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Simulation of  water flow and calculation of  the  related physical  quality

indices as influenced by soil water retention curve fitting methods

Key Points

 The effect of weighting the soil water retention curve data highlighted for particular

applications.  

 Estimation of soil water retention curve data parameters affected soil physical quality

evaluation. 

 The simulated water flow in soil was affected by  weighting the  soil water retention

curve data.  

Abstract

Accurate fitting of soil water retention curve (SWRC) parameters is crucial in the modeling

of  soil  water  flow  and  the  assessment  of  soil  quality.  The  un-weighted  least  squares

regression (ULS) is the most common approach applied for fitting the SWRC functions to the

observed data-points in order to optimize their parameters. However, the variance of SWRC

data varies in different water contents; therefore, unlike the wet-end of the SWRC, the ULS

method may not be sufficiently effective in estimating its dry-end. This study examined the

differences between parameter approximations achieved by the ULS and the weighted least-

squares (WLS) in the SWRC. Then, an analysis of both approaches in the simulation of water

redistribution and the related soil physical quality indicators (SPQIs) was done. Accordingly,

the measured SWRC data in six replications were fitted to the SWRC equations to optimize

their parameters, through either WLS or ULS. The results showed that despite the increase of

error in the SWRC estimation by the WLS method (RMSE=0.027 and 0.043 cm3 cm-3 in the

ULS and WLS, respectively), WLS increased the accuracy of the estimations at the lower

water  contents  (dry-end),  when  compared  to  the  ULS.  The  WLS  regression  resulted  in

different values of SPQIs (e.g., S-index = 0.033 and 0.042 or RFC (relative field capacity) =
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0.57 and 0.62 in the ULS and WLS methods, respectively). Furthermore, the simulated soil

water movement in either wet or dry water conditions was different for the SWRC parameter

estimated by WLS and ULS regressions.  

Keywords: HYDRUS program;  Soil  physical  quality;  Soil  water  flow simulation;  Least

squares parameter optimization.

1. Introduction

Soil water retention curve (SWRC) parameters are widely used to obtain quantitative

information  on  soil  water  flow  and  redistribution,  plant  water/nutrient  uptake,  soil  and

groundwater  pollution  and  salinity,  and  irrigation  (Nakhaei  &  Šimůnek,  2014),  for  the

purpose  of  improving  agricultural  production  along  with  optimizing  water  consumption

(Paredes et al., 2017). Using field/laboratory observational data of SWRC and its parameters

is essential for calibrating models before large-scale applications, including the estimation of

soil  water  movement  and  the  solutes  transport (Hillel,  1998;  Lamorski  et  al.,  2017).

Additionally, the SWRCs data can be used to characterize the soil physical quality indicators

(SPQIs;  Arshad & Martin, 2002), which  represent  the storage and water/air transmission in

soil  (Reynolds et al., 2002, 2008). Selected SPQIs driven from SWRC are the air capacity

(AC), the relative field capacity (RFC), the plant available water content (PAW), the soil pore

size classes, and the so-called S-index, which shows the slope of the SWRC at its inflection

point  (e.g.,  Topp et al., 1997; Dexter, 2004a; Reynolds et al., 2009, 2014; Zaffar & Sheng-

Gao, 2015; Iovino et al. 2016; Koureh et al., 2019). Thus, accurate fitting of SWRCs will lead

to  the  correct  calculation  of  SPQIs.  These  applications  need the  description  of  complete

SWRCs using some mathematical function that can best fit the experimental data. 

The most common method used to predict the SWRC parameters is fitting a given closed-

form  SWRC  function  to  the  measured  datapoints.  This  means  the  target  absolute  error
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function approaches the constant minima. This is commonly performed through the least-

squares (LS) regression in which a particular mathematical SWRC function is fitted to the

measured soil water-pressure head, θ (h), data to obtain the SWRC parameters on limited soil

samples (van Genuchten et al., 1991). This is typically performed by minimizing the SSE (the

sum  of  the  squared  errors)  between  the  measured  and  model  estimated  values  of  the

dependent variable, which is known as the un-weighted LS (ULS) regression (van Genuchten

et al., 1991). However, a major shortcoming of this approach is that it implicitly assumes that

the data are homoscedastic  (i.e.,  they have constant  measurement  uncertainty)  (Bolster &

Tellinghuisen,  2010). However, it  is not the case for  Ɵ(h) data in which the value of the

dependent variable (Ɵ) is decreased with increasing the value of the independent variable (h).

Data with heterogeneous measurement uncertainty (i.e., heteroscedastic data) can be better

weighted inversely by their variances via the weighted least square (WLS) regression, based

on  which  the  minimum-variance  estimations  of  the  model  parameters  and  reliable

approximations of their standard errors are attained (Draper & Smith, 1998; Seber & Wild,

2003). This results in a more realistic estimate of data error (Tellinghuisen & Bolster, 2009,

2010; Bolster & Tellinghuisen, 2010).

However,  this  method  is  mostly  considered  to  address  the  surface  adsorption  processes

(Cantrell, 2008; Tellinghuisen & Bolster, 2009, 2010; Bolster & Tellinghuisen, 2010). The

WLS regression has been revealed to improve parameter estimations and uncertainties,  in

comparison to the ULS one, in the soil chemical sorption data (e.g., Bolster & Tellinghuisen,

2010), as well as the SWRC data (Sheikhbaglou et al., 2020). In the case of the SWRC data,

in the conventional ULS approach, the points close to saturation have a greater contribution

to the value of the error function and therefore, SWRC function has a better fit to the wet-

end, as compared to the dry-end points. Meanwhile, some processes in the soil (including the

redistribution of moisture or transfer of solutes in the soil, especially in the dry and semi-dry
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conditions)  could  occur  within  a  small  range  of  SWRC and  generally,  in  the  moisture

conditions corresponding to the dry end of the SWRC. 

As  a  result,  the  objective  of  this  study  was  to  examine  the  differences  between

parameter approximations achieved by the ULS and the WLS regression in fitting the SWRC

function. Subsequently, a functional evaluation was provided using the HYDRUS program to

test if  the SWRC parameter values adjusted either by the ULS or the WLS regression with

different  numbers of soil  samples could affect  the simulation of water redistribution in a

given soil. Furthermore, the impact of SWRC fitting methods on the calculation of the related

SPQIs was investigated.

