References
Abdallah, S. E., S. Ali, and M. A. Obeid (2019), Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism,Geoscience Frontiers , 10 (3), 941-955. https://doi.org/10.1016/j.gsf.2018.04.009
Ackerman, L., R. J. Walker, I. S. Puchtel, L. Pitcher, E. Jelínek, and L. Strnad (2009), Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: a study of the upper mantle profile beneath Central Europe, Geochimica Et Cosmochimica Acta , 73 (8), 2400-2414. https://doi.org/10.1016/j.gca.2009.02.002
Aldanmaz, E., and N. Koprubasi (2006), Platinum-group-element systematics of peridotites from ophiolite complexes of northwest Anatolia, Turkey: implications for mantle metasomatism by melt percolation in a supra-subduction zone environment, International Geology Review , 48 (5), 420-442. https://doi.org/10.2747/0020-6814.48.5.420
Arai, T., S. Omori, T. Komiya, and S. Maruyama (2015), Intermediate P/T-type regional metamorphism of the Isua Supracrustal Belt, southern west Greenland: The oldest Pacific-type orogenic belt?,Tectonophysics , 662 , 22-39. https://doi.org/10.1016/j.tecto.2015.05.020
Barnes, S. J., and P. L. Roeder (2001), The range of spinel compositions in terrestrial mafic and ultramafic rocks, Journal of Petrology ,42 (12), 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
Barnes, S. J., D. R. Mole, M. Le Vaillant, M. J. Campbell, M. R. Verrall, M. P. Roberts, and N. J. Evans (2016), Poikilitic textures, heteradcumulates and zoned orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania: implications for crystallization mechanisms of oikocrysts, Journal of Petrology , 57 (6), 1171-1198. https://doi.org/10.1093/petrology/egw036
Bauer, A., J. Reimink, T. Chacko, B. Foley, S. Shirey, and D. J. G. P. L. Pearson (2020), Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics, Geochemical Perspectives Letters ,14 , 1-6. https://doi.org/10.7185/geochemlet.2015
Beall, A., L. Moresi, and C. M. Cooper (2018), Formation of cratonic lithosphere during the initiation of plate tectonics, Geology ,46 (6), 487-490. https://doi.org/10.1130/G39943.1
Bédard, J. H. (2018), Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics, Geoscience Frontiers ,9 (1), 19-49. https://doi.org/10.1016/j.gsf.2017.01.005
Becker, H., M. Horan, R. Walker, S. Gao, J.-P. Lorand, and R. Rudnick (2006), Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths, Geochimica Et Cosmochimica Acta , 70 (17), 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
Birck, J. L., M. R. Barman, and F. Capmas (1997), Re‐Os isotopic measurements at the femtomole level in natural samples,Geostandards newsletter , 21 (1), 19-27. https://doi.org/10.1111/j.1751-908X.1997.tb00528.x
Bland, M. T., and W. B. McKinnon (2016), Mountain building on Io driven by deep faulting, Nature , 9 (6), 429-432, doi:10.1038/ngeo2711. https://doi.org/10.1038/ngeo2711
Bockrath, C., C. Ballhaus, and A. Holzheid (2004), Fractionation of the platinum-group elements during mantle melting, Science ,305 (5692), 1951-1953. https://doi.org/10.1126/science.1100160
Boudier, F., G. Ceuleneer, and A. Nicolas (1988), Shear zones, thrusts and related magmatism in the Oman ophiolite: initiation of thrusting on an oceanic ridge, Tectonophysics , 151 (1-4), 275-296. https://doi.org/10.1016/0040-1951(88)90249-1
Brown, M., and T. Johnson (2018), Secular change in metamorphism and the onset of global plate tectonics, American Mineralogist ,103 (2), 181-196. https://doi.org/10.2138/am-2018-6166
Büchl, A., G. Brügmann, V. G. Batanova, C. Münker, and A. W. Hofmann (2002), Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite, Earth and Planetary Science Letters , 204 (3-4), 385-402. https://doi.org/10.1016/S0012-821X(02)00977-9
Byerly, G., D. Lowe, and C. Heubeck (2019), Geologic evolution of the Barberton Greenstone Belt–a unique record of crustal development, surface processes, and early life 3.55 to 3.20 Ga, Earth’s oldest rocks, 2nd edn. Elsevier, Berlin . https://doi.org/10.1016/B978-0-444-63901-1.00024-1
