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Key Points: 9 
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 The method is validated on a recent sequence of landslides in the Swiss Alps 12 

 The operational implementation of our approach can be used to improve the 13 

completeness of landslide catalogues  14 
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Abstract 16 

We present a procedure to detect landslide events by jointly analyzing data acquired from 17 

regional broadband seismic networks and spaceborne radar imagery. To validate the method, we 18 

consider a series of six slope failures associated to the Piz Cengalo rock avalanche recently 19 

occurred in the Swiss Alps, a region where we can benefit from high spatial density and quality 20 

of seismic data, as well as from the high spatial and temporal resolution of the ESA Copernicus 21 

Sentinel-1 radar satellites. The operational implementation of the proposed approach, in 22 

combination with the future increase in availability of seismic and satellite data, can offer a new 23 

and efficient solution to build and/or expand landslide catalogues based on quantitative 24 

measurements, which are the base of hazard assessment and early warning systems at regional 25 

scale. 26 

 27 

Plain Language Summary 28 

Information on when, where and how landslides events occur is the key to build complete 29 

catalogues and perform accurate hazard assessments. Despite recent efforts, quantitative datasets 30 

are rare. Here we show a procedure that allows to benefit from the increased density of seismic 31 

sensors installed on ground for earthquake monitoring, as well as from the unprecedented 32 

availability of satellite radar data. We show how the procedure works on a recent sequence of 33 

landslide occurred at Piz Cengalo (Swiss Alps) in 2017. The results show that our approach 34 

provide important information on the location and magnitude of landslide events, and could be 35 

used operationally to build more complete catalogues and eventually improve the accuracy of 36 

landslide hazard assessment.  37 

 38 

1 Introduction 39 

Landslides cause globally fatalities and devastation, with  remarkable effects on low-income 40 

and/or developing countries (Froude & Petley, 2018). While the spatial occurrence of landslides 41 

is related to intrinsic geo-morphological, and climatic characteristics (Stead & Wolter, 2015), 42 

catastrophic failures arise when slope materials reach a critical damage state (Petley, 2004). In 43 

many cases, the ultimate trigger towards failure events is related to anthropic activities, extreme 44 

meteorological events, and earthquakes (Bayer et al., 2018; Huang Mong‐Han et al., 2017; 45 

Lacroix et al., 2019).  46 

Quantitative and accurate data on timing, location and size of landslides events are crucial to 47 

study the relationships between local and regional preconditioning factors, to recognize potential 48 

causes, as well as to identify the potential effects of climatic forcing. Moreover, efficient early 49 

warning systems at regional scale rely on the availability of accurate and complete landslide 50 

catalogues  (Gariano & Guzzetti, 2016). Despite recent efforts, the knowledge on spatial and 51 

temporal landslide distribution is often incomplete. The information about landslide volume, 52 

runout, velocity, etc. is usually available only when the events threat life or damage 53 

infrastructures, as well as when they are associated with large earthquakes or exceptional 54 

meteorological occurrences. These catalogues, however, deliver only a partial picture of the 55 

impact of such events on the landscape. In addition, many landslide events are unreported 56 
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because they occur in remote regions and do not have immediate and/or relevant impacts on 57 

human activities. This strongly hinders the completeness of inventories used for hazard 58 

assessment and for calibration of early warning systems at regional scales (Guzzetti et al., 2019).  59 

In recent years, two methods dominated the panorama of landslide event detection, i.e. satellite 60 

remote sensing and seismic data analyses. This is mainly due to the increased availability and 61 

quality of these datasets at global scale, as well as to the open data access policies. In particular, 62 

Earth Observation (EO) data acquired through different satellite missions are more and more 63 

exploited by systematic visual interpretation, as well as supervised and unsupervised automatic 64 

classification methodologies, in order to build catalogues of landslide events triggered by large 65 

earthquakes and/or extreme meteorological events (Mondini et al., 2019; Tanyaş et al., 2017). 66 