2. Materials and methods

2.1. Experimental data 

Distributed  soil  samples  were  collected  from  10  to  30  cm  soil  depth,  and  the

undisturbed samples  were  obtained using  a  cylinder  (4.4 cm internal  diameter  and 5 cm

height) from the middle of this depth in six replications (at six points in a 10×10 m 2 plot

without vegetation coverage that had been located at the Agricultural Research Site of Urmia

University, Iran). In this regard, soil texture, organic matter content, electrical conductivity

(EC) and pH were measured by a hydrometer (Dane & Topp, 2002), modified Walkley-Black

(Nelson & Somers, 1983), and the saturated extraction of soil (Sparks et al., 2001) methods,

respectively.  The bulk density of the soil was also determined using undisturbed samples

(Blake & Hartge, 1986). The mean soil particle size contained 34.5% clay, 36.5% silt, and

29% sand with a clay loam textural class. Organic matter content,  EC, pH, and soil bulk

density  were  0.8±0.066  %,  0.45±0.006  dS  m-1,  8.4±0.076  and  1.38±0.146  g  cm-3,

respectively.  After  the  saturation  of  the  undistributed  soil  samples  according  to

Khodaverdiloo et al. (2011), the water content (θ) was measured at 0, 10, 20, 40, 80 and 95
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cm pressure heads using the sandbox (the hanging water column method) at 100, 330, 540,

1000,  2000,  4000,  8000  and  15000  cm  pressure  heads  by  applying  the  pressure  plates

apparatus. 

2.2. Determination of the SWRC parameters 

2.2.1. Soil water retention curve function

In order to determine the  SWRC  parameters by the ULS and WLS regression, the

SWRC was quantified by van Genuchten (1980) function, using Eq. 1:

Se (h )=
θ (h )−θ r
θs−θr

=1/ [(1+(αh )n)m] (1)

where θsand θr are the saturated and residual soil water contents (cm3cm-3), respectively, Se (h )

is the relative saturation (-),  his pressure head (cm), and  α  (cm-1),  m (-) and  n  (-) are  the

fitting parameters with m = 1-1/n, according to the Mualem (1976)'s restriction. 

The van Genuchten model  was used for  HYDRUS-simulation  purposes as it  is  the  most

widely used SWRC model (e.g., Patil & Singh, 2016).

2.2.2. Fitting SWRC models to obtain the SWRC parameters 

The parameters of van Genuchten (Eq. 1) model were optimized by fitting the model

to the measured  θ (h) data through the minimization of the sum of the weighted squared

errors (SSE; Eq. 2), i.e., the squared differences between observed (θm) and model-estimated (

θp) values of the soil water content:

 SSE=∑
i=1

N

wi (θm−θp )
2 (2)
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where  N stands for the number of measurements and  w iis the  ith weighting factor. For the

conventional ULS, w iusually equal to unity for all of the data points; on the other hand, the

data  were  weighted  inversely  by  their  variances  according  to  the  weighted  LS  (WLS)

regression  (Cantrell,  2008; Tellinghuisen & Bolster, 2009, 2010; Bolster & Tellinghuisen,

2010): 

w i=
1

σθi
2 (3)

where σ θi
2 is the variance of the ith measured water content. In fact, by measuring each point of

the  SWRC in six replications  in  this  study,  the variance  of  θ (the volumetric  soil  water

content) was calculated at each point and used to calculate the weighting factor.

We used the root mean square error (RMSE; Eq. 4), mean error (ME; Eq. 5), point

error percentage (EP; Eq. 6), and the coefficient of determination (R2; Eq. 7) to evaluate and

compare the accuracy of different methods used for fitting the model to the measured SWRC

data.

RMSE=√∑i=1
n

(Oi−Pi )
2

n

(4)

 
ME=

∑
i=1

n

(Pi−Oi )

n

(5)
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EP=
|Oi−Pi|
Oi

×100 (6)

R2=( ∑ (Oi−O )(P i−P )

∑ (Oi−O )
2∑ (Pi−P )

2 )
2

(7)

where  Oi and  Pi are the observed and estimated values,  respectively, n is  the number of

measurements, and p is the number of the model parameters. The RMSE index measures the

average of the absolute error of the estimates, while EP shows the percentage of error at each

point  and  the  ME index  represents  the  overall  overestimation  or  underestimation  of  the

model. The coefficient of determination is also an indicator of the correlation between the

estimated and measured values (Afrasiabi et al., 2019). 

The van Genuchten parameters obtained for every soil sample or their mean values

over six replications were used to simulate and consequently, to compare the soil water flow

(see section 2.4). Two alternative methods were applied to obtain the mean  values of the

SWRC parameters (Table 1). So, the values of the SWRC parameters obtained for the six soil

samples were averaged (method P), or the measured volumetric soil water content of the six

soil samples was averaged before fitting the SWRC model to obtain the parameters (method

T). This was done to find if taking a single soil sample (as commonly done) or considering

either a valid value of SWRC parameters (method P) or an adequate soil sample (method T)

could be important in the simulation of the soil water flow and evaluation of the soil physical

quality.   

The summary of the approaches applied in this study to estimate SWRC parameters is

presented in Table 1.

Table 1 
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2.3. Calculation of the soil physical quality indicators (SPQIs)

2.3.1. Classes of soil pore volume  

The cumulative PSD curve was calculated and plotted based on van Genuchten (Eq.

1) SWRC function obtained by both ULS and WLS regressions. According to  Kay (1990),

three pore size classes based on their equivalent cylinder diameter (i.e., macro- (>30 μm),

meso-  (0.2-30  μm),  and  micro-pores  (<0.2  μm)),  and  three  pore  function  classes  (i.e.,

transmission (>50 μm), storage (0.5-50 μm) and residual (<0.5 μm) pores) were calculated,

compared  and  interpreted.  In  this  regard,  the  equivalent  pore  diameter,  dE (μm),  was

determined using the Young-Laplace equation (Or et al., 2002) as:

d E=
4 γCOS (ω)

ρW g|h|
≈
29.74
|h|

;h<0 ; dE (µm ) ;20 °C (8)

where γ=7.28×10-2 N m-1 is the pore water surface tension, ω is the water-pore contact angle,

ρw=998.2 kg m-3 is water density, and g=9.81 m s-2 is the gravitational acceleration. 