Cawood, P. A., C. J. Hawkesworth, S. A. Pisarevsky, B. Dhuime, F. A. Capitanio, and O. Nebel (2018), Geological archive of the onset of plate tectonics, J Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences , 376 (2132), 20170405. https://doi.org/10.1098/rsta.2017.0405
Chen, Y., and Y. Zhang (2009), Clinopyroxene dissolution in basaltic melt, Geochimica Et Cosmochimica Acta , 73 (19), 5730-5747. https://doi.org/10.1016/j.gca.2009.06.016
Chen, B.-Y., J.-J. Yu, and S.-J. Liu (2018), Source characteristics and tectonic setting of mafic–ultramafic intrusions in North Xinjiang, NW China: insights from the petrology and geochemistry of the Lubei mafic–ultramafic intrusion, Lithos , 308 , 329-345. https://doi.org/10.1016/j.lithos.2018.03.016
Chin, E. J., C.-T. A. Lee, and J. D. Barnes (2014), Thickening, refertilization, and the deep lithosphere filter in continental arcs: Constraints from major and trace elements and oxygen isotopes,Earth and Planetary Science Letters, 397 , 184-200. https://doi.org/10.1016/j.epsl.2014.04.022
Chin, E. J., K. Shimizu, G. M. Bybee, and M. E. Erdman (2018), On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective, Earth and Planetary Science Letters , 482 , 277-287. https://doi.org/10.1016/j.epsl.2017.11.016
Chin, E. J., V. Soustelle, and Y. Liu (2020), An SPO-induced CPO in composite mantle xenoliths correlated with increasing melt-rock interaction, Geochimica Et Cosmochimica Acta , 278 , 199-218. https://doi.org/10.1016/j.gca.2019.10.002
Coggon, J. A., A. Luguet, R. O. Fonseca, J.-P. Lorand, A. Heuser, and P. W. Appel (2015), Understanding Re–Os systematics and model ages in metamorphosed Archean ultramafic rocks: a single mineral to whole-rock investigation, Geochimica Et Cosmochimica Acta , 167 , 205-240. https://doi.org/10.1016/j.gca.2015.07.025
Cohen, A. S., and F. G. Waters (1996), Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry, Analytica Chimica Acta ,332 (2-3), 269-275. https://doi.org/10.1016/0003-2670(96)00226-7
Collins, W. J., M. J. Van Kranendonk, and C. Teyssier (1998), Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications,Journal of Structural Geology , 20 (9-10), 1405-1424. https://doi.org/10.1016/S0191-8141(98)00073-X
Condie, K. C., and S. J. Puetz (2019), Time series analysis of mantle cycles Part II: The geologic record in zircons, large igneous provinces and mantle lithosphere, Geoscience Frontiers , 10 (4), 1327-1336. https://doi.org/10.1016/j.gsf.2019.03.005
Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and planetary Science Letters , 236(1-2), 524–541. doi: 10.1016/j.epsl.2005.04.033
Creaser, R., D. Papanastassiou, and G. Wasserburg (1991), Negative thermal ion mass spectrometry of osmium, rhenium and iridium,Geochimica Et Cosmochimica Acta , 55 (1), 397-401. https://doi.org/10.1016/0016-7037(91)90427-7
Crowley, J., J. Myers, and G. Dunning (2002), Timing and nature of multiple 3700–3600 Ma tectonic events in intrusive rocks north of the Isua greenstone belt, southern West Greenland, Geological Society of America Bulletin, 114(10), 1311-1325. https://doi.org/10.1130/0016-7606(2002)114<1311:TANOMM>2.0.CO;2
Crowley, J. (2003), U–Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland, Precambrian Research, 126(3-4), 235-257. https://doi.org/10.1016/S0301-9268(03)00097-4
Dymek, R. F., J. L. Boak, and S. C. Brothers (1988a), Titanian chondrodite-and titanian clinohumite-bearing metadunite from the 3800 Ma Isua supracrustal belt, West Greenland; chemistry, petrology and origin,American Mineralogist , 73 (5-6), 547-558. https://doi.org/10.1093/petrology/29.6.1353
Dymek, R. F., S. C. Brothers, and C. M. Schiffries (1988b), Petrogenesis of Ultramafic Metamorphic Rocks from the 3800-Ma Isua Supracrustal Belt, West Greenland, Journal of Petrology , 29 (6), 1353-1397, doi:DOI 10.1093/petrology/29.6.1353. https://doi.org/10.1093/petrology/29.6.1353