Further, despite the identification of signatures of landslide events in seismic networks deployed 67 

for earthquake monitoring is not a new observation (Govi et al., 2002; Weichert et al., 1994), 68 

advances and diffusion of broadband seismic sensors have increased the possibility to detect and 69 

locate also landslide events of small-moderate size at regional scales. Automatic or semi-70 

automatic procedures adapted from earthquake location routines have demonstrated good 71 

performances (Chao et al., 2017; Dammeier et al., 2011; Ekstrom, 2006; Fuchs et al., 2018); 72 

however, while uncertainties of several km can be tolerated in case of earthquake epicentral 73 

locations, landslides are extremely confined phenomena affecting a single slope (or only small 74 

portions of it). For this reason, a more accurate location of the events is necessary. 75 

In this work, we jointly use broadband seismic data and spaceborne radar imagery to show a 76 

procedure allowing for a systematic detection and location of landslides, as well as an initial 77 

definition of their area of impact, and their magnitude. We present results over the region 78 

recently affected by the Piz Cengalo, a steep granitic massive located in the central Alps at the 79 

border between Switzerland and Italy (see Figure 1), The area was repeatedly affected by large 80 

(> 1 Mm
3
), rock slope failure processes in the past decades, with  the main event on August 23, 81 

2017, being the largest (>3 Mm
3
) and most catastrophic reported in recent years, causing 8 82 

fatalities as well as damages in the range of 50M$. A detailed description of the event, its 83 

preconditioning factors, potential causes, the dynamics of the rock slope failure and the 84 

subsequent debris flow reaching the village of Bondo, is beyond the scope of this work. Thus, 85 

the readers are referred to the recent literature for more information on these specific topics 86 

(Mergili et al., 2019; Walter et al., 2019).  87 

2 Materials and Methods 88 

We consider Piz Cengalo as an exemplary case to demonstrate the potential of the combination 89 

of seismic and spaceborne radar data to provide quantitative information on landslide occurrence 90 

in an alpine scenario. We benefit from the high spatial density of the AlpArray seismic network 91 

(Hetényi et al., 2018)  and from the unprecedented spatial and temporal resolution of Sentinel-1 92 

Synthetic Aperture Radar (SAR) imagery (Torres et al., 2012). In the following, we describe the 93 

steps to initially define a candidate location region with seismic data, and then apply change 94 

detection investigations on Sentinel-1 SAR imagery to refine the location and identify the slope 95 

failure event. Hereafter, we will use the term “landquake” to define “landslide events recorded 96 

by seismic sensors”, as increasingly proposed in literature (Chen et al., 2013). 97 

2.1 Seismic data processing 98 
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We consider a total of six events occurred at Piz Cengalo between August 21 and October 10, 99 

2017 (see Table 1). The landquakes are characterized by different magnitude in terms of volumes 100 

and runout, and occurred all in the same slope but different stages of the progressive failure 101 

process: LQ1 occurred two days before the main failure, three events on August 23, 2017, , 102 

(LQ2-LQ4), while LQ5 about a month later and LQ6 about two months later). Figure 2 shows the 103 

distribution of the AlpArray stations and examples of the signals for the LQ2 detected at 104 

different distances from the source. The apparent velocities are on the order of 3 km/s, thus 105 

compatible with surface waves generated by surficial mass movements (e.g., Dammeier et al., 106 

2011).  107 

The Swiss Seismological Service (SED) routinely recognizes landslide phenomena in seismic 108 

records of stations located in Switzerland and in the vicinity of the national borders. Despite 109 

monitoring procedures are not optimized to detect mass movements, these are systematically 110 

reported. After an event detection (at least 3 stations triggered on the SED network), a first order 111 

manual solution is obtained by identifying coherent energy at multiple stations, identifying these 112 

typically as S-waves, by using a regional 3D velocity model. In general, locations are more 113 

accurate when seismic stations are close to the event and there is good azimuthal distribution of 114 

observations. For the Piz Cengalo landquake event associated to the largest failure (LQ2), the 115 

closest station is at ~25km and the location accuracy has uncertainties on the order of ±5 km.  116 

