References
Aki, K. (1965). A computer program for precise determination of focal mechanism of local earthquakes by revising focal depths and crust-mantle structure. Bulletin of the Earthquake Research Institute ,43 , 15–22.
Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research , 72 (4), 1217–1231.https://doi.org/10.1029/JZ072i004p01217
Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T., . . . Sekiguchi, S. (2011). Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake.Earth, Planets and Space , 63 (7), 669–673.https://doi.org/10.5047/eps.2011.06.016
Bianco, F., Del Pezzo, E., Saccorotti, G., & Ventura, G. (2004). The role of hydrothermal fluids in triggering the July-August 2000 seismic swarm at Campi Flegrei, Italy: Evidence from seismological and mesostructural data. Journal of Volcanology and Geothermal Research , 133 (1–4), 229–246. https://doi.org/10.1016/S0377-0273(03)00400-1
Borghi, A., Aoudia, A., Javed, F., & Barzaghi, R. (2016). Precursory slow-slip loaded the 2009 L’Aquila earthquake sequence.Geophysical Journal International , 205 (2), 776–784. https://doi.org/10.1093/gji/ggw046
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research ,75 (26), 4997–5009.https://doi.org/10.1029/JB075i026p04997
Cornet, F. H., Helm, J., Poitrenaud, H., & Etchecopar, A. (1997). Seismic and aseismic slips induced by large-scale fluid injections. In.Pure and Applied Geophysics . Berlin: Springer, 150(3–4), (563–583).https://doi.org/10.1007/s000240050093
Cox, S. F. (2016). Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes–an invited paper.Economic Geology , 111 (3), 559–587.https://doi.org/10.2113/econgeo.111.3.559
Dahm, T. (1996). Relative moment tensor inversion based on ray theory: Theory and synthetic tests. Geophysical Journal International ,124 (1), 245–257.https://doi.org/10.1111/j.1365-246X.1996.tb06368.x
Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics ,41 (3).https://doi.org/10.1029/2002RG000119
De Barros, L., Baques, M., Godano, M., Helmstetter, A., Deschamps, A., Larroque, C., & Courboulex, F. (2019). Fluid-Induced Swarms and Coseismic Stress Transfer: A Dual Process Highlighted in the Aftershock Sequence of the 7 April 2014 Earthquake (Ml 4.8, Ubaye, France).Journal of Geophysical Research: Solid Earth , 124 (4), 3918–3932. https://doi.org/10.1029/2018JB017226
De Barros, L., Cappa, F., Deschamps, A., & Dublanchet, P. (2020). Imbricated aseismic slip and fluid diffusion drive a seismic swarm in the Corinth Gulf, Greece. Geophysical Research Letters , 47(9).https://doi.org/10.1029/2020GL087142
Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research: Solid Earth , 101 (B10), 22371–22392.https://doi.org/10.1029/96JB02269
Ebel, J. E., & Chambers, D. W. (2016). Using the locations of M ≥ 4 earthquakes to delineate the extents of the ruptures of past major earthquakes. Geophysical Journal International , 207 (2), 862–875.https://doi.org/10.1093/gji/ggw312
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science ,341 (6142), 1225942.https://doi.org/10.1126/science.1225942
Fischer, T., & Horálek, J. (2003). Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: Period 1985-2001. Journal of Geodynamics ,35 (1–2), 125–144. https://doi.org/10.1016/S0264-3707(02)00058-3
Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters , 472 , 50–61. https://doi.org/10.1016/j.epsl.2017.05.011
Guglielmi, Y., Cappa, F., Avouac, J. P., Henry, P., & Elsworth, D. (2015). INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip. Science , 348 (6240), 1224–1226.https://doi.org/10.1126/science.aab0476
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America ,34 (4), 185–188.
Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research , 110 (B5), 1–10.https://doi.org/10.1029/2004JB003247
Hasegawa, A. (2017). Role of H2O in generating subduction zone earthquakes. Monographs on Environment, Earth and Planets , 5 (1), 1–34.https://doi.org/10.5047/meep.2017.00501.0001
Hasegawa, A., Nakajima, J., Umino, N., & Miura, S. (2005). Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity. Tectonophysics ,403 (1–4), 59–75.https://doi.org/10.1016/j.tecto.2005.03.018
Helmstetter, A., & Sornette, D. (2002). Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 66 (6), 24. https://doi.org/10.1103/PhysRevE.66.061104
Horiuchi, S. S., & Iwamori, H. (2016). A consistent model for fluid distribution, viscosity distribution, and flow-thermal structure in subduction zone. Journal of Geophysical Research: Solid Earth ,121 (5), 3238–3260. https://doi.org/10.1002/2015JB012384
Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid overpressure in the mechanics of overthrust faulting [Geological Society of America bulletin] , 70 (pp. 167–206).https://doi.org/10.1130/0016-7606(1959)70
Imanishi, K., & Ellsworth, W. L. (2006). Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD pilot hole seismic array [Geophysical monograph series] .Geophysical Monograph Series , 81–90.https://doi.org/10.1029/170GM10
Italiano, F., Martinelli, G., & Nuccio, P. M. (2001). Anomalies of mantle-derived helium during the 1997-1998 seismic swarm of Umbria-Marche, Italy. Geophysical Research Letters , 28 (5), 839–842. https://doi.org/10.1029/2000GL012059
Iwamori, H. (1998). Transportation of H2O and melting in subduction zones. Earth and Planetary Science Letters , 160 (1–2), 65–80. https://doi.org/10.1016/S0012-821X(98)00080-6
Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International ,197 (2), 1002–1015. https://doi.org/10.1093/gji/ggu030
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science , 335 (6069), 705–708. https://doi.org/10.1126/science.1215141
Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake.Geophysical Research Letters , 41 (15), 5420–5427.
Kato, A., Fukuda, J., Nakagawa, S., & Obara, K. (2016). Foreshock migration preceding the 2016 MW 7.0 Kumamoto earthquake, Japan.Geophysical Research Letters , 43 (17), 8945–8953.https://doi.org/10.1002/2016GL070079
Kumazawa, T., & Ogata, Y. (2013). Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS models. Journal of Geophysical Research: Solid Earth , 118 (12), 6165–6182.https://doi.org/10.1002/2013JB010259
Kumazawa, T., Ogata, Y., & Tsuruoka, H. (2019). Characteristics of seismic activity before and after the 2018 M6. 7 Hokkaido Eastern Iburi earthquake. Earth, Planets and Space , 71 (1), 1–17.
Lay, T., & Kanamori, H. (1981). An asperity model of large earthquake sequences. In. Maurice Ewing Series . Maurice Ewing Series. American Geophysical Union, (579–592).https://doi.org/10.1029/ME004p0579
Llenos, A. L., & Michael, A. J. (2013). Modeling earthquake rate changes in Oklahoma and Arkansas: Possible Signatures of induced seismicity. Bulletin of the Seismological Society of America ,103 (5), 2850–2861.https://doi.org/10.1785/0120130017
Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research: Solid Earth , 112(B4).https://doi.org/10.1029/2006JB004596
Madariaga, B. Y. R. (1976). Dynamics of an expanding circular fault.Bulletin of the Seismological Society of America , 66 , 639–666.https://doi.org/10.1111/j.1461-0248.2009.01352.x
Mendoza, C., & Hartzell, S. H. (1988). Aftershock patterns and main shock faulting. Bulletin of the Seismological Society of America ,78 (4), 1438–1449.
Mogi, K. (1969). Some features of recent seismic activity in and near Japan (2): Activity before and after Great Earthquakes. Bulletin of the Earthquake Research Institute , 47 , 395–417.
Mogi, K. (1989). The mechanism of the occurrence of the Matsushiro earthquake swarm in central Japan and its relation to the 1964 Niigata earthquake. Tectonophysics, 159(1–2), 109–119.
Nanjo, K. Z., Miyaoka, K., Tamaribuchi, K., Kobayashi, A., & Yoshida, A. (2018). Related spatio-temporal changes in hypocenters and the b value in the 2017 Kagoshima Bay swarm activity indicating a rise of hot fluids. Tectonophysics , 749 , 35–45.https://doi.org/10.1016/j.tecto.2018.10.023
Nur, A., & Booker, J. R. (1972). Aftershocks caused by pore fluid flow?Science , 175 (4024), 885–887.https://doi.org/10.1126/science.175.4024.885
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association , 83 (401), 9–27.https://doi.org/10.1080/01621459.1988.10478560
Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research , 97 (B13), 19845–19871.https://doi.org/10.1029/92JB00708
Ogata, Y. (2006). Statistical analysis of seismicity: Updated version (p. SASeis2006). Institute of Statistical Mathematics.
Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A., Takahashi, H. et al. (2016). Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: Implications for crustal fluid distribution and crustal permeability. In Crustal Permeability , (307–323).https://doi.org/10.1002/9781119166573.ch24
Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), 10–13. https://doi.org/10.1029/2003GL018110
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers and Geosciences , 35 (8), 1701–1710.https://doi.org/10.1016/j.cageo.2008.06.007
Rice, J. R. (1992). Chapter 20 Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In.International Geophysics . Elsevier, 51 .https://doi.org/10.1016/S0074-6142(08)62835-1
Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International , 178 (3), 1677–1690.https://doi.org/10.1111/j.1365-246X.2009.04214.x
Ross, Z. E., Kanamori, H., & Hauksson, E. (2017b). Anomalously large complete stress drop during the 2016 Mw5.2 Borrego Springs earthquake inferred by waveform modeling and near-source aftershock deficit.Geophysical Research Letters , 44 (12), 5994–6001.https://doi.org/10.1002/2017GL073338
Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J. P., & Ben-Zion, Y. (2017a). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophysical Research Letters , 44 (16), 8260–8267.https://doi.org/10.1002/2017GL074634
Ross, Z. E., Kanamori, H., Hauksson, E., & Aso, N. (2018). Dissipative intraplate faulting during the 2016 Mw6.2 Tottori, Japan earthquake.Journal of Geophysical Research: Solid Earth , 123 (2), 1631–1642.https://doi.org/10.1002/2017JB015077
Rossi, G., Zuliani, D., & Fabris, P. (2016). Long-term GNSS measurements from the northern Adria microplate reveal fault-induced fluid mobilization. Tectonophysics , 690 , 142–159.https://doi.org/10.1016/j.tecto.2016.04.031
Rossi, G., Fabris, P., & Zuliani, D. (2018). Overpressure and Fluid Diffusion Causing Non-hydrological Transient GNSS Displacements.Pure and Applied Geophysics , 175 (5), 1869–1888. https://doi.org/10.1007/s00024-017-1712-x
Ruhl, C. J., Abercrombie, R. E., Smith, K. D., & Zaliapin, I. (2016). Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting. Journal of Geophysical Research: Solid Earth , 121 (11), 8196–8216.
Saiga, A., Matsumoto, S., Uehira, K., Matsushima, T., & Shimizu, H. (2010). Velocity structure in the crust beneath the Kyushu area.Earth, Planets and Space , 62 (5), 449–462.https://doi.org/10.5047/eps.2010.02.003
Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. Journal of Physics of the Earth , 21 (4), 415–431.https://doi.org/10.4294/jpe1952.21.415
Scholz, C. H. (1998). Earthquakes and friction laws. Nature ,391 (6662), 37–42.https://doi.org/10.1038/34097
Segall, P. (1989). Earthquakes triggered by fluid extraction.Geology , 17 (10), 942–946. https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International , 131 (2), F15–F18.https://doi.org/10.1111/j.1365-246X.1997.tb01215.x
Shelly, D. R., Taira, T., Prejean, S. G., Hill, D. P., & Dreger, D. S. (2015). Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophysical Research Letters, 42(14), 5803–5812. https://doi.org/10.1002/2015GL064325
Shelly, D. R., Ellsworth, W. L., & Hill, D. P. (2016). Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. Journal of Geophysical Research: Solid Earth , 121 (3), 1776–1795.https://doi.org/10.1002/2015JB012719
Sibson, R. H. (1992). Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics , 211 (1–4), 283–293.https://doi.org/10.1016/0040-1951(92)90065-E
Sibson, R. H. (2020). Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets and Space ,72 (1), 1–20.
Talwani, P., & Acree, S. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. In. Pure and Applied Geophysics PAGEOPH . Berlin: Springer, 122(6), (947–965).https://doi.org/10.1007/BF00876395
Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research , 112 (B7), 1–18.https://doi.org/10.1029/2006JB004665
Yoshida, K., Saito, T., Emoto, K., Urata, Y., & Sato, D. (2019b). Rupture directivity, stress drop, and hypocenter migration of small- and moderate-sized earthquakes in the Yamagata–Fukushima border swarm triggered by upward pore-pressure migration after the 2011 Tohoku-Oki earthquake. Tectonophysics , 769 . PubMed:228184
Terakawa, T., Hashimoto, C., & Matsu’ura, M. (2013). Changes in seismic activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure. Earth and Planetary Science Letters , 365 , 17–24.https://doi.org/10.1016/j.epsl.2013.01.017
Ueno, H., Hatakeyama, S., Aketagawa, T., Funasaki, J., & Hamada, N. (2002). Improvement of hypocenter determination procedures in the Japan Meteorological Agency. Quarterly Journal of Seismology ,65 , 123–134.