Ehlers, K., and G. Hoinkes (1987), Titanian chondrodite and clinohumite in marbles from the Ötztal crystalline basement, Mineralogy and Petrology , 36 (1), 13-25. https://doi.org/10.1007/BF01164366
El Dien, H. G., S. Arai, L.-S. Doucet, Z.-X. Li, Y. Kil, D. Fougerouse, S. M. Reddy, D. W. Saxey, and M. Hamdy (2019), Cr-spinel records metasomatism not petrogenesis of mantle rocks, Nature Communications , 10 (1), 1-12. https://doi.org/10.1038/s41467-019-13117-1
Elthon, D. (1992), Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle, Journal of Geophysical Research: Solid Earth , 97 (B6), 9015-9025. https://doi.org/10.1029/92JB00723
Foley, B. J., D. Bercovici, and L. T. Elkins‐Tanton (2014), Initiation of plate tectonics from post‐magma ocean thermochemical convection,Journal of Geophysical Research: Solid Earth , 119 (11), 8538-8561, doi:10.1002/2014JB011121. https://doi.org/10.1002/2014JB011121
François, C., P. Philippot, P. Rey, and D. Rubatto (2014), Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane, Earth and Planetary Science Letters ,396 , 235-251. https://doi.org/10.1016/j.epsl.2014.04.025
Friend, C. R. L., V. C. Bennett, and A. P. Nutman (2002), Abyssal peridotites > 3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex, Contributions to Mineralogy and Petrology ,143 (1), 71-92, doi:10.1007/s00410-001-0332-7. https://doi.org/10.1007/s00410-001-0332-7
Friend, C. R. L., and A. P. Nutman (2011), Dunites from Isua, Greenland: A ca. 3720 Ma window into subcrustal metasomatism of depleted mantle,Geology , 39 (7), 663-666, doi:10.1130/G31904.1. https://doi.org/10.1130/G31904.1
Gale, A., C. A. Dalton, C. H. Langmuir, Y. J. Su, and J. G. Schilling (2013), The mean composition of ocean ridge basalts, Geochemistry Geophysics Geosystems , 14 (3), 489-518, doi:10.1029/2012gc004334. https://doi.org/10.1029/2012GC004334
Gannoun, A., K. W. Burton, J. M. Day, J. Harvey, P. Schiano, and I. Parkinson (2016), Highly siderophile element and Os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings, Reviews in Mineralogy and Geochemistry ,81 (1), 651-724. https://doi.org/10.2138/rmg.2016.81.11
Garuti, G., E. V. Pushkarev, F. Zaccarini, R. Cabella, and E. Anikina (2003), Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia),Mineralium Deposita , 38 (3), 312-326. https://doi.org/10.1007/s00126-003-0348-1
Gauthiez-Putallaz, L., A. Nutman, V. Bennett, and D. Rubatto (2020), Origins of high δ18O in 3.7–3.6 Ga crust: A zircon and garnet record in Isua clastic metasedimentary rocks, Chemical Geology , 537 , 119474. https://doi.org/10.1016/j.chemgeo.2020.119474
Geological Survey of Western Australia 2013 database, (2013). 1:100 000 GIS Pilbara 2013 update / Geological Survey of Western Australia, in: Western Australia. Department of, M., Petroleum, Exploration Incentive, S. (Eds.). Geological Survey of Western Australia, East Perth, Western Australia ©2013.
Ghiorso, M. S., and R. O. Sack (1995), Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures,Contributions to Mineralogy and Petrology , 119 (2), 197-212. https://doi.org/10.1007/s004100050036
Ghiorso, M. S., M. M. Hirschmann, P. W. Reiners, and V. C. Kress (2002), The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochemistry, Geophysics, Geosystems ,3 (5), 1-35. https://doi.org/10.1029/2001GC000217
Gordeychik, B., T. Churikova, A. Kronz, C. Sundermeyer, A. Simakin, and G. Wörner (2018), Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano, Scientific reports , 8 (1), 1-15. https://doi.org/10.1038/s41598-018-30133-1
Goodrich, C. A., A. M. Fioretti, M. Tribaudino, and G. Molin (2001), Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009, Geochimica Et Cosmochimica Acta , 65 (4), 621-652. https://doi.org/10.1016/S0016-7037(00)00521-4
Guotana, J. M., T. Morishita, I. Nishio, A. Tamura, T. Mizukami, K. Tani, Y. Harigane, K. Szilas, and D. G. Pearson (2021), Deserpentinization and high-pressure (eclogite-facies) metamorphic features in the Eoarchean ultramafic body from Isua, Greenland, Geoscience Frontiers, 101298.