2.3.2. S index

Dimensionless  Dexter’s  index  of  soil  physical  quality,  S-index  (Eq.  9),  which

represents the slope of the SWRC at the inflection point (Dexter, 2004a, b, c), was calculated

using the van Genuchten parameters  (Eq. 1) fitted through  the  ULS and WLS regression

(Dexter 2004a):

S=−n(ϴs−ϴrBD )[ 2n−1n−1 ]
[1/n−2]

(9)
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where BD is bulk density of soil (g cm-3). Larger values of S in soils indicate the abundance

of structure pores and better soil physical quality in regard to the root growth of plants, soil

tillage and water flow in soil (Dexter, 2004a, b, c).

In this study, the SAWCal calculator software (Asgarzadeh et al., 2014) was used to

calculate the S-index based on van Genuchten function parameters.

2.3.3. Air capacity (AC)

AC, indicating the soil aeration condition, could be defined as (Eq. 10):

AC=ϴS−ϴFC (10)

where ϴSand ϴFC  (equilibrated at  h = 330 cm) are the soil water contents (cm3 cm-3) at  the

saturation and field capacity, respectively.

2.3.4. Relative field capacity (RFC)

 RFC, which indicates the capacity of soil in storing air and water relative toϴS, was

calculated as shown by (Eq. 11):

RFC=
ϴFC

ϴS

(11)

2.3.5. Plant-available water capacity (PAW)

PAW (Eq. 12), which expresses the ability of the soil to store plant-available water,

was determined as (Gardner, 1960; Kirkham, 2014):
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PAW=ϴFC−ϴPWP (12)

where  ϴPWPis the ‘‘permanent wilting point’’ soil water content (cm3 cm-3) equilibrated at

15000 cm pressure head.

2.4. Simulation of the water flow in soil

In order to investigate if the differences in the SWRC parameters estimated through

ULS and WLS regression and the way applied to average their  values could functionally

affect  soil  water  flow simulations,  a  simple two-dimensional  soil  water  flow project  was

simulated in the HYDRUS program. In this project, surface drip irrigation in a uniform soil

with the depth and width of 1 m (dripper in the middle of the soil surface) was considered.

Irrigation was carried out for 12 hours with the discharge of 0.5 l h -1, and simulation was

performed for a week with a constant value of potential evaporation from the soil surface (cm

day-1). Initial volumetric soil water conditions were defined as the normal amounts of 25%. A

time-variable  flux  boundary  condition  was  applied  at  the  center  of  the  soil  surface  to

represent  the  drip  irrigation,  which  was  switched  to  the  atmospheric  boundary  condition

during the period with no irrigation. The atmospheric and free drainage boundary conditions

were considered  on the  remainder  of  the  soil  surface  and the bottom of  the  soil  profile,

respectively. No flux boundary condition was applied on the left and right sides of the soil

profile. The simulation domain and the selected boundary conditions are shown in Fig. 1.

The SWRC parameters obtained with different methods, which have been described

in  Table  1,  were  considered  in  the  simulations  of  soil  water  flow.  Also,  the  saturated

hydraulic  conductivity  of  the  soil  was  estimated  in  the  field  based  on  the  BEST-steady

method (Bagarello et al., 2014).
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Fig. 1

3. Results and discussion

3.1. The effect of weighting the SWRC data on the model fit and SWRC parameters

A statistical  description of the measured SWRC data  is presented in Table 2. The

coefficient of the variation of the measured soil water contents was gradually increased with

raising the pressure heads (Table 2). This was most likely due to the unreliability  of the

pressure plates apparatus used to determine the SWRC in the dry-end, the lack of the soil–

plate contact, no hydrostatic equilibrium, soil dispersion, and low plate and soil conductance

(Campbell, 1988; Gee et al., 2002; Solone et al., 2012). The weighting factors of the WLS

regression were calculated as the inverse of variances at each pressure head (Fig. 2). The

weighting factors were lower at the higher water contents; so they were higher at the dry-end

(higher pressure heads) too (Fig. 2), due to the lower standard deviation of the measured soil

water contents at the higher pressure heads (Table 2). By considering these weighting factors,

the van Genuchten SWRC parameters were obtained using WLS and compared with those

obtained by the ULS regression (Table 3). The values of the obtained SWRC parameters

differed considerably in WLS and ULS (Table 3). So, the values of the residual water content

(θr), saturation water content (θs) and α parameters were lower in the WLS, as compared to

those in the ULS  regression. On the other hand, the  n parameter had higher values in the

WLS  regression.  These  differences  may  practically  lead  to  various  SWRCs  and  SPQIs,

resulting in different estimates of the soil behaviour, including the distribution of water and

the solutes transport in the soil. 

Table 2

Fig. 2

Table 3
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The values of R2 for the van Genuchten model were higher in the ULS (from 0.89 to

0.94), as compared to those obtained by the WLS regression (ranged from 0.81 to 0.91).

Although the WLS regression generally  resulted in an increase of error in estimating the

SWRC and a reduced correlation between the estimated and observed water contents (Table

4),  it  improved the accuracy of the estimations at  the lower water contents (Fig.  3). The

practical relevance of these results is for some processes governing such soil behaviours as

water redistribution and contaminant transport; this is especially the case in arid and semi-

arid conditions in which they occur at lower soil water contents, thus corresponding to the

dry-end of the SWRC. Since,  in the conventional  ULS method,  data  points closer  to the

saturation have a more significant contribution to the optimization objective function (i.e.,

SSE),  the  SWRC  model  is  forced  to  be  fitted  to  the  wet-end  rather  than  the  dry-end.

Meanwhile, assigning appropriate weights to the SWRC data could improve the fit of the

SWRC model  to  its  dry-end.  In  the  previous  studies  on  chemical  sorption  processes  by

Cantrell  (2008),  Tellinghuisen  and  Bolster  (2009,  2010) and  Bolster  and  Tellinghuisen

(2010), the use of the WLS regression and assignment of appropriate weights in fitting the

governing models have been emphasized. The ME values in the WLS-fitted van Genuchten

model  were negative for all  samples (Table 4),  indicating the underestimation  of the soil

water content by the model. In contrast, the ULS-fitted van Genuchten model did not show

any considerable under/over-estimation. 

