Hydrogen isotope ratios of sedimentary leaf waxes (δ2HWax values) are increasingly used to reconstruct past hydroclimate. Here, we add δ2HWax values from 19 lakes and four swamps on 15 tropical Pacific islands to an updated global compilation of published data from surface sediments and soils. Globally, there is a strong positive linear correlation between δ2H values of mean annual precipitation (δ2HP values) and the leaf waxes n-C29-alkane (R2 = 0.74, n = 665) and n-C28-acid (R2 = 0.74, n = 242). Tropical Pacific δ2HWax values fall within the predicted range of values based on the global calibration, and the largest residuals from the global regression line are no greater than those observed elsewhere, despite large uncertainties in δ2HP values at some Pacific sites. However, tropical Pacific δ2HWax values in isolation are not correlated with estimated δ2HP values from isoscapes or from isotope-enabled general circulation models. Palynological analyses from these same Pacific sediment samples suggest no systematic relationship between any particular type of pollen distribution and deviations from the global calibration line. Rather, the poor correlations observed in the tropical Pacific are likely a function of the small range of δ2HP values relative to the typical residuals around the global calibration line. Our results suggest that δ2HWax values are currently most suitable for use in detecting large changes in precipitation in the tropical Pacific and elsewhere, but that ample room for improving this threshold exits in both improved understanding of δ2H variability in plants, as well as in precipitation.