Hanghøj, K., P. B. Kelemen, D. Hassler, and M. Godard (2010), Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics, Journal of Petrology ,51 (1-2), 201-227. https://doi.org/10.1093/petrology/egp077
Hansen, V. (2007), Subduction origin on early Earth: A hypothesis,Geology , 35 (12), 1059-1062. https://doi.org/10.1130/G24202A.1
Harrison, T. M. (2009), The Hadean Crust: Evidence from > 4 Ga Zircons, Annual Review of Earth and Planetary Sciences ,37 , 479-505. https://doi.org/10.1146/annurev.earth.031208.100151
Hickman, A. H. (2021), EAST PILBARA CRATON: A RECORD OF ONE BILLION YEARS IN THE GROWTH OF ARCHEAN CONTINENTAL CRUST, Geological Survey of Western Australia, Report 143 , 1-187.
Himmelberg, G. R., and R. A. Loney (1995), Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska , US Government Printing Office. https://doi.org/10.3133/pp1564
Holland, T. J. B., and R. Powell (2011), An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, Journal of Metamorphic Geology , 29 (3), 333-383. https://doi.org/10.1111/j.1525- 314.2010.00923.x
Holtzman, B. K., D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga, and J. Hustoft (2003), Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow, Science ,301 (5637), 1227-1230. https://doi.org/10.1126/science.1087132
Hopkins, M., T. M. Harrison, and C. E. Manning (2008), Low heat flow inferred from> 4 Gyr zircons suggests Hadean plate boundary interactions, Nature , 456 (7221), 493-496. https://doi.org/10.1038/nature07465
Hunter, R. (1996), Texture development in cumulate rocks, inDevelopments in Petrology , edited, pp. 77-101, Elsevier. https://doi.org/10.1016/S0167-2894(96)80005-4
Ionov, D. A. (2010), Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka, Journal of Petrology , 51 (1-2), 327-361. https://doi.org/10.1093/petrology/egp090
Janoušek, V., C. M. Farrow, and V. Erban (2006), Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit), Journal of Petrology ,47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
Johannsen, A. (1931), A Descriptive Petrography of the Igneous Rocks: Introduction, textures, classifications and glossary , University of Chicago Press.
Johnson, D., P. Hooper, and R. Conrey (1999), XRF Method XRF Analysis of Rocks and Minerals for Major and Trace Elements on a Single Low Dilution Li-Tetraborate Fused Bead, Adv. X-ray anal , 41 , 843-867.
Johnson, T. E., M. Brown, B. J. P. Kaus, and J. A. VanTongeren (2014), Delamination and recycling of Archaean crust caused by gravitational instabilities, Nature Geoscience, 7(1), 47-52, doi:10.1038/Ngeo2019. https://doi.org/10.1038/ngeo2019
Johnson, T. E., M. Brown, N. J. Gardiner, C. L. Kirkland, and R. H. Smithies (2017), Earth’s first stable continents did not form by subduction, Nature , 543 (7644), 239-+. https://doi.org/10.1038/nature21383
Kaczmarek, M. A., S. M. Reddy, A. P. Nutman, C. R. L. Friend, and V. C. Bennett (2016), Earth’s oldest mantle fabrics indicate Eoarchaean subduction, Nature Communications , 7 . https://doi.org/10.1038/ncomms10665
Kelemen, P. B. (1990), Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite,Journal of Petrology , 31 (1), 51-98. https://doi.org/10.1093/petrology/31.1.51
Kelemen, P. B., H. J. Dick, and J. E. Quick (1992), Formation of harzburgite by pervasive melt/rock reaction in the upper mantle,Nature, 358(6388) , 635-641. https://doi.org/10.1038/358635a0
Khatun, S., S. K. Mondal, M.-F. Zhou, V. Balaram, and H. M. Prichard (2014), Platinum-group element (PGE) geochemistry of Mesoarchean ultramafic–mafic cumulate rocks and chromitites from the Nuasahi Massif, Singhbhum Craton (India), Lithos , 205 , 322-340. https://doi.org/10.1016/j.lithos.2014.07.013
Khedr, M. Z., S. Arai, M. Python, and A. Tamura (2014), Chemical variations of abyssal peridotites in the central Oman ophiolite: evidence of oceanic mantle heterogeneity, Gondwana Research ,25 (3), 1242-1262. https://doi.org/10.1016/j.gr.2013.05.010
Kirkland, C., M. Hartnady, M. Barham, H. Olierook, A. Steenfelt, and J. Hollis (2021), Widespread reworking of Hadean-to-Eoarchean continents during Earth’s thermal peak, Nature Communications , 12 (1), 1-9. https://doi.org/10.1038/s41467-020-20514-4
Knaack, C., S. Cornelius, and P. Hooper (1994), Trace element analyses of rocks and minerals by ICP-MS, Geoanalytical Laboratory. Wash. State Univ , 2 , 18.