Table 4

Fig. 3

Owing to the high spatial variability of soil physical and hydraulic properties  (e.g.,

Schaap et al., 2001), it may be crucial to perform different replications in the quantification of

the SWRC for practical applications, rather than using a single soil sample data, as usually

done.  Consequently,  two  averaging  alternatives  were  compared  to  obtain  the  SWRC
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parameters (Table 5) and to quantify the studied SPQIs (Table 6). Two averaging methods

were used, namely, P (averaging the values of SWRC parameters obtained for replicative soil

samples through a given fitting process (i.e., ULS or WLS regression) and T (averaging the

values of the volumetric soil water content measured at each of the pressure heads for the

replications  to  obtain  a  “mean-soil”  SWRC data  and to  estimate  the  SWRC parameters)

methods (see Table 1). The SWRCs calculated by the van Genuchten model parameters that

had been obtained with these two averaging methods (see Table 5) were compared to the

observations (Fig. 4a).  In general,  the T method provided more accurate  estimates  of the

SWRC than the P one for the van Genuchten model (Table 5). 

Similar to the single soil sample data,  the two averaged WLS-fitted van Genuchten

models provided more accurate estimate at  the lower water contents (Fig. 4a). However, as

expected, the averaged ULS-fitted van Genuchten model estimates were more accurate at the

wet-end of SWRCs (Figs. 4a). Therefore, if one evaluates the model in terms of its general

performance  for  describing the  entire  SWRC, the  ULS-fitted  model  is  more accurate.  In

contrast, the WLS-fitted model performs better in estimating the dry-end, which is practically

vital for such conditions as water redistribution in relatively dry soils. Similarly, Afrasiabi et

al.  (2019),  in  evaluating  the  selected  particle  size  distribution  models,  concluded  that  a

specified model might be well accurate, generally in terms of producing the entire particle

size  distribution  curve;  however,  locally,  it  fails  to  estimate  the  selected  parameters  or

particular points of the curve. 

Table 5

Fig. 4.

3.2.  The  effect  of  weighting the  SWRC data  on the  interpretation  of  the  soil  physical

quality 
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Pore size distribution (PSD) curves based on van Genuchten SWRC parameter values

that had been obtained through ULS and WLS regression by following the applied averaging

schemes are shown in Fig. 4b. Pore size and functional classes are also presented in Fig. 5.

Considerable  dissimilarities  were  detected  between  WLS-  and ULS-fitted  van Genuchten

parameters in calculating the soil PSD (Figs. 4b and 5). However, the averaging schemes

showed no significant differences in this regard.  

Fig. 5

Soil  physical  quality  indices  calculated  with the  SWRC parameters  that  had been

obtained through ULS and WLS regression are compared in Table 6. The WLS regression

resulted in the higher values of the S-index, as compared to the ULS one. The mean value of

the S-index was calculated based on WLS-fitted SWRC parameters, which was 0.041, while

it was 0.030 for the ULS regression (Table 6). It was also the same for the averaging schemes

applied to the WLS and ULS regression estimates (Table 6). The S-index commonly depends

on soil microporosity, that is strongly influenced by management practices (Dexter, 2004a);

the higher the S value, the greater the intensity of available water and better the conditions for

the root and plant growth. The theoretical limits  of the  S-index are 0 ≤  S  < ∞; however,

practically, the following categories have been suggested: S ≥ 0.050: perfect soil physical or

structural quality, 0.050 > S ≥ 0.035: good physical quality, 0.035 > S ≥ 0.020: poor physical

quality, and 0.020 > S: very poor or degraded physical quality (Dexter 2004a, b, c; Dexter &

Czyz, 2007; Tormena et al., 2008). Therefore, according to the WLS-fitted SWRC parameter

values, the studied soils had  S-index values in the range of 0.035 to 0.050; so, they had a

“good” physical quality. However, they showed a “poor” physical quality based on the ULS-

fitted parameters. As seen, the weighing of the SWRC data could affect the interpretation one

may make regarding the soil physical quality.  
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The ULS regression resulted in the higher mean values of all other SPQIs, except for

PAW and  RFC, for  which  the  WLS regression  provided  higher  mean  values  (Table  6).

However, these differences do not make any sense from a practical point of view. An AC ≥

0.10 m3m−3 has conventionally been suggested in terms of soil physical limitations for the

minimum susceptibility to plant-damaging or yield-reducing aeration deficits in the root zone

(White, 2006); however, more recent works have exhibited that AC ≥ 0.14 m3m−3 is required

in the soils with sandy loam or clay loam textures for optimal aeration (Carter, 1988; Drewry,

2006; White, 2006; Mueller et al., 2009). On the other hand, RFC, which expresses the soil’s

ability to store water and air, relative to the total porosity, is supposed to be optimal when 0.6

≤ RFC ≤ 0.7, providing desirable water and air contents for the plant growth (Doran et al.,

1990; Olness et al., 1998; Reynolds et al., 2002). The lower values of RFC (i.e., RFC < 0.6)

cause insufficient soil water, while the greater ones (RFC > 0.7) result in the insufficient soil

air (i.e., “aeration limited” soil) (Linn & Doran, 1984; Doran et al., 1990; Skopp et al., 1990;

Olness et al., 1998; Reynolds et al., 2003). PAW indicates the ability of the soil to store water

and make it available for plant use (Kirkham, 2014). Therefore, a high PAW is indicative of

the good soil physical quality. Plant growth is enhanced with increasing PAW (Dörner et al.

2013;  Descalzi  et  al.  2018). Hall  et  al.  (1977),  Warrick  (2001)  and  White  (2006)  have

suggested the following categories for PAW: 0.20 > PAW ≥ 0.15 cm3 cm−3: good, 0.15 > PAW

≥  0.10  cm3 cm−3:  medium  or  limited,  and  PAW  <  0.10  cm3 cm−3:  poor  or  droughty.

Furthermore,  PAW  ≥ 0.20 m3  m−3 has been introduced as  the ideal  for  the maximal  root

growth and function (Hall et al., 1977). 

Different soil sample measurements (i.e., replications) resulted in different values of

SPQIs (Table 6), including the S-index (ULS: 0.023-0.034; WLS: 0.034-0.044), PAW (ULS:

0.08-0.13; WLS: 0.12-0.19), AC (ULS: 0.08-0.23; WLS: 0.06-0.22) and RFC (both ULS and

WLS: 0.5-8). According to the above-mentioned limits and categories, one can see that these
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differences lead to opposite interpretations regarding the soil physical quality. Therefore, it is

of practical relevance not to make management decisions based on some single soil sample

measurements.    

