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Introduction

This file contains supplementary texts about methodology (S1: General workflow, S2:

Additional Options, S3: Model Details), results (S4: Asymmetry) and a simple inversion

example for the subduction application (S5: Inverting for Initial Angle). Furthermore,

it contains the supplementary Figures S1 to S5 associated with methodology, Figures

S6 to S9 associated with Application I: Salt, Figure S10 associated with Application II:

Subduction and Figure S11 associated with text S5. Finally, supplementary tables S1 and

S2 containing the material parameters used and table S3 containing scaling parameters

used in Application I: Salt.
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Text S1: General workflow

This text outlines the general workflow of how our tool can be used for a geodynamic

study. It contains 7 steps (illustrated in Figure S1), of which the last 4 may repeat if

an inversion is to be performed. Steps 1-4, 6 and 7 can be completed on any modern

computer or laptop that has access to Inkscape, Matlab and Paraview (for visualization

only). Step 5 requires LaMEM and more computing power. Single 2D simulations can

be performed on regular machines but for 3D or a large number of 2D simulations, a

computing cluster is necessary.

(i) Draw the reference geometry in Inkscape. This includes all units like the background

lithosphere, mantle and anomalous bodies like salt and magma bodies or subducting

plates. Instructions can be found at: https://bitbucket.org/geomio/geomio/wiki/Home.

This results in an .svg file.

(ii) Use the basic functionality of geomIO to read the .svg file and create the reference

geometry. This results in a .vtk file for each unit. The different units can be visualized

directly in Matlab. Alternatively, the .vtk files can be opened in Paraview.

(iii) Choose the unit that should be varied and the control polygons. Prepare and load

in scaling parameters for each variation or use the build-in options to generate them.

(iv) Use the new functionality of geomIO and the options selected in step (iii)

to create an ensemble of setups. Figure S2 shows examples of how this can

be accomplished. For a more detailed description of all available options visit

https://bitbucket.org/geomio/geomio/wiki/VaryGeomTutorial.md.

(v) Use LaMEM to run forward models with each of the setups generated in step (iv).
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(vi) Use any software to post-process the results from LaMEM (e.g. compute a misfit to

observations, analyze result dependencies on input parameters). LaMEM output is

in .vtk format, so it can be directly visualized in Paraview, or read and reformatted

in Python or Julia.

(vii) Optional: Select new scaling parameters and return to step (iv). New scaling param-

eters can be the result of an optimization algorithm (e.g., neighborhood algorithm

(Sambridge, 1999), NAplus (Baumann et al., 2014)).

To reproduce the results (including Figures) of this study, visit our repository on zen-

odo (https://doi.org/10.5281/zenodo.6538270). It contains the versions of geomIO and

LaMEM that were utilized as well as detailed step-by-step instructions of how to re-

produce our results. As LaMEM requires more computing power, we also included the

post-processed output in the repository.
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Text S2: Additional Options

Text S2.1: Absolute Transformation Parameters

One issue of the method described in section 2.1.3 is that the absolute change in coor-

dinates of polygon nodes is determined by the size of the polygon. In Figure S3b, the

central polygon (lowermost control polygon) is elongated by 0.5 units in y-direction while

the lowermost polygon is only elongated by 0.015 units. If this effect is not desired, we

offer a second transformation algorithm which works with absolute transformation pa-

rameters (dx and dy). dx and dy are the maximum transformations per direction and

they are scaled for every node on the polygon, depending on the node’s position:

(
~xnew ~ynew

)
=
(
~x ~y

)
+
(

~x′

|−→xy|
~y′

|−→xy|

)
∗
(
dx 0
0 dy

)
(S1)

|−→xy|n =
√
x′n

2 + y′n
2 (S2)

The fraction in equation S1 corresponds to element-wise division. The lower half of

the body in Figure S3c was changed with absolute transformation parameters. While

the central polygon (lowermost control polygon) is identical to the one in Figure S3b,

all polygons below are wider, most notably the lowest one. Figure S4a shows how the

different methods affect the lowermost polygon. The approach of absolute transformation

is limited when it comes to shrinking parts of the body which have very small polygons.