Komiya, T., S. Maruyama, T. Masuda, S. Nohda, M. Hayashi, and K. Okamoto (1999), Plate tectonics at 3.8-3.7 Ga: Field evidence from the Isua Accretionary Complex, southern West Greenland, Journal of Geology , 107 (5), 515-554. https://doi.org/10.1086/314371
Korenaga, J. (2011), Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth, Journal of Geophysical Research: Solid Earth , 116 (B12). https://doi.org/10.1029/2011JB008410
Krause, J., G. Brügmann, and E. Pushkarev (2011), Chemical composition of spinel from Uralian-Alaskan-type Mafic–Ultramafic complexes and its petrogenetic significance, Contributions to Mineralogy and Petrology 161 (2), 255-273. https://doi.org/10.1007/s00410-010-0530-2
Lenardic, A. (2018), The diversity of tectonic modes and thoughts about transitions between them, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ,376 (2132), 20170416. https://doi.org/10.1098/rsta.2017.0416
Liu, W., J. Zhang, and F. Barou (2018), B-type olivine fabric induced by low temperature dissolution creep during serpentinization and deformation in mantle wedge, Tectonophysics , 722 , 1-10. https://doi.org/10.1016/j.tecto.2017.10.025
Lorand, J.-P., and A. Luguet (2016), Chalcophile and siderophile elements in mantle rocks: Trace elements controlled by trace minerals,Reviews in Mineralogy and Geochemistry , 81 (1), 441-488. https://doi.org/10.2138/rmg.2016.81.08
Lundeen, M. T. (1978), Emplacement of the Ronda peridotite, Sierra Bermeja, Spain, Geological Society of America Bulletin ,89 (2), 172-180. https://doi.org/10.1130/0016-7606(1978)89<172:EOTRPS>2.0.CO;2
Maier, W. D., F. Roelofse, and S.-J. Barnes (2003), The concentration of the platinum-group elements in South African komatiites: implications for mantle sources, melting regime and PGE fractionation during crystallization, Journal of Petrology , 44 (10), 1787-1804. https://doi.org/10.1093/petrology/egg059
Mallik, A., S. Lambart, and E. J. Chin (2020), Tracking the evolution of magmas from heterogeneous mantle sources to eruption, in Mantle Convection and Surface Expressions , edited, AGU Monograph Series. https://arxiv.org/abs/2001.00928
Marchesi, C., Garrido, C. J., Proenza, J. A., Hidas, K., Varas-Reus, M. I., Butjosa, L., and Lewis, J. F., 2016, Geochemical record of subduction initiation in the sub-arc mantle: Insights from the Loma Caribe peridotite (Dominican Republic): Lithos, v. 252, p. 1-15. https://doi.org/10.1016/j.lithos.2016.02.009
Marchesi, C., C. J. Garrido, J. A. Proenza, K. Hidas, M. I. Varas-Reus, L. Butjosa, and J. F. Lewis (2016), Geochemical record of subduction initiation in the sub-arc mantle: Insights from the Loma Caribe peridotite (Dominican Republic), Lithos , 252 , 1-15. https://doi.org/10.1038/nature13539
McDonough, W. F., and S. S. Sun (1995), The Composition of the Earth,Chemical Geology , 120 (3-4), 223-253, doi:Doi 10.1016/0009-2541(94)00140-4. https://doi.org/10.1016/0009-2541(94)00140-4
McIntyre, T., D. Pearson, K. Szilas, and T. Morishita (2019), Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland, Contributions to Mineralogy and Petrology , 174 (12), 1-21. https://doi.org/10.1007/s00410-019-1628-9
Moore, W. B., J. I. Simon, and A. A. G. Webb (2017), Heat-pipe planets,Earth and Planetary Science Letters , 474 , 13-19. https://doi.org/10.1016/j.epsl.2017.06.015
Moore, W. B., and A. A. G. Webb (2013), Heat-pipe Earth, Nature ,501 (7468), 501-505. https://doi.org/10.1038/nature12473
Næraa, T., A. Schersten, M. T. Rosing, A. I. S. Kemp, J. E. Hoffmann, T. F. Kokfelt, and M. J. Whitehouse (2012), Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2Gyr ago,Nature , 485 (7400), 627-+. https://doi.org/10.1038/nature11140
Nagaya, T., S. R. Wallis, H. Kobayashi, K. Michibayashi, T. Mizukami, Y. Seto, A. Miyake, and M. Matsumoto (2014), Dehydration breakdown of antigorite and the formation of B-type olivine CPO, Earth and Planetary Science Letters , 387 , 67-76. https://doi.org/10.1016/j.epsl.2013.11.025