Table 6

3.3. The effect of weighting the SWRC data on soil water distribution simulations

In order to investigate  the weighting effect  of the SWRC data on soil  water flow

simulation, the spatial and temporal variations of the soil water content were simulated. Fig. 6

shows the water advance front shape in the soil profile in both WLS and ULS regressions for

two  representative  soil  samples  (as  examples)  and  two  averaging  methods  applied.  The

weighting effect on different SWRC parameters of soil (as shown in Tables 3 and 5) affected

the simulation results of water movement in the soil; so, WLS and ULS provided different

soil water advance front profiles (Fig. 6). In this way, the water advance front shape in the

ULS method is moistened vertically. On the other hand, in the case of the WLS method,

water  entering  the  soil  is  distributed  in  all  directions.  Using  different  soil  samples  also

resulted in different simulations of the soil water movement (compare S2 and S5 simulations

in Figs. 6 and 7).

Furthermore, soil water content changes over time (one-week simulation duration) at

a specific point in the soil profile (at the soil surface in the vicinity of the emitter)  for two

representative soil samples (as examples), as well as for the two averaging methods applied,

were compared for WLS and ULS methods (Fig.  7). The  duration of the simulation was

continued until the soil water content reached from relatively wet conditions to relatively dry

water ones in order to investigate the effect of weighting on the simulation of water flow in

soil under different water conditions. As shown in Fig. 7, the weights caused the soil water

content  in the wet range (from saturation to almost field capacity condition) to be less than

that in the ULS; in contrast, in the dry range (from the field capacity to lower water contents),
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it was more than that in the ULS. The simulation results, therefore, showed that the weighting

of the SWRC data had a significant effect on the soil water flow simulation in two wet and

dry water conditions. However, the differences between the used averaging methods were not

considerable.

Fig. 6

Fig. 7

3.4. Possible limitations and implications of the investigation

In this research, the un-weighted and weighted least-squares fitting process of SWRC

and their impact on the simulations of soil water flow and the related soil physical quality

indicators (SPQIs) were evaluated. The results were based on some experiments. The specific

possible  errors  and  limitations  included  preparation  of  the  undistributed  soil  samples  to

measure  the  SWRC,  as  well  as  possible  errors  related  to  the  SWRC measurement  with

sandbox and the pressure plates apparatus used to measure the equilibrium time. Furthermore,

these results were obtained for a specific soil texture to highlight this issue. Therefore, we

acknowledge  that  the  results  obtained  in  this  study  are  not  sufficient  to  draw  strong

conclusions.  Consequently,  a  similar  analysis  in  different  soil  textures  and  conditions,

comparison  of  the  simulation  results  with  the  measured  data,  consideration  of  different

scenarios of water flow in soil for simulation (such as those under the impact of root water

uptake  and  with  real  values  of  soil  surface  evaporation),  investigation  other  bimodal

hydraulic functions and also, other dispersion scenarios, especially at lower pressure heads,

need to be evaluated in the future studies to reach more definite conclusions.

4. Conclusion

Weighting  the  soil  water  retention  curve  (SWRC) data  based  on the  least  square

analysis  led to obtaining some values for the SWRC parameters that were different from
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those estimated by the conventional un-weighted least-squares (ULS) regression. Although

the ULS regression generally resulted in the better fitting of the SWRC model, the weighted

least-squares  (WLS)  regression  increased  the  accuracy  of  the  estimations  at  lower  water

contents,  which  could  be  of  practical  relevance  when  such  soil  behaviours  as  water

redistribution need to be estimated at lower soil water contents. The results suggested that

using the WLS regression and assigning appropriate weights in fitting the SWRC model need

to  be emphasized  for  particular  applications.  The results  also suggested  that  it  would  be

crucial  to  perform different  replications  in  the  quantification  of  the  SWRC for  practical

applications, rather than using a single soil sample data, as usually done. As the conclusion, a

specified SWRC model  may well  be accurate,  generally  in terms of producing the entire

SWRC,  while  failing  locally  to  estimate  the  soil  water  content  at  some  specific  (and

practically relevant) pressure head. Furthermore, the weighing of the SWRC data could affect

the calculated values of the studied soil physical quality indicators, resulting in interpretations

different from those made based on the ULS-fitted parameters. The results also showed that

the weighting of the SWRC data had a significant effect on water flow simulation in the soils

with contrasting water conditions.

Data Availability Statement

Experimental data for soil water retention curve and simulation results for soil water flow are

available in an archived Zenodo repository (https://zenodo.org/record/4316621).

  

References

Afrasiabi, F., Khodaverdiloo, H., Asadzadeh, F., & Van Genuchten, M. T. (2019). 

Comparison of alternative soil particle-size distribution models and their correlation with 

18

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

https://zenodo.org/record/4316621


soil physical attributes. Journal of Hydrology and Hydromechanics, 67(2), 179-190. 

https://doi.org/10.2478/johh-2018-0009.

Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in 

agro-ecosystems. Agriculture, Ecosystems & Environment, 88(2), 153-160. https://doi.org/

10.1016/S0167-8809(01)00252-3.

Asgarzadeh, H., Mosaddeghi, M. R., & Nikbakht, A. M. (2014). SAWCal: A user-friendly 

program for calculating soil available water quantities and physical quality 

indices. Computers and electronics in agriculture, 109, 86-93. 

https://doi.org/10.1016/j.compag.2014.09.008  .  

Bagarello, V., Di Prima, S., & Iovino, M. (2014). Comparing alternative algorithms to 

analyze the Beerkan infiltration experiment. Soil Science Society of America 

Journal, 78(3), 724-736. doi:10.2136/sssaj2013.06.0231.

Blake, G. R., & Hartge, K. H. (1986). Bulk density. In 'Methods of Soil Analysis'. Part 1. 2nd

Edn. (Ed. A. Klute.) pp. 363-75. Am. Soc. Agron.: Madison, Wisconsin. 

https://doi.org/10.2136/sssabookser5.1.2ed.c13

Bolster, C. H., & Tellinghuisen, J. (2010). On the significance of properly weighting sorption

data for least squares analysis. Soil Science Society of America Journal, 74(2), 670-679. 

https://doi.org/10.1007/BF00296702.

Cantrell, C. A. (2008). Review of methods for linear least-squares fitting of data and 

application to atmospheric chemistry problems.  Atmos. Chem. Phys. 8, 5477–5487. 

https://hal.archives-ouvertes.fr/hal-00304067  .  

Carter, M. R. (1988). Temporal variability of soil macroporosity in a fine sandy loam under 

mouldboard ploughing and direct drilling. Soil and Tillage Research, 12(1), 37-51. https://

doi.org/10.1016/0167-1987(88)90054-2.