June 10, 2022, 4:40pm



X - 6 SPANG ET AL.: VARIABLE GEOMETRY

Text S2.2: Coordinate rotation

The body might have a preferred orientation which is not aligned with either the x- or

the y-direction, so scaling it in a different direction might be desirable. To do that, we

include the option to rotate the coordinate system such that the orientation, in which

transformation is preferred, aligns with one of the axes. This is done by defining the

rotation matrix

Q =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(S3)

where θ represents the preferred direction of transformation and rotates the coordinate

system clockwise. To apply it, equation 3 has to be modified to:

(
~xi,new ~yi,new

)
=
(
~xi
′ ~yi

′) ∗Q ∗ (Sx1 0
0 Sy1

)
∗QT +

xic yic
...
xic yic

 (S4)

Figure S4b shows an example case where a polygon is elongated in NNE-SSW direction,

so without rotating the coordinate system it would not be possible to only transform

the polygon along its longest axis. However, by rotating the y-axis to align with the

orientation, then applying the scaling and rotating it back, we can do that. Figure S4c

shows that more complex shapes can be handled in the same way.
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Text S3.1: LaMEM

For our models, we utilize the thermomechanical finite differences code LaMEM (Kaus

et al., 2016). It solves for the conservation of momentum, mass and energy (eq. S5-S7),

using a staggered grid in combination with a marker-in-cell approach (Harlow & Welch,

1965).

∂τij
∂xj
− ∂p

∂xi
+ ρgi = 0 (S5)

1

K

Dp

Dt
− αDT

Dt
+
∂vi
∂xi

= 0 (S6)

ρCp
DT

Dt
=

∂

∂xi

(
λ
∂T

∂xi

)
(S7)

τij is the Cauchy stress deviator, xi(i = 1, 2, 3) denotes the Cartesian coordinates, p is

pressure (positive in compression), ρ density, gi gravitational acceleration, K the bulk

modulus, α the thermal expansion coefficient, T the temperature, vi the velocity vector,

Cp the specific heat capacity, λ the thermal conductivity and D/Dt is the material time

derivative.

The rocks are characterized by a visco-elasto-plastic rheology where the strain rate is

the sum of the elastic, viscous and plastic components:

ε̇ij = ε̇elij + ε̇viij + ε̇plij (S8)

ε̇ij denotes the total deviatoric strain rate tensor, while ε̇elij, ε̇
vi
ij and ε̇plij represent the elastic,

viscous and plastic strain rate components. For a detailed discussion of this equation and

all of its components, the reader is referred to Kaus et al. (2016). Here we will focus on

the material parameters which impact the 3 components.

The elastic component depends on the shear modulus G:
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ε̇elij =
1

2G

Dτij
Dt

, (S9)

where Dτij/Dt is the objective derivative of the stress tensor.

The viscous component depends on the viscosity η:

ε̇viij =
τij
2η

(S10)

η is either a constant (see tables S1 and S2) or follows the stress- and temperature-

dependent powerlaw relationship of dislocation creep:

η =
1

2
(Bn)−

1
n (ε̇II)

1
n
−1exp

(
En + pVn
nRT

)
, (S11)

where Bn is the creep constant, ε̇II the square root of the second invariant of the strain

rate (ε̇II = (1
2
ε̇ij ε̇ij)

1/2), En the activation energy, p the pressure, Vn the activation volume,

n the powerlaw exponent, R the universal gas constant and T the temperature.

The plastic component is governed by the Drucker-Prager failure criterion (Drucker &

Prager, 1952):

τII ≤ sin(φ)p+ cos(φ)c0 (S12)

where τII is the square root of the second invariant of the stress tensor (τII = (1
2
τijτij)

1/2),

φ is the friction angle, p the pressure and c0 the cohesion. As long as τII does not exceed

the failure criterion, the stress is accommodated by visco-elastic deformation.
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Text S3.2: Model Details Application I: Salt

We model a homogeneous slice of crust that is 20 km wide and deep and hosts a 3.5 km

thick salt bed from which the diapir rises. Along the boundaries of the model, we employ

free slip conditions (velocities normal to boundaries equal zero). At the top of the crust,

we use a stabilized (Kaus et al., 2010) stress free internal surface and 5 km thick layer

of sticky air (Crameri et al., 2012). We use 128 cells in the horizontal and 256 cells in

vertical direction. For simplicity, we use linear viscosities η for all materials. Table S1

summarizes the material parameters that we employed. A shear modulus of 15 GPa and

a Poisson’s ratio of 0.25 correspond to a Young’s modulus of 37.5 GPa which is consistent

with previous laboratory and modeling studies on salt (Ingraham et al., 2015, June; Zong

et al., 2017; Baumann et al., 2018).
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Text S3.3: Model Details Application II: Subduction