To perform our back analysis on the Piz Cengalo sequence, we define a temporal window of 10 117 

minutes centered on the date and time provided by SED with the manual procedure described 118 

above. We consider the waveforms recorded by all the AlpArray broadband stations available for 119 

each event and focused on the HHZ channel (i.e., the vertical velocity component of high broad 120 

band sampled at or above 80Hz, generally 100 or 200 Hz). The choice of the HHZ channel is 121 

justified by previous studies showing that such component usually entails the largest energy in 122 

case of landquakes (e.g., Dammeier et al., 2011). We apply a STA/LTA detection (see details 123 

and parameters in the Supporting Information, table S1) to find the onset time of the event at 124 

each station. Then, we compute the time delay between the first triggered station, assumed to be 125 

the closest to the event, and all the other stations identifying an event in the same temporal 126 

window. The resulting values are interpolated on a regular grid of 0.25 x 0.25 degrees, spatially 127 

smoothed with an average filter (3x3 kernel), and then normalized to obtain a new function 128 

defined here as “Likelihood of Landquake Location” (LLL). The candidate region of interest 129 

(ROI) potentially affected by a landquake is defined by considering LLL>0.95, and to target the 130 

change detection processing on a spatial subset of available Sentinel-1 radar scenes. 131 

 132 

2.2 Sentinel-1 SAR data processing  133 

We adopt the change detection processing proposed in (Mondini, 2017), here specifically 134 

modified to tackle single events instead of populations of landslides. The analysis is performed 135 

to identify potential variations of surface backscattering occurred between the pre- and post-136 

event images, over the area with LLL>0.95 (projected into SAR coordinates). After data 137 

acquisition, pre-processing of the radar imagery includes radiometric, and geometric corrections, 138 

multi-looking, and filtering of the intensity values to obtain the radar brightness coefficient (Beta 139 

Nought, 0) with a cell resolution of about 14 m x 14 m. Changes of 0 have demonstrated to be 140 
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a suitable indicator for the detection of landslide events of different size and occurred in different 141 

geographic scenarios (Mondini et al., 2019). In the maps of 0, changes, landslides appear as 142 

clusters of similar values in a bulk of speckles. The 0 changes map is then segmented using a 143 

parametric watershed approach (Roerdink & Meijster, 2000) in which the scale level and the 144 

moving window kernel size parameters of the intensity algorithm are automatically assigned 145 

minimizing a cost function (Mondini, 2017). The segmentation process is aimed at identifing in 146 

the candidate area LLL>0.95 a unique segment (i.e., the largest, potentially delineating changes 147 

associated to the landquake) and a number of small segments intercepting the speckle-like effect 148 

present in the 0 changes map. Thus, the landquake is recognized as an outlier in the segment’s 149 

distribution of the areas. The boundaries of the outlier segment, re-projected from SAR to ground 150 

coordinates, provide the potential location of the landquake. 151 

 152 

3 Results 153 

Figure 3 shows the exemplary results obtained by analyzing the seismic data available for the 154 

LQ2 event. This is the largest landquake, and its seismic signature was detected by tens of 155 

stations up to ~500 km distance from the source. The computed LLL function is approximately 156 

centered on Piz Cengalo massive. The area within LLL>0.95 is in the order of 10,000 km
2
, i.e. 157 

~1% of the entire seismic network considered (the AlpArray covers ~1 Million km
2
). However, 158 

this is still very large for an accurate identification of a slope failure event affecting an area of 159 

about 1 km
2
 (Walter et al., 2019).  160 

The initial candidate region defined by the LLL function is used to first identify the available 161 

Sentinel-1 imagery in terms of time of acquisition and orbit. In this specific case, the suitable 162 