19

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480



Descalzi, C., Balocchi, O., López, I., Kemp, P., & Dörner, J. (2018). Different soil structure 

and water conditions affect the growing response of Lolium perenne L. and Bromus 

valdivianus Phil. growing alone or in mixture. Journal of soil science and plant 

nutrition, 18(3), 617-635. http://dx.doi.org/10.4067/S0718-95162018005001901  .  

Dexter, A. R. (2004a). Soil physical quality: Part I. Theory, effects of soil texture, density, 

and organic matter, and effects on root growth. Geoderma, 120(3-4), 201-214. 

https://doi.org/10.1016/j.geoderma.2003.09.004.

Dexter, A. R. (2004b). Soil physical quality: Part II. Friability, tillage, tilth and hard-

setting. Geoderma, 120(3-4), 215-225. https://doi.org/10.1016/j.geoderma.2003.09.005.

Dexter, A. R. (2004c). Soil physical quality: Part III: Unsaturated hydraulic conductivity and 

general conclusions about S-theory. Geoderma, 120(3-4), 227-239. 

https://doi.org/10.1016/j.geoderma.2003.09.006.

Dexter, A. R., & Czyż, E. A. (2007). Applications of S theory in the study of soil physical ‐

degradation and its consequences. Land Degradation & Development, 18(4), 369-381. 

https://doi.org/10.1002/ldr.779.

Doran, J. W., Mielke, L. N., & Power, J. F. (1990). Microbial activity as regulated by soil 

water-filled pore space. In Transactions 14th International Congress of Soil Science, 

Kyoto, Japan, August 1990, Volume III. (pp. 94-99).

Dörner, J., Zúñiga, F., & López, I. (2013). Short-term effects of different pasture 

improvement treatments on the physical quality of an andisol. Journal of soil science and 

plant nutrition, 13(2), 381-399. http://dx.doi.org/10.4067/S0718-95162013005000031  .  

Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & 

Sons.

20

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503



Drewry, J. J. (2006). Natural recovery of soil physical properties from treading damage of 

pastoral soils in New Zealand and Australia: a review. Agriculture, Ecosystems & 

Environment, 114(2-4), 159-169. https://doi.org/10.1016/j.agee.2005.11.028.

Gardner, W. R. (1960). Dynamic aspects of water availability to plants. Soil science, 89(2), 

63-73. doi: 10.1097/00010694-196002000-00001

Gee, G. W., Ward, A. L., Zhang, Z. F., Campbell, G. S., & Mathison, J. (2002). The influence

of hydraulic nonequilibrium on pressure plate data. Vadose Zone Journal, 1(1), 172-178. 

doi:10.2136/vzj2002.1720.

Hall, D. G. M., Reeve, M. J., Thomasson, A. J., & Wright, V. F. (1977). Water retention, 

porosity and density of field soils (No. Tech. Monograph N9).

Hillel, D. (1998). Environmental soil physics. Academic Press, San Diego. Environmental 

soil physics. Academic Press, San Diego.

Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2016). Using static and dynamic 

indicators to evaluate soil physical quality in a Sicilian area. Land Degradation & 

Development, 27(2), 200-210. 

Dane, J. H., & Topp, C. G. (Eds.). (2002). Methods of soil analysis, Part 4: Physical 

methods. SSSA, Madison, Wisconsin.

Kay, B. D. (1990). Rates of change of soil structure under different cropping systems. 

In Advances in soil science 12 (pp. 1-52). Springer, New York, NY. 

https://doi.org/10.1007/978-1-4612-3316-9_1

Khodaverdiloo, H., Homaee, M., van Genuchten, M. T., & Dashtaki, S. G. (2011). Deriving 

and validating pedotransfer functions for some calcareous soils. Journal of 

hydrology, 399(1-2), 93-99. https://doi.org/10.1016/j.jhydrol.2010.12.040.

Kirkham, M. B. (2014). Principles of soil and plant water relations. Academic Press.

21

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527



Koureh, H. K., Asgarzadeh, H., Mosaddeghi, M. R., & Khodaverdiloo, H. (2019). Critical 

Values of Soil Physical Quality Indicators Based on Vegetative Growth Characteristics of 

Spring Wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition, 1-14. 

https://doi.org/10.1007/s42729-019-00134-8  .  

Lamorski, K., Šimůnek, J., Sławiński, C., & Lamorska, J. (2017). An estimation of the main 

wetting branch of the soil water retention curve based on its main drying branch using the 

machine learning method. Water Resources Research, 53(2), 1539-1552. 

https://doi.org/10.1002/2016WR019533.

Linn, D. M., & Doran, J. W. (1984). Effect of water filled pore space on carbon dioxide and ‐

nitrous oxide production in tilled and nontilled soils. Soil Science Society of America 

Journal, 48(6), 1267-1272. doi:10.2136/sssaj1984.03615995004800060013x.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated 

porous media. Water resources research, 12(3), 513-522. 

https://doi.org/10.1029/WR012i003p00513.

Mueller, L., Kay, B. D., Deen, B., Hu, C., Zhang, Y., Wolff, M., ... & Schindler, U. (2009). 

Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on 

sites in Canada, China and Germany. Soil and Tillage Research, 103(1), 188-196. 

https://doi.org/10.1016/j.still.2008.09.010.

Nakhaei, M., & Šimůnek, J. (2014). Parameter estimation of soil hydraulic and thermal 

property functions for unsaturated porous media using the HYDRUS-2D code. Journal of 

Hydrology and Hydromechanics, 62(1), 7-15. https://doi.org/10.2478/johh-2014-0008.

Nelson, D. W., & Sommers, L. (1983). Total carbon, organic carbon, and organic 

matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-

579.

22

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551



Olness, A., Clapp, C. E., Liu, R., & Palazzo, A. J. (1998). Biosolids and their effects on soil 

properties. Handbook of Soil Conditioners. Marcel Dekker, New York, NY, 141-165.

Or, D., Wraith, J. M., & Warrick, A. W. (2002). Soil water content and water potential 

relationships. Soil physics companion, 1, 49-84.

Paredes, P., Pereira, L. S., Rodrigues, G. C., Botelho, N., & Torres, M. O. (2017). Using the 

FAO dual crop coefficient approach to model water use and productivity of processing pea

(Pisum sativum L.) as influenced by irrigation strategies. Agricultural Water 

Management, 189, 5-18. https://doi.org/10.1016/j.agwat.2017.04.010.