Our subduction model is 2000 km wide and extends from the surface to 660 km depth. We

use 512 cells in the horizontal and 256 cells in the vertical direction, yielding resolutions of

about 4 and 2.5 km respectively. The 100 km thick continent is made up of 40 km of crust

and 60 km of lithospheric mantle. We assign different linear temperature gradients to the

continental crust and lithosphere and use a half-space cooling model for the subducting

plate that corresponds to a thermal age of 30 Myr. As the plate has already started

subducting at the start of our simulations, we add another 1 Myr of temperature diffusion

to account for the heating during that initial stage of subduction (Figure S10a). All

materials are described by a temperature- and stress-dependent visco-plastic rheology.

Table S2 summarizes all material parameters. We use free slip boundary conditions along

all model edges and do not prescribe any boundary velocities.
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Text S4: Asymmetry

The asymmetry was introduced by slightly reducing the curvature of the diapir head on

one side (Figure 3, S8). As for the symmetric case, we can see a clear distinction between

faults that develop from the center of the diapir head and those that develop from the side

of the head (Figure S8a,d). But while central faults still develop to both sides, outside

faults now exclusively develop on one side of the diapir (Figure S8c,f). Mirroring the

asymmetry leads to a mirrored result. In all cases, outside faults now appear on the side

that retained the original curvature.

This suggests that for symmetric cases, the side that develops the dominant fault is

influenced by the small difference between how one side of the curved diapir boundary

aligns with the grid cells compared to the other side. This is still the case for the central

faults at asymmetric diapirs, but towards the outside of the diapir head, the asymmetry

is more important for the location of the dominant fault.
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Text S5: Inverting for Initial Angle

Reconstructions (e.g. Sdrolias & Müller, 2006) show that convergence velocities between

plates fluctuate throughout the evolution of subduction zones. These fluctuations are

frequently interpreted to be the result of subdcution of ocean plateaus or ridges (e.g.

Martinod et al., 2010) but our models show that the convergence rate also fluctuates

without any changes in the elevation or density structure of the oceanic plate. Instead

the velocity profile seems to be coupled to the initial dip of the subducting slab (β0), so

given a good understanding of the rheology of the system, a velocity reconstruction could

also be used to invert for an initial angle using modeling. To demonstrate the feasibility

of this approach, we use a synthetic profile that we generated using β0 = 72.5◦ (dotted

line in Figure S11a). We add normally distributed random noise (σ = 0.5 cm yr−1) to the

profile to get a synthetic observation in 1 Myr intervals (black circles in Figure S11a). We

then run a set of models in 5◦ intervals (blue in Figure S11b), compute the RMS misfit

(Φ) and add models in 1◦ intervals in areas of low misfit (orange in Figure S11b).

Figure S11b shows that we can find the true β0 with only a few forward models. In a

real application, there might be more parameters involved in the inversion process but as

there is an obvious dependency of the velocity profile on the initial angle, an inversion

with more models should still converge to the correct solution.
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Draw reference 
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visualize setup
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Figure S1. General workflow for using geomIO and the new tool presented in this work in

combination with LaMEM. The dashed arrows indicate that these steps are optional and are

only necessary to minimize misfit or explore additional parameter space. Text S1 describes the

procedure in more detail.
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(a)

(b)

Figure S2. Code snippet examples that show the options that are set in geomIO to create the

geometry variations. (a) Salt diapir example. (b) Subduction example. Full codes used in this

study are available on zenodo (https://doi.org/10.5281/zenodo.6538270).
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Figure S3. Illustration of 3-dimensional bodies as sets of 2-dimensional polygons. The three

red polygons are the control polygons which are used to transform the body. (a) Sphere with

radius 1, represented as 21 polygons. (b) Sphere from S3a after transformation by scaling. (c)

Sphere from S3a with the upper half being transformed by scaling and the lower half by absolute

transformation parameters. Note how the lower half is wider in S3c than in S3b.
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Figure S4. Illustration of how the transformation methods work on single 2-dimensional

polygons. (a) Example of how the different transformation methods affect the lowermost polygon

in Figure S3. Original in black, scaling in blue (used for Figure S3b) and transformation by

absolute values in green (used for Figure S3c). (b) Scaling a polygon with preferred orientation.