Utsu, T. (1961). A statistical study on the occurrence of aftershocks.Geophysical Magazine , 30 , 521–605.
Utsu, T., Ogata, Y., S, R., & Matsu’ura. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth , 43 (1), 1–33.https://doi.org/10.4294/jpe1952.43.1
Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth , 111 (B5),https://doi.org/10.1029/2005JB004034
Waite, G. P., & Smith, R. B. (2002). Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera.Journal of Geophysical Research: Solid Earth , 107 (B9), ESE 1–ESE 1.https://doi.org/10.1029/2001JB000586
Wada, I., & Behn, M. D. (2015). Focusing of upward fluid migration beneath volcanic arcs: Effect of mineral grain size variation in the mantle wedge. Geochemistry, Geophysics, Geosystems ,16 (11), 3905–3923. https://doi.org/10.1002/2015GC005950
Waldhauser, F. (2002). Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations.Journal of Geophysical Research , 107 (B3), 2054.https://doi.org/10.1029/2000JB000084
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, California. Bulletin of the Seismological Society of America , 90 (6), 1353–1368.https://doi.org/10.1785/0120000006
Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union , 79 (47), 579–579.https://doi.org/10.1029/98EO00426
Wetzler, N., Lay, T., Brodsky, E. E., & Kanamori, H. (2018). Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Science Advances , 4 (2), eaao3225.https://doi.org/10.1126/sciadv.aao3225
Woessner, J., Schorlemmer, D., Wiemer, S., & Mai, P. M. (2006). Spatial correlation of aftershock locations and on-fault main shock properties.Journal of Geophysical Research , 111 (B8), (B8).https://doi.org/10.1029/2005JB003961
Yabe, S., & Ide, S. (2018). Variations in precursory slip behavior resulting from frictional heterogeneity. Progress in Earth and Planetary Science , 5 (1), 43.https://doi.org/10.1186/s40645-018-0201-x
Yoshida, K., & Hasegawa, A. (2018a). Sendai-Okura earthquake swarm induced by the 2011 Tohoku-Oki earthquake in the stress shadow of NE Japan: Detailed fault structure and hypocenter migration.Tectonophysics , 733 , 132–147.https://doi.org/10.1016/j.tecto.2017.12.031
Yoshida, K., & Hasegawa, A. (2018b). Hypocenter migration and seismicity pattern change in the Yamagata–Fukushima Border, NE Japan, caused by fluid movement and pore pressure variation. Journal of Geophysical Research: Solid Earth , 123 (6), 5000–5017.https://doi.org/10.1029/2018JB015468
Yoshida, K., Hasegawa, A., & Yoshida, T. (2016a). Temporal variation of frictional strength in an earthquake swarm in NE Japan caused by fluid migration. Journal of Geophysical Research: Solid Earth ,121 (8), 5953–5965.https://doi.org/10.1002/2016JB013022
Yoshida, K., Hasegawa, A., & Okada, T. (2016b). Heterogeneous stress field in the source area of the 2003 M6.4 Northern Miyagi Prefecture, NE Japan, earthquake. Geophysical Journal International ,206 (1), 408–419.https://doi.org/10.1093/gji/ggw160
Yoshida, K., Hasegawa, A., Yoshida, T., & Matsuzawa, T. (2019a). Heterogeneities in stress and strength in tohoku and its relationship with earthquake sequences triggered by the 2011 M9 Tohoku-Oki earthquake. Pure and Applied Geophysics , 176 (3), 1335–1355.https://doi.org/10.1007/s00024-018-2073-9
Yoshida, K., Uchida, N., Hiarahara, S., Nakayama, T., Matsuzawa, T., Okada, T., et al. (2020a). 2019 M6. 7 Yamagata-Oki earthquake in the stress shadow of 2011 Tohoku-Oki earthquake: Was it caused by the reduction in fault strength? Tectonophysics, 793, 228609.
Yoshida, K., Taira, T., Matsumoto, Y., Saito, T., Emoto, K., & Matsuzawa, T. (2020b). Stress release process along an intraplate fault analogous to the plate boundary: A case study of the 2017 M5. 2 Akita-Daisen earthquake, NE Japan. Journal of Geophysical Research – Solid Earth , e2020JB019527.
Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A. (2011). Fluid-induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan. Journal of Geophysical Research ,116 (B4).https://doi.org/10.1029/2010JB008036
Zhao, D., Yanada, T., Hasegawa, A., Umino, N., & Wei, W. (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International , 190 (2), 816–828.