Kevin Rozmiarek

and 10 more

On polar ice sheets, water vapor interacts with surface snow, and through the exchange of water molecules, imprints an isotopic climate signal into the ice sheet. This exchange is not well understood due to sparse observations in the atmosphere. There are currently no published vertical profiles of water isotopes above ice sheets that span the planetary boundary layer and portions of the free troposphere. Here, we present a novel dataset of water-vapor isotopes ( δ18O , δD, dxs) and meteorological variables taken by fixed-wing uncrewed aircraft on the northeast Greenland Ice Sheet (GIS). During June-July (2022), we collected 105 profiles of water-vapor isotopes and meteorological variables up to 1500 m above ground level. Concurrently, surface snow samples were collected at 12-hour intervals, allowing connection to surface-snow processes. We pair observations with modeling output from a regional climate model as well as an atmospheric transport and water-isotope distillation model. Climate model output of mean temperature and specific humidity agrees well with observations, with a mean difference of +0.095 °C and -0.043 g/kg (-2.91 %), respectively. We find evidence that along an air parcel pathway, the distillation model is not removing enough water prior to onsite arrival. Below the mean temperature inversion (~200m), water-isotope observations indicate a kinetic fractionating process, likely the result of mixing sublimated vapor from the ice sheet surface along with an unknown fraction of katabatic wind vapor. Modeled dxs does not agree well with observations, a result that requires substantial future analysis of kinetic fractionation processes along the entire moisture pathway.

Emma C. Kahle

and 13 more

Data from the South Pole ice core (SPC14) are used to constrain climate conditions and ice-flow-induced layer thinning for the last 54,000 years. Empirical constraints are obtained from the SPC14 ice and gas timescales, used to calculate annual-layer thickness and the gas-ice age difference (Δage), and from high-resolution measurements of water isotopes, used to calculate the water-isotope diffusion length. Both Δage and diffusion length depend on firn properties and therefore contain information about past temperature and snow-accumulation rate. A statistical inverse approach is used to obtain an ensemble of reconstructions of temperature, accumulation-rate, and thinning of annual layers in the ice sheet at the SPC14 site. The traditional water-isotope/temperature relationship is not used as a constraint; the results therefore provide an independent calibration of that relationship. The temperature reconstruction yields a glacial-interglacial temperature change of 6.7 ± 1.0 °C at the South Pole. The sensitivity of δ180 to temperature is 0.99 ± 0.03 ‰/°C, significantly greater than the spatial slope of ~0.8 ‰/°C that has been used previously to determine temperature changes from East Antarctic ice core records. The reconstructions of accumulation rate and ice thinning show millennial-scale variations in the thinning function as well as decreased thinning at depth compared to the results of a 1-D ice flow model, suggesting influence of bedrock topography on ice flow.