Nagaya, T., S. R. Wallis, H. Kobayashi, K. Michibayashi, T. Mizukami, Y. Seto, A. Miyake, and M. Matsumoto (2014), Reply to comment by Nozaka (2014) on; Dehydration breakdown of antigorite and the formation of B-type olivine CPO, Earth and Planetary Science Letters, 408, 406-407. https://doi.org/10.1016/j.epsl.2014.10.026
Niu, Y. L. (2004), Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges, Journal of Petrology , 45 (12), 2423-2458. https://doi.org/10.1016/S0012-821X(96)00218-X
Nozaka, T. (2014), Comment on; Dehydration breakdown of antigorite and the formation of B-type olivine CPO; by Nagaya et al.(2014), Earth and Planetary Science Letters , 408 , 402-405. https://doi.org/10.1016/j.epsl.2014.10.023
Nutman, A. P., V. C. Bennett, and C. R. Friend (2013a), The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland, Geological Society, London, Special Publications , 389 , SP389. 385. https://doi.org/10.1144/SP389.5
Nutman, A. P., V. C. Bennett, C. R. Friend, and K. Yi (2020), Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (< 250 to> 1000° C/GPa) explained by tectonic plate convergence in deep time, Precambrian Research , 105770. https://doi.org/10.1016/j.precamres.2020.105770
Nutman, A. P., M. R. Scicchitano, C. R. Friend, V. C. Bennett, and A. R. Chivas (2021), Isua (Greenland)~ 3700 Ma meta-serpentinite olivine Mg# and δ18O signatures show connection between the early mantle and hydrosphere: Geodynamic implications,Precambrian Research , 361, 106249. https://doi.org/10.1016/j.precamres.2021.106249
Nutman, A. P., V. C. Bennett, C. R. L. Friend, H. Hidaka, K. Yi, S. R. Lee, and T. Kamiichi (2013b), THE ITSAQ GNEISS COMPLEX OF GREENLAND: EPISODIC 3900 TO 3660 Ma JUVENILE CRUST FORMATION AND RECYCLING IN THE 3660 TO 3600 Ma ISUKASIAN OROGENY, American Journal of Science ,313 (9), 877-911. https://doi.org/10.2475/09.2013.03
Nutman, A. P., and C. R. L. Friend (2009), New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: A glimpse of Eoarchaean crust formation and orogeny, Precambrian Research ,172 (3-4), 189-211. https://doi.org/10.1016/j.precamres.2009.03.017
Nutman, A. P., V. R. McGregor, C. R. L. Friend, V. C. Bennett, and P. D. Kinny (1996), The Itsaq Gneiss Complex of southern west Greenland; The world’s most extensive record of early crustal evolution (3900-3600 Ma),Precambrian Research , 78 (1-3), 1-39. https://doi.org/10.1016/0301-9268(95)00066-6
O’Neill, C., and V. Debaille (2014), The evolution of Hadean–Eoarchaean geodynamics, Earth and Planetary Science Letters , 406 , 49-58. https://doi.org/10.1016/j.epsl.2014.08.034
O’Reilly, T. C., and G. F. Davies (1981), Magma transport of heat on Io: A mechanism allowing a thick lithosphere, Geophysical Research Letters , 8 (4), 313-316. https://doi.org/10.1029/GL008i004p00313
Parkinson, I. J., and J. A. Pearce (1998), Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting,Journal of Petrology , 39 (9), 1577-1618. https://doi.org/10.1093/petroj/39.9.1577
Paulick, H., W. Bach, M. Godard, J. C. M. De Hoog, G. Suhr, and J. Harvey (2006), Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 degrees 20 ’ N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments, Chemical Geology ,234 (3-4), 179-210 https://doi.org/10.1016/j.chemgeo.2006.04.011
Pearce, J. A., and M. K. Reagan (2019), Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics, Geosphere , 15 (4), 1008-1037. https://doi.org/10.1130/GES01661.1
Polat, A., and A. W. Hofmann (2003), Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland,Precambrian Research , 126 (3-4), 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
Ramírez‐Salazar, A., T. Müller, S. Piazolo, A. A. G. Webb, C. Hauzenberger, J. Zuo, P. Haproff, J. Harvey, T. K. Wong, and C. Charlton (2021), Tectonics of the Isua supracrustal belt 1: P‐T‐X‐d constraints of a poly‐metamorphic terrane, Tectonics , 40 (3), e2020TC006516. https://doi.org/10.1029/2020tc006516
