrations, with a change to the skill metrics of the order463

O(10−2) percent (Tab.1, see also Fig.4:A,E). This is expected, as the modeled oxygen in-464

fluences phytoplankton concentrations only indirectly through a complex chain of marine465
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Figure 5. The left hand panels (A,C,E,G) demonstrate the impact of the multi-platform system components
on the simulated chlorophyll a concentrations (mg/m3) by comparing different simulations to the free run.
The right hand panels (B,D,F,H) show the skill of each component by comparing the simulations to the glider
observations. The first row shows the skill of the free run (panel B) and the required changes to the free run
in order to better match the glider observations (panel A). The rows beneath the first row compare the chosen
reference (free run or glider) with a range of system components: i) the reanalysis assimilating satellite OC
chlorophyll (panels C and D), ii) the reanalysis assimilating glider chlorophyll (panels E and F) and iii) the
multi-platform assimilation (joint glider temperature-salinity-chlorophyll-oxygen and satellite chlorophyll
assimilation, panels G and H). The OC chlorophyll assimilation updates the model only within the mixed layer
whose depth is marked by a yellow line (panels C and D).
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Figure 6. Comparison of the time median surface chlorophyll distributions (mg/m3) for the simulation
period (08/05/2018 - 15/08/2018). The three panels compare the free run (left panel), the multi-platform
assimilation (middle panel) and the satellite distributions (right panel). It is shown that the multi-platform
reanalysis is very similar to the assimilated satellite data on the whole NWE Shelf.

434

435

436

437

Figure 7. The Figure shows the impact of different multi-platform system components on the model oxy-
gen. The panels A-C compare the daily oxygen values spatially averaged throughout the whole water column,
within the part of the model domain visited by the glider (daily typically around 150 model grid points), and
the panel D shows the daily BC RMSD (Eq.2). The panels display the skill of the following system com-
ponents: temperature and salinity assimilation (grey color), satellite OC chlorophyll assimilation (orange),
glider chlorophyll assimilation (light blue) and oxygen assimilation (brown). These components are compared
with the multi-platform assimilative run (joint glider temperature-salinity-chlorophyll-oxygen and satellite
chlorophyll assimilation, green color), the free run (blue) and the glider observations (red).
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Figure 8. The Figure shows the horizontal scales for the impact of the glider chlorophyll (panels A-B) and
the glider oxygen (panels C-D) assimilation. The impact of glider assimilation is shown for a range of days
(between 08/05-17/06/2018). The impact is calculated by comparing the mean absolute value of the difference
in chlorophyll (A-B panels), or oxygen (panels C-D) concentration between the reanalysis and the model free
run. The mean absolute difference is shown relative to the free run values (in %, panels A,C), or in the abso-
lute values (panels B,D). The absolute difference was averaged on the circles with 7-200 km radii (the spatial
scales shown on the x-axis). The circles were centered around the glider daily mean location.

468

469

470

471

472

473

474

chemical and biological processes (e.g. through influencing remineralization, or nitrifica-466

tion rates, and through the impact of hypoxia on zooplankton).467

Fig.9 shows a discrepancy between the oxygen time series of the glider and the475

model free run (see also Fig.10:A-B), with glider oxygen concentrations steadily decreas-476

ing (Fig.7:A), while the simulated oxygen peaks in the late May (Fig.7:A). Fig.7:A clearly477

shows that photosynthesis is an important driver of the simulated oxygen, producing a478

large oxygen surge in the mixed layer during the simulated late spring bloom. Some con-479

nection between oxygen and chlorophyll concentrations (a proxy for primary productivity)480

appears also in the glider observations (Fig.9), with the peak in oxygen concentrations481

located in the neighborhood of the glider deep chlorophyll maxima (Fig.2:B). Since the482

modeled oxygen concentrations are largely driven by the phytoplankton seasonal cycle, it483

is not surprising that assimilation of either satellite OC, or glider chlorophyll, has a ma-484

jor influence on the simulated oxygen (Fig.10:C,E). The assimilated chlorophyll modifies485

the simulated oxygen after a necessary time-lag, removing the excess oxygen from the486

model spring bloom and generating some deep oxygen maxima in the early-to-mid June487