Original in black, dashed red line: Sx = 1.5, dotted red line: Sy = 1.5, dashed and dotted red

line: Sx = Sy = 1.5, blue line: Sy = 1.5 and θ = 30. (c) Illustration of how complex shapes are

handled. Original in black, scaled version in blue (Sx = 0.5, Sy = 0.75), scaling and coordinate

system rotation in green (Sy = 1.5, θ = 45).
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(a)

Figure S5. (a) 3D Example of a plate, subducting along a curved trench, drawn in geomIO

(red) and an automatically generated variation that is bent at two locations in 200 and 320

km depth (crosses in S5b). Black line shows one of the vertical polygons that the 3D volume is

represented as inside our algorithm and is identical to the red polygon in S5b. (b) Representation

of the plates in S5a as vertical polygons. Red: original, purple: after the first rotation, blue:

after both rotations. Crosses show the centers of rotation.
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Figure S6. Evolution of plastic strain (i.e. faults) around the synthetic ’true’ diapir (blue in

Figure 3). (a) Early stage plastic failure along the surface and at the tip of the diapir. (b) First

faults start to connect diapir and surface. (c) Faults have connected diapir and surface. Right

fault takes up most of the deformation. (d) Right fault takes up all the deformation and left

fault is no longer active.
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Figure S7. All fault properties in relation to each scaling parameter. x: lateral coordinate of

lower fault tip, z: vertical coordinate of lower fault tip, α: dip angle of fault, r: aspect ratio of

fault, n: number of faults. Blue dots denote faults that connect to the center and orange dots

denote faults that connect to the side of the diapir head. Note that the orange dots are plotted

on top which is why they hide a lot of blue dots in the lowest row of sub-figures.
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Figure S8. Results for two mirrored asymmetric setups. Upper row has been changed on the

left (dotted in Figure 3), lower row on the right (dashed-dotted in Figure 3). Same color code

as in Figure 5 (blue dots denote faults that developed from the center of the diapir head and

orange dots denote faults that developed from it’s sides). (a) and (d) Depth of the lower end of

the fault in dependence of Sz. (b) and (e) Fault orientation in dependence of S2. α < 0: fault

goes to the left. (c) and (f) Lateral position of the lower end of the fault in dependence of S4.
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Figure S9. Misfit of the fault systems in dependence of all sets of 2 scaling parameters. Low

misfit always correlates with medium Sz values and often correlates with low S4. High misfit

always correlates with low S2. S1 and S3 do not show correlation with the misfit.
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(a)

(b)

1200

400

800

Figure S10. (a) Viscosity in the reference model (β0 = 60◦) at the first time step. White

contour lines show temperature in 200 ◦C intervals. Top and bottom of the model have tempera-

tures of 0 and 1350 ◦C respectively. Axes are in km. (b) Snapshot of the same model after 2 Myr.

Slab has started to sink, trench has started retreating and continent has undergone buckling and

extension. Arrows show velocity field.
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Figure S11. Results of inversion for initial angle (β0). (a) Dotted black line shows profile of

target model (β0 = 72.5◦) and black circles show noisy observation based on the target model.

Dashed orange line shows best fitting model (β0 = 72◦). (b) RMS misfit (Φ) as a function of

initial dip angle β0. Blue dots shows first set of models in 5◦ intervals and orange dots show

second set in 1◦ intervals in areas of low misfit. Dotted black line indicates β0 of the target

model.
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Table S1. Material parameters for salt application

Material ρ [ kg
m3 ] G [GPa] ν[ ] η [Pas] c0[MPa] φ[◦]

Crust 2700 30 0.25 1024 10 30
Salt 2200 15 0.25 1019 10 30

Table S2. Material parameters for subduction application

Material ρ [ kg
m3 ] Bn [MPa−n s−1] En [kJ] Vn [ cm

3

mol
] n[ ] c0[MPa] φ[◦]

OP* Crust 2800 6.7 x 10−6 156 0 2.4 10 30
OP* Lithosphere 3250 1.1 x 105 530 9.5 3.5 10 30
SP* Lithosphere 3300 1.1 x 105 530 9.5 3.5 10 30
Mantle 3300 1.1 x 105 530 9.5 3.5 10 30
Weak Zone 3250 η = 1020 Pas 0.1 5
*OP corresponds to overriding and SP to subducting plate.

Table S3. Scaling parameter ranges for Application I: Salt

S1 S2 S3 S4 Sz
min 0.5 0.5 0.5 0.5 0.8
max 2.0 3.0 2.0 1.5 1.1
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