Reimink, J. R., J. H. Davies, A. M. Bauer, and T. Chacko (2020), A comparison between zircons from the Acasta Gneiss Complex and the Jack Hills region, Earth and Planetary Science Letters , 531 , 115975. https://doi.org/10.1016/j.epsl.2019.115975
Rollinson, H. (2002), The metamorphic history of the Isua greenstone belt, West Greenland, Geological Society, London, Special Publications , 199 (1), 329-350. https://doi.org/10.1144/GSL.SP.2002.199.01.16
Shen, T., J. Hermann, L. Zhang, Z. Lü, J. A. Padrón-Navarta, B. Xia, and T. Bader (2015), UHP metamorphism documented in Ti-chondrodite-and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan, Journal of Petrology , 56 (7), 1425-1458. https://doi.org/10.1093/petrology/egv042
Shirey, S. B., and R. J. Walker (1995), Carius tube digestion for low-blank rhenium-osmium analysis, Analytical Chemistry ,67 (13), 2136-2141. https://doi.org/10.1021/ac00109a036
Shirey, S. B., and R. J. Walker (1998), The Re-Os isotope system in cosmochemistry and high-temperature geochemistry, Annual Review of Earth and Planetary Sciences , 26 (1), 423-500. https://doi.org/10.1146/annurev.earth.26.1.423
Smith, P. M., and P. D. Asimow (2005), Adiabat_1ph: A new public front‐end to the MELTS, pMELTS, and pHMELTS models, Geochemistry, Geophysics, Geosystems , 6 (2). https://doi.org/10.1029/2004GC000816
Smithies, R., D. Champion, M. Van Kranendonk, and A. Hickman (2007), Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia, Geological Survey of Western Australia Report ,104 .
Smithies, R. H., Y. Lu, C. L. Kirkland, T. E. Johnson, D. R. Mole, D. C. Champion, L. Martin, H. Jeon, M. T. Wingate, and S. P. Johnson (2021), Oxygen isotopes trace the origins of Earth’s earliest continental crust,Nature , 592 (7852), 70-75. https://doi.org/10.1038/s41586-021-03337-1
Snow, J. E., and H. J. Dick (1995), Pervasive magnesium loss by marine weathering of peridotite, Geochimica Et Cosmochimica Acta, 59(20) , 4219-4235. https://doi.org/10.1016/0016-7037(95)00239-V
Standish, J., S. Hart, J. Blusztajn, H. Dick, and K. Lee (2002), Abyssal peridotite osmium isotopic compositions from cr‐spinel,Geochemistry, Geophysics, Geosystems , 3 (1), 1-24. https://doi.org/10.1029/2001GC000161
Stern, R. J. (2008), Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history, When did plate tectonics begin on planet Earth ,265 , 280. https://doi.org/10.1130/2008.2440(13)
Stern, R. J., T. Gerya, and P. J. Tackley (2017), Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids, Geoscience Frontiers , 9 (1). https://doi.org/10.1016/j.gsf.2017.06.004
Szilas, K., V. J. Van Hinsberg, R. A. Creaser, and A. F. M. Kisters (2014), The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle?, Lithos , 198 , 103-116. https://doi.org/10.1016/j.lithos.2014.03.024
Szilas, K., P. B. Kelemen, and M. T. Rosing (2015), The petrogenesis of ultramafic rocks in the > 3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends, Gondwana Research , 28 (2), 565-580. https://doi.org/10.1016/j.gr.2014.07.010
Szilas, K., V. van Hinsberg, I. McDonald, T. Næraa, H. Rollinson, J. Adetunji, and D. Bird (2018), Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland, Geoscience Frontiers , 9 (3), 689-714. https://doi.org/10.1016/j.gsf.2017.05.003
Tamura, A., and S. Arai (2006), Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle, Lithos , 90 (1-2), 43-56. https://doi.org/10.1016/j.lithos.2005.12.012
Tang, C., A. Webb, W. Moore, Y. Wang, T. Ma, and T. Chen (2020), Breaking Earth’s shell into a global plate network, Nature Communications , 11 (1), 1-6. https://doi.org/10.1038/s41467-020-17480-2
Thakurta, J., E. M. Ripley, and C. Li (2008), Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska, Geochemistry, Geophysics, Geosystems ,9 (7). https://doi.org/10.1029/2008GC001982