Patil, N. G., & Singh, S. K. (2016). Pedotransfer functions for estimating soil hydraulic 

properties: A review. Pedosphere, 26(4), 417-430. https://doi.org/10.1016/S1002-

0160(15)60054-6.

Reynolds, W. D., Bowman, B. T., Drury, C. F., Tan, C. S., & Lu, X. (2002). Indicators of 

good soil physical quality: density and storage parameters. Geoderma, 110(1-2), 131-146. 

https://doi.org/10.1016/S0016-7061(02)00228-8.

Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., & Yang, X. M. (2009). Use of 

indicators and pore volume-function characteristics to quantify soil physical 

quality. Geoderma, 152(3-4), 252-263. https://doi.org/10.1016/j.geoderma.2009.06.009.

Reynolds, W. D., Drury, C. F., Yang, X. M., & Tan, C. S. (2008). Optimal soil physical 

quality inferred through structural regression and parameter 

interactions. Geoderma, 146(3-4), 466-474. 

https://doi.org/10.1016/j.geoderma.2008.06.017.

Reynolds, W. D., Drury, C. F., Yang, X. M., Tan, C. S., & Yang, J. Y. (2014). Impacts of 48 

years of consistent cropping, fertilization and land management on the physical quality of 

a clay loam soil. Canadian Journal of Soil Science, 94(3), 403-419. 

https://doi.org/10.4141/cjss2013-097.

23

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576



Reynolds, W. D., Yang, X. M., Drury, C. F., Zhang, T. Q., & Tan, C. S. (2003). Effects of 

selected conditioners and tillage on the physical quality of a clay loam soil. Canadian 

Journal of Soil Science, 83(4), 381-393. https://doi.org/10.4141/S02-066.

Seber, G. A., & Wild, C. J. (2003). Nonlinear Regression. Hoboken. New Jersey: John Wiley 

& Sons, 62, 63.

Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). Rosetta: A computer program for 

estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of 

hydrology, 251(3-4), 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8.

Sheikhbaglou, A. R., Khodaverdiloo, H., Zeinalzadeh, K., Kheirfam, H., & Azad, N. (2020). 

Influence of properly weighting soil-water retention curve data in least squares analysis. 

Journal of Water and Soil Conservation. 26(5), 95-112. doi: 

10.22069/jwsc.2019.16773.3210.

Skopp, J., Jawson, M. D., & Doran, J. W. (1990). Steady state aerobic microbial activity as a‐

function of soil water content. Soil Science Society of America Journal, 54(6), 1619-1625. 

doi:10.2136/sssaj1990.03615995005400060018x.

Solone, R., Bittelli, M., Tomei, F., & Morari, F. (2012). Errors in water retention curves 

determined with pressure plates: Effects on the soil water balance. Journal of 

Hydrology, 470, 65-74. https://doi.org/10.1016/j.jhydrol.2012.08.017.

Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H. Soltanpour, P. N., … & Sumner, 

M.E. (2001). Methods of soil analysis, part 3: Chemical methods. John Wiley & Sons.

Tellinghuisen, J., & Bolster, C. H. (2009). Weighting formulas for the least-squares analysis 

of binding phenomena data. The Journal of Physical Chemistry B, 113(17), 6151-6157. 

https://doi.org/10.1021/jp8112039.

Tellinghuisen, J., & Bolster, C. H. (2010). Least-squares analysis of phosphorus soil sorption 

data with weighting from variance function estimation: a statistical case for the Freundlich

24

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601



isotherm. Environmental science & technology, 44(13), 5029-5034. 

https://doi.org/10.1021/es100535b.

Topp, G. C., Reynolds, W. D., Cook, F. J., Kirby, J. M., & Carter, M. R. (1997). Physical 

attributes of soil quality. In Developments in soil science (Vol. 25, pp. 21-58). Elsevier.

https://doi.org/10.1016/S0166-2481(97)80029-3.

Tormena, C. A., Silva, Á. P. D., Imhoff, S. D. C., & Dexter, A. R. (2008). Quantification of 

the soil physical quality of a tropical Oxisol using the S index. Scientia Agricola, 65(1), 

56-60. https://doi.org/10.1590/S0103-90162008000100008.

Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic ‐

conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898. 

doi:10.2136/sssaj1980.03615995004400050002x.

Van Genuchten, M. T., Leij, F. J., & Yates, S. R. (1992). The RETC code for quantifying the 

hydraulic functions of unsaturated soils: project summary.

Warrick, A. W. (Ed.). (2001). Soil physics companion. CRC press.

White, R. E. (2013). Principles and practice of soil science: the soil as a natural resource. 

John Wiley & Sons.

Zaffar, M., & Sheng-Gao, L. U. (2015). Pore size distribution of clayey soils and its 

correlation with soil organic matter. Pedosphere, 25(2), 240-249. 

https://doi.org/10.1016/S1002-0160(15)60009-1.

Table 1. Summary of the methods used for estimating the soil water retention curve (SWRC)

parameters

Methods used for determining the SWRC parametersMethod 
The method of fitting the van Genuchten SWRC function to the measured 
SWRC data of a single soil sample (S1-S6) by using the conventional un-
weighted least squares (ULS) regression to obtain the SWRC parameters.

ULS

The method of fitting the van Genuchten SWRC function to the measured 
SWRC data of a single soil sample (S1-S6) by using the weighted least 
squares (WLS) regression to obtain the SWRC parameters.

WLS

Measuring the SWRC in a specified number of replications (six replicated T-ULS
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soil samples in this study), averaging the water contents at each pressure 
head, and fitting the SWRC function by using the conventional ULS 
regression to obtain the SWRC parameters.
Measuring the SWRC in a specified number of replications (six replicated 
soil samples in this study), fitting the SWRC function using the 
conventional ULS regression to obtain the SWRC parameters for each soil 
sample, and averaging the parameters values on the replications.

P-ULS

Measuring the SWRC in a specified number of replications (six replicated 
soil samples in this study), averaging the water contents at each pressure 
head, and fitting the SWRC function using the WLS regression to obtain 
the SWRC parameters.

T-WLS

Measuring the SWRC in a specified number of replications (six replicated 
soil samples in this study), fitting the SWRC function using the WLS 
regression to obtain the SWRC parameters for each soil sample, and 
averaging the parameters values on the replications.