(Fig.10:C-F). The chlorophyll assimilation consistently improves oxygen in the period up488

to the start of June, but sometimes degrades oxygen in the early-to-mid June (Fig.5:B,D,489

Fig.10:D,F), mostly due to the surge in oxygen concentrations around the deep oxygen490

maxima. The oxygen surge is likely to be partly driven by the deep chlorophyll maxima,491

e.g. by the overestimated chlorophyll concentrations around the deep maxima in the OC492

assimilation (Fig.5:D and Fig.4:B,F). However, the photosynthesis around the deep chloro-493

phyll maxima cannot explain why the glider chlorophyll assimilation degrades the oxy-494

gen concentrations in the early June, i.e. why the simulated oxygen surges (Fig.7:B) while495

the glider assimilation mostly lowers the simulated chlorophyll (Fig.4:D). A further ex-496
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Figure 9. The Figure shows Hovmöller diagrams for the model free run and the glider observations. The
left panel (A) shows the model free run outputs for oxygen (mmol/m3) horizontally averaged through the area
covered by the glider during each day (the plot is depth vs time). The right panel (B) shows the same for the
glider-observed oxygen.

517

518

519

520

planation for the deep oxygen maxima is given by Fig.11: the chlorophyll assimilation497

removes the phytoplankton biomass from the mixed layer, which limits the resources for498

the simulated zooplankton and bacteria, and reduces their concentrations (Fig.11:C-F).499

The reduced phytoplankton concentrations seem to have much larger and more consistent500

impact on the zooplankton concentrations than on bacteria (Fig.11:C-F). The reduced zoo-501

plankton concentration means less oxygen is removed through respiration and this leaves502

the excess simulated oxygen concentrations at the deep oxygen maxima (Fig.10:D,F). The503

degradation in the modelled oxygen concentrations around the early June (e.g. Fig.7:B)504

reminds us that ERSEM skill to simulate oxygen is too-complex to be fully addressed by505

assimilating glider chlorophyll. For example, the temperature and salinity data assimilation506

has a moderately larger (mostly positive) impact on the oxygen than on the chlorophyll507

(Tab.1, Fig.7:A,D), which can be explained by the lowered oxygen saturation concentra-508

tions (Fig.7:A) under the increase in temperature within the reanalysis (Fig.3:C). As for509

chlorophyll, a simple way to improve simulated oxygen is to assimilate the glider oxygen510

data into the model (Fig.10:D). Assimilating oxygen into the model reduces the spatial511

BC RMSD by 35-50% (Tab.1) and the temporal BC RMSD by 40-55%, depending on512

whether oxygen was the only assimilated variable, or as a part of multi-platform assim-513

ilation (Tab.1). The multi-platform assimilation performs slightly better than the glider514

chlorophyll component (Tab.1, Fig.7:C-D), presumably because by correcting the chloro-515

phyll variable it improves the internal consistency of the analysis state.516

4 Summary536

Present and future glider missions on the NWE Shelf will provide us with three-537

dimensional (3D) data on some specific biogeochemical variables (presently mostly for538

chlorophyll and oxygen) combined with physical measurements (e.g. temperature and539

salinity). These data will be, together with satellite OC missions, integrated into our ecosys-540

tem models by means of a multi-platform assimilative system. It is of crucial importance541

to understand what observed variables need to be assimilated in order to represent well a542

target ecosystem indicator, and what assimilation needs to be avoided because it can para-543

doxically degrade the model skill for the target indicator. Furthermore, different data will544

be available for different spatial and temporal regions on the NWE Shelf and it is essen-545
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Figure 10. The left hand panels (A,C,E,G) demonstrate the impact of the multi-platform system compo-
nents on the simulated oxygen concentrations (mmol/m3) by comparing different simulations to the free run.
The right hand panels (B,D,F,H) show the skill of each component by comparing the simulations to the glider
observations. The first row shows the skill of the free run (panel B) and the required changes to the free run
in order to better match the glider observations (panel A). The rows beneath the first row compare the chosen
reference (free run or glider) with a range of system components: i) the reanalysis assimilating satellite OC
chlorophyll (panels C and D), ii) the reanalysis assimilating glider chlorophyll (panels E and F) and iii) the
multi-platform assimilation (joint glider temperature-salinity-chlorophyll-oxygen and satellite chlorophyll
assimilation, panels G and H).
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Figure 11. The Figure helps to interpret the impact of the simulated primary production and respiration on
the modeled oxygen concentrations. We show the difference between the glider chlorophyll assimilation (left-
hand side panels, A,C,E), or OC chlorophyll assimilation (right-hand side panels, B,D,F) and the model free
run (always assimilative run minus free run). The difference is shown for (i) the total net primary production
(mg.C.m−3.day−1, panels A-B), (ii) total zooplankton carbon concentrations (mg.C/m3, panels C-D) and (iii)
heterotrophic bacteria carbon concentrations (mg.C/m3, panels E-F).
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tial to understand how the limitations imposed by the availability of the observational data546

