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Text S1: Rare earth element modelling for mantle residues
Mineral/melt partitioning coefficient data from Lee et al. (2007) for olivine and orthopyroxene are used to model the rare earth element (REE) composition of mantle residue (assuming 20% batch melting of primitive mantle, REE values taken from McDonough and Sun, 1995). Other internally consistent partitioning coefficient datasets (e.g., McDade et al. 2003; Schwandt and McKay, 1998) only contain results for some REEs, whereas Lee et al. (2007) generated mineral/melt partitioning coefficient data for all REEs via experimental data and lattice strain modelling. The modelled mantle residue is assumed to be comprise of 90% olivine and 10% orthopyroxene. Application of Lee et al. (2007) results assumes anhydrous melting under 1315 °C and 1.5 GPa conditions (spinel stability field). Such a temperature may similar to a subduction-chilled Eoarchean mantle wedge even if the Eoarchean mantle might be much hotter than this (e.g., Herzberg et al. 2010). We note that the mantle wedge melting should be under hydrous conditions, so using partitioning coefficient data for anhydrous melting overestimate the REE compositions of corresponding residue (e.g., McDade et al., 2003). In contrast, Lee et al. (2007) data potentially underestimate the LREE concentrations retained by the residues compared to other datasets (e.g., McDade et al., 2003; Schwandt and McKay, 1998). Nonetheless, even the modelled mantle residue REE composition may be different from the actual Eoarchean depleted mantle, such differences can be negligible in binary mixing models as the melt components would contribute most REE, especially LREE abundances (e.g., >99% La to Sm). 

[image: Map

Description automatically generated]
Figure S1. Thin section photos of the Pilbara ultramafic samples and the Isua ultramafic samples showing strong serpentinization the consumed all primary silicates. Mineral abbreviations: chl: chlorite; mgt: magnetite; mag: magnesite; serp: serpentine.
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Figure S1 continued
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[bookmark: _Hlk95252964]Figure S2. Whole-rock MgO, SiO2, CaO and Al2O3 characteristics of Isua and Pilbara ultramafic samples, compiled >3.2 Ga ultramafic rocks, and mantle peridotites. Data for arc peridotites are from Chin et al. (2014) and references therein. Primitive mantle values are from McDonough and Sun (1995). The mixing lines represent mixing between 20% depleted primitive mantle and mid-ocean ridge basalt (MORB) end-members H, L, and D (Elthon, 1992). Details of MELTS modelling are in Chin et al. (2014). Data sources: Serpentinites from the Nob Well Intrusion of the East Pilbara Terrane: Geological Survey of Western Australia 2013 database. Compiled ultramafic rocks from the Isua supracrustal belt: Friend and Nutman (2011), Szilas et al. (2015) and Waterton et al. (2022). Compiled ultramafic rocks from enclaves in meta-tonalite south of the Isua supracrustal belt: Friend et al. (2002); Van de Löcht et al. (2020). Ultramafic rocks from the Tussapp Ultramafic Complex: McIntyre et al. (2019).
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Figure S3. Primitive mantle normalized trace element patterns of Isua and Pilbara ultramafic samples and compiled cumulates or mantle peridotites. Data sources: compiled cumulates involve samples from the Permian Lubei intrusion of NW China (Chen et a., 2018), the late Proterozoic Ntaka Ultramafic Complex of Tanzania (Barnes et al., 2016), the Mesoarchean Nuasahi Massif of India (Khatun et al., 2014), the Mesoarchean Tartoq Group of SW Greenland (Szilas et al., 2014), the Mesoarchean Seqi Ultramafic Complex of SW Greenland (Szilas et al., 2018), and the Eoarchean Tussapp Ultramafic Complex of SW Greenland (McIntyre et al., 2019); compiled Eoarchean ultramafic samples are rocks from the Isua supracrustal belt (Szilas et al., 2015) and the enclaves in meta-tonalite south of the Isua supracrustal belt (Van de Löcht et al., 2020); fresh arc peridotites are from the Kamchatka arc (Ionov, 2010); arc peridotites that experienced serpentnization, talc/tremolite alteration, and/or melt-rock interactions are from the Loma Caribe peridotite body of Dominican Republic (Marchesi et al., 2016) and the Izu-Bonin-Mariana forearc (Parkinson and Pearce, 1998); abyssal peridotites that experienced serpentinization are from the Oman ophiolite (Hanghøj et al., 2010); variably altered abyssal peridotites from the Mid-Atlantic Ridge are summarized by Paulick et al. (2006). Primitive mantle values are from McDonough and Sun (1995). 
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