P-WLS

Table 2. Statistical parameters of the measured volumetric soil water content (cm3 cm-3) at

different pressure heads for the six replicates 

Table 3. Soil water retention curve parameters obtained via weighted (WLS) and un-weighted
least-squares (ULS) fitting of the van Genuchten model

Fitting method Soil sample
van Genuchten parameters

Ɵr

(cm3 cm-3)
Ɵs

(cm3 cm-3)
α

(cm-1)
n
(-)

ULS

S1 0.015 0.452 0.192 1.16
S2 0.000 0.362 0.011 1.16
S3 0.000 0.431 0.189 1.16
S4 0.001 0.467 0.210 1.14
S5 0.000 0.462 0.333 1.15
S6 0.000 0.419 0.424 1.11

Mean 0.000 0.432 0.227 1.15
C.V. (%) 223.61 9.02 62.33 1.71

WLS

S1 0.001 0.431 0.050 1.23
S2 0.001 0.358 0.004 1.31
S3 0.001 0.404 0.037 1.26
S4 0.000 0.439 0.040 1.23
S5 0.001 0.436 0.066 1.22
S6 0.000 0.374 0.024 1.22

Mean 0.001 0.407 0.037 1.25
C.V. (%) 77.46 8.47 57.93 2.82

C.V.: Coefficient of variations
Table 4. Statistical criteria for the evaluation and comparison of weighted (WLS) and un-

weighted least-squares (ULS) fitting of the studied soil  water  retention  curve function in

predicting the volumetric soil water content
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Fitting Method Soil sample
RMSE

(cm3 cm-3)
ME

(cm3 cm-3)
R2

ULS

S1 0.024 -0.000 0.934
S2 0.024 0.001 0.894
S3 0.023 0.000 0.938
S4 0.027 0.000 0.923
S5 0.023 -0.000 0.939
S6 0.024 0.000 0.901

Mean 0.024 0.000 0.922
C.V. (%) 6.09 244.95 2.12

WLS

S1 0.035 -0.010 0.907
S2 0.034 -0.008 0.881
S3 0.037 -0.013 0.900
S4 0.041 -0.012 0.883
S5 0.036 -0.011 0.904
S6 0.042 -0.012 0.815

Mean 0.038 -0.011 0.882
C.V. (%) 8.72 -16.26 3.90

C.V.: Coefficient of variations

Table 5- Soil water retention curve (SWRC) parameters and statistical evaluation indices in 

estimating the SWRC in weighted- and unweighted-least squares regression (WLS and ULS) 

and the averaging methods applied (P and T) (see Table 1 for the details)

SWRC parameters

Method
Ɵr

(cm3 cm-3)
Ɵs

(cm3 cm-3)
α

(cm-1)
n
(-)

P-ULS 0.0028 0.432 0.226 1.15
P-WLS 0.0006 0.407 0.0369 1.25
T-ULS 0.0007 0.433 0.197 1.14
T-WLS 0.0006 0.402 0.0285 1.24

Statistical
evaluation indices

Method
RMSE

(cm3 cm-3)
ME

(cm3 cm-3)
R2

P-ULS 0.0266 -0.012 0.927
P-WLS 0.0432 -0.021 0.890
T-ULS 0.0234 0.000 0.928
T-WLS 0.0389 -0.012 0.878

Table 6-Comparision of soil physical quality indicators in  weighted- and unweighted-least

squares regression (WLS and ULS) and the averaging methods applied (P and T) (see Table 1

for the details)

PAW (330)
(cm3 cm-3)

RFC
(-)

AC
(cm3 cm-3)

S-Index
(-)

ƟPWP

(cm3 cm-3)
ƟFC

(cm3 cm-3)
ƟS

(cm3 cm-3)
Method

0.1020.5300.2120.0330.1370.2390.451S1-ULS
0.1280.7870.0770.0240.1560.2850.362S2-ULS
0.1010.5250.2050.0320.1250.2260.431S3-ULS
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0.1070.5410.2140.0330.1460.2530.467S4-ULS
0.0990.5030.2300.0340.1330.2330.462S5-ULS
0.0840.5730.1790.0230.1560.2400.419S6-ULS
0.1040.5770.1860.0300.1420.2460.432Mean
13.8118.3230.0916.618.918.579.00C.V. (%)
0.1300.5270.2040.0420.0970.2270.431S1-WLS
0.1910.8250.0630.0380.1040.2950.358S2-WLS
0.1310.5220.1930.0440.0800.2110.404S3-WLS
0.1400.5430.2010.0440.0980.2380.439S4-WLS
0.1240.4980.2190.0440.0930.2170.436S5-WLS
0.1320.6210.1420.0340.1010.2320.374S6-WLS
0.1410.5890.1700.0410.0960.2370.407Mean
17.5920.8434.5110.128.8512.778.47C.V. (%)
0.0980.5320.2020.0300.1320.2300.432P-ULS
0.0990.5630.1890.0290.1450.2440.433T-ULS
0.1300.5370.1890.0410.0860.2190.407P-WLS
0.1380.5800.1690.0400.0960.2340.402T-WLS

C.V.: Coefficient of variations

 

FIGURES CAPTIONS:

Fig. 1. Conceptual geometry and boundary conditions in the HYDRUS (2D/3D) simulations.

Fig. 2. Calculated weights for the weighted-least squares regression at different pressure 

heads.

Fig. 3. Comparison of the observed soil water retention curves with those calculated using the

soil water retention curve parameters obtained via weighted- and unweighted-least squares 

regression (WLS and ULS) for two representative soil samples (S2 and S5) in the van 

Genuchten function.

Fig. 4. Comparison of the observed soil water retention curves with those calculated using the

soil water retention curve parameters obtained via weighted- and unweighted-least squares 

regression (WLS and ULS) and the averaging methods applied (P and T) in the van 

Genuchten model (a) and calculated cumulative pore size distribution curves (b). 

Fig. 5. Comparison of the pore fractions in different sizes based on van Genuchten soil water 

retention curve function in weighted- and unweighted-least squares regression (WLS and 

ULS) and the averaging methods applied (P and T).
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Fig. 6. Simulation of water flow in the soil profile in weighted- and unweighted-least squares 

regression (WLS and ULS) in two representative soil samples (S2 and S5) and the averaging 

methods applied (P and T).

Fig. 7. Comparison of the simulated temporal variation of the soil water content in the soil 

surface near the dripper in weighted- and unweighted-least squares regression (WLS and 

ULS) in two representative soil samples (S2 and S5) and the averaging methods applied (P 

and T).
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