impact on the quality of the multi-platform reanalyses. To address these questions we ex-547

plored the impact of different system components (glider physics, chlorophyll, oxygen and548

satellite OC chlorophyll assimilation) on future multi-platform reanalyses based on a cur-549

rent operational set-up used to assimilate satellite OC chlorophyll (Skákala et al. [2018,550

2020]). This study has taught us several important lessons:551

a) Assimilating physical glider data (temperature and salinity) improves the assimi-552

lated physical variables, but has negligible impact on the simulated phytoplankton bloom.553

This is because the modeled phytoplankton bloom depends in the North Sea mostly on554

the model response to the atmospheric forcing (wind stress and solar radiance), which re-555

mains unchanged by the temperature and salinity assimilation. Since the phytoplankton556

bloom is an essential driver of the ecosystem dynamics on the NWE Shelf (Henson et al.557

[2009]), it is reasonable to expect that physical glider data assimilation will not have a558

major importance for the simulated ecosystem dynamics on the NWE Shelf. This is quite559

different from some other global regions where physical assimilation is either desirable560

(Anderson et al. [2000]; Yu et al. [2018]), or can degrade the biogeochemical model skill561

(Berline et al. [2007]; Holt et al. [2014]; Raghukumar et al. [2015]; Park et al. [2018]).562

Based on this study we would suggest that, at least around the spring bloom in the North563

Sea, physical assimilation can be used to improve the physical model skill, without any564

need to worry about the coupled biogeochemical model.565

b) The glider chlorophyll assimilation is within the 30-50 km horizontal proximity566

of the glider the dominant and most skilled component of the multi-platform system. Fur-567

ther away from the glider locations, assimilating satellite OC data has not only a major568

positive impact on the surface chlorophyll, but it can also improve the vertical chlorophyll569

profiles. Since satellite OC assimilation updates chlorophyll only within the mixed layer,570

the improvement in chlorophyll across the whole water column is explained by the model571

dynamical response to the assimilation. The skill of satellite OC assimilation in vertical572

chlorophyll is an encouraging result, as glider technology will be able to cover only lim-573

ited parts of the NWE Shelf and future multi-platform assimilative system will have to574

rely heavily on satellite data.575

c) The modelled phytoplankton dynamics is impacted by the oxygen concentrations576

only indirectly, e.g. through remineralization, or nitrification rates and the impact of hy-577

poxia on zooplankton (Butenschön et al. [2016]). It is therefore not surprising that univari-578

ate assimilation of oxygen has a negligible impact on the simulated phytoplankton chloro-579

phyll concentrations. This also means that one can assimilate oxygen into ERSEM without580

worrying about its consequences for the modelled phytoplankton. Such an oxygen assimi-581

lation has an obvious advantage in that it outperforms any other run in the model simula-582

tion of oxygen.583

d) The simulated oxygen concentrations are largely driven by the primary produc-584

tion during the phytoplankton bloom. Consequently, assimilating (satellite OC, or glider)585

chlorophyll was found to have a major impact on the modeled oxygen. The removal of586

the late model bloom in the reanalysis improves the modeled oxygen, however it produces587

spurious deep oxygen maxima, partly due to the reduced respiration by the ERSEM zoo-588

plankton.589

e) The multi-platform assimilation (joint glider temperature-salinity-chlorophyll-590

oxygen and satellite OC chlorophyll) combines optimally the skill of its components and591

always performs comparably to, or better than its best performing component.592

f) Based on the results of this study we expect that the multi-platform system will593

provide us with improved-quality operational products on the NWE Shelf.594
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