Sentinel-1 orbits are the  T015, ascending, and T066, descending, respectively. Then, the change 163 

detection processing is not applied to the entire image, but only to the area with LLL>0.95, 164 

which is 20% of the acquired SAR scene. Figure 4 shows the best results of the change detection 165 

analysis obtained on the ascending T015 imagery (see Supporting Information, Table S2). Due to 166 

the temporal proximity of the LQ1-LQ4 sequence (occurred within two days, see Table 1), the 167 

LQ2 event cannot be singularly discriminated, because the Sentinel-1 constellation revisit time is 168 

of six days. The LQ2, however, has been certainly the main cause of the surface changes, and for 169 

this reason we refer hereafter mainly to this event. The outlier segment that identified covers an 170 

area of ~0.9 km
2
, about two orders of magnitude larger than the average areas of the segment’s 171 

distribution. The footprint and the dimensions of this segment are in very good agreement with 172 

the area affected by the rock avalanche (Walter et al., 2019). The events LQ5 and LQ6 are 173 

smaller in magnitude, and the changes on the SAR image cannot be univocally defined as for the 174 

LQ2 (see Supporting Information, Figure S2 and S3). Nevertheless, the location of the largest 175 

segments identified within the Bondasca valley fall very near to the area affected by the Piz 176 

Cengalo landquake sequence.  177 

 178 

4 Discussion and Conclusions 179 
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Seismic data are capable to provide an indirect evidence of the time of landslide occurrence also 180 

in inaccessible locations, but independent validation is necessary for event confirmation and 181 

classification (Ekström & Stark, 2013). On the other hand, remote sensing data can deliver direct 182 

evidence of the areas hit by landslide events, but independent observations  are necessary to 183 

identify the exact time of occurrence (Guzzetti et al., 2012). We propose an approach exploiting 184 

seismic and remote sensing (specifically, space borne SAR data), which is suitable for the 185 

development of automatic pipelines aimed at a systematic identification, location and first 186 

evaluation of landslides. We have shown as an exemplary case the application to a sequence of 187 

events recently occurred in the Swiss Alps. Our results provide several hints on the potential 188 

application of this approach in operational scenarios.  189 

We have applied a STA/LTA approach for the identification of the event on a arbitrary 190 

constrained temporal window. The STA/LTA method has shown to be suitable for the automatic 191 

detection of mass movements in continuous seismic records also for early warning purposes, 192 

although specific calibration of the parameters used is necessary and depend on the sensors, the 193 

network configuration, and local conditions (Coviello et al., 2019). One of the main argument 194 

against the use of the STA/LTA approach in the detection of mass movent signals lies in the 195 

inaccuracy for the determination of the event’s onset, which might cause errors on the 196 

subsequent location procedures (Fuchs et al., 2018). Since we refine the location using the 197 

remote sensing imagery, the STA/LTA approach is sufficient to initially constrain the candidate 198 

region for the change detection task. Inaccuracies up to seconds of the STA/LTA detection that 199 

would cause dramatic inaccuracies in location routines based on seismic data only, would cause 200 

only negligible changes on the LLL function. Despite the candidate location is identified with a 201 

basic proximity approach, the source region is already reasonably well constrained for all six LQ 202 

events considered (see also Supporting Information, Figure S1). This result is possible only when 203 

a relatively high spatial density of seismic sensors is available, such as the AlpArray network. 204 

More advanced location routines can be applied, but homogenization of procedures across large 205 

areas like entire alpine chain is not straightforward. In addition, an increased level of complexity 206 

would not correspond to an obvious increase of accuracies for landslide location.  207 

Another important issue after detection is the distinction and/or classification of the signals 208 

recorded in continuous seismic waveforms (e.g., earthquakes, explosion, mass movements, 209 

anthropic sources, etc.). Several authors proposed empirical based relationships, signal 210 

processing and/or or machine learning strategies, achieving good performances (Dammeier et al., 211 