Topuz, G., E. Hegner, S. M. Homam, L. Ackerman, J. A. Pfänder, and H. Karimi (2018), Geochemical and geochronological evidence for a Middle Permian oceanic plateau fragment in the Paleo-Tethyan suture zone of NE Iran, Contributions to Mineralogy and Petrology, 173(10), 81. https://doi.org/10.1007/s00410-018-1506-x
Van de Löcht, J., J. Hoffmann, C. Li, Z. Wang, H. Becker, M. T. Rosing, R. Kleinschrodt, and C. Münker (2018), Earth’s oldest mantle peridotites show entire record of late accretion, Geology , 46 (3), 199-202. https://doi.org/10.1130/G39709.1
Van de Löcht, J., J. Hoffmann, M. Rosing, P. Sprung, and C. Münker (2020), Preservation of Eoarchean mantle processes in∼ 3.8 Ga peridotite enclaves in the Itsaq Gneiss Complex, southern West Greenland,Geochimica Et Cosmochimica Acta , 280 , 1-25. https://doi.org/10.1016/j.gca.2020.03.043
Van Kranendonk, M. J. (2010), Two Types of Archean Continental Crust: Plume and Plate Tectonics on Early Earth, American Journal of Science , 310 (10), 1187-1209. https://doi.org/10.2475/10.2010.01
Van Kranendonk, M. J., W. J. Collins, A. Hickman, and M. J. Pawley (2004), Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia, Precambrian Research , 131 (3-4), 173-211. https://doi.org/10.1016/j.precamres.2003.12.015
Van Kranendonk, M. J., R. H. Smithies, A. H. Hickman, and D. C. Champion (2007), Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia, Terra Nova , 19 (1), 1-38. https://doi.org/10.1111/j.1365-3121.2006.00723.x
Völkening, J., T. Walczyk, and K. G. Heumann (1991), Osmium isotope ratio determinations by negative thermal ionization mass spectrometry,International Journal of Mass Spectrometry and Ion Processes ,105 (2), 147-159. https://doi.org/10.1016/0168-1176(91)80077-Z
Wager, L. R., and G. M. Brown (1967), Layered igneous rocks , WH Freeman.
Wal, D. V. d., and R. L. Vissers (1993), Uplift and emplacement of upper mantle rocks in the western Mediterranean, Geology ,21 (12), 1119-1122. https://doi.org/10.1130/0091-7613(1993)021<1119:UAEOUM>2.3.CO;2
Wang, Z., H. Becker, and T. Gawronski (2013), Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps), Geochimica Et Cosmochimica Acta , 108 , 21-44. https://doi.org/10.1016/j.gca.2013.01.021
Webb, A. A. G., T. Müller, J. Zuo, P. J. Haproff, and A. Ramírez-Salazar (2020), A non–plate tectonic model for the Eoarchean Isua supracrustal belt, Lithosphere , 12 (1), 166-179. https://doi.org/10.1130/L1130.1
Wheeler, J., D. Prior, Z. Jiang, R. Spiess, and P. Trimby (2001), The petrological significance of misorientations between grains,Contributions to Mineralogy and Petrology,141 (1), 109-124. https://doi.org/10.1007/s004100000225
Wiemer, D., C. Schrank, D. Murphy, L. Wenham, and C. Allen (2018), Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns, Nature Geoscience , 11 (5), 357-361, doi:10.1038/s41561-018-0105-9. https://doi.org/10.1038/s41561-018-0105-9
Williams, I. R. (1999), Geology of the Muccan 1:100 000 sheet, Geological Survey of Western Australia.
Yao, Z., K. Qin, Q. Wang, and S. Xue (2019), Weak B‐Type Olivine Fabric Induced by Fast Compaction of Crystal Mush in a Crustal Magma Reservoir,Journal of Geophysical Research: Solid Earth . https://doi.org/10.1029/2018JB016728
Yin, A. (2012a), An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth, Lithosphere , 4 (6), 553-593. https://doi.org/10.1130/L195.1
Yin, A. (2012b), Structural analysis of the Valles Marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars,Lithosphere , 4 (4), 286-330. https://doi.org/10.1130/L192.1
Zuo, J., A. A. G. Webb, S. Piazolo, Q. Wang, T. Müller, A. Ramírez‐Salazar, and P. J. Haproff (2021), Tectonics of the Isua Supracrustal Belt 2: Microstructures Reveal Distributed Strain in the Absence of Major Fault Structures, Tectonics , 40 (3), e2020TC006514. https://doi.org/10.1029/2020tc006514