2016; Hibert et al., 2019; Moore et al., 2017). Here we considered the method proposed in 212 

(Manconi et al., 2016) based on the ratio between the local magnitude and the duration 213 

magnitude, to distinguish between local earthquakes and landquakes. The results show that with 214 

this approach the Piz Cengalo sequence could have been automatically classified as landquakes 215 

(see Table 1). This strategy, including the empirical evaluation of the rockslide volumes based on 216 

the empirical relationship observed with the duration magnitude, has been recently implemented 217 

in an operational regional system in Taiwan showing encouraging results (Chang et al., 2020).  218 

As far as the change detection analysis on the Sentinel-1 SAR data is concerned, the location of 219 

landquakes as the LQ2 (i.e. in this case the LQ1-LQ4 sequence) is straightforward. The event is 220 

large and causes a relevant drop of the backscattering coefficient in the post event image, 221 

spatially over sizing the surrounding random changes always present in SAR images (speckling-222 

like effect). Furthermore, other environmental changes in the area are not relevant, and in this 223 
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specific case, mostly in the direction of an increase of the backscattering coefficient. The results 224 

of the segmentation are unambiguous in all the images whatever the acquisition mode and the 225 

polarization are, even if the final segments can be slightly different. Additionally, post 226 

processing, like smoothing or gap-filling filtering, can also change partially the final shape of the 227 

segment and the identified area. On the contrary, the identification of the LQ5 and LQ6 events 228 

shows more complexity and it is not nonambiguous. According to seismic data, their sizes are 229 

smaller compared to LQ2, and then correspondingchanges of the backscattering coefficient are 230 

expected to be less prominent in the bulk of random speckles. When the signs left on the SAR 231 

image amplitude have a size comparable the speckling-like segments, landslides cannot be 232 

univocally recognized. Regarding LQ5, the entire area of investigation is also affected by 233 

distributed environmental changes dropping the backscattering coefficient, which can be affected 234 

by snow and.or other atmospheric disturbances. Only a supervised post processing (further 235 

filtering) over the valley, which facilitated the segmentation, allowed to highlight a potential 236 

cluster of interest. For LQ6, a small but clear signal is present in the catchment, along the slope, 237 

but is not the largest in size considering the entire distribution of segments. There are other 238 

signals present in the neighboring valleys that could mislead the analysis. For LQ5 and LQ6, the 239 

signals emerge only in the ascending imagery with VH polarization, another possible indication 240 

of the change of roughness along the slope(Sung & Holzer, 1976). A potential adaption for the 241 

operational implementation of our approach could be running the change detection task on 242 

progressively increasing LLL thresholds (e.g., 0.95, 0.975, etc.). This could provide additional 243 

hints on possible hot-spots, which can be verified with subsequent SAR acquisitions and/or 244 

supplementary remote sensing imagery (space-borne or air-borne).   245 

The key message of this study is to show how the systematic combination of seismic and remote 246 

sensig data can be useful for identification and mapping of landslide events. The use of Sentinel-247 

1 SAR satellites shows the advantages of all weather, day and night, and systematic acquisitions 248 

at global scale. When available, optical imagery and/or SAR imagery acquired with different 249 

bands, full polarimetric, or with higher spatial resolution can eventually contribute to an increase 250 

the quality and the quantity of the information.   251 

We conclude remarking that our approach is not intended to be used for early recognition of 252 

landslides or as early warning tool. The main goal of an operational implementation could be to 253 

systematically populate landslide catalogues relying on quantitative and accurate information on 254 

timing, magnitude, and frequency also in remote areas. Improved catalogue completeness is very 255 

important for the calibration of regional early warning systems based on rainfall thresholds, as 256 

well as on regional hazard assessments(Guzzetti et al., 2019). The availability of remote sensing 257 

imagery with daily or sub-daily revisit times could lead to an employment in early detection of 258 

landslide events and possibly also in disaster response scenarios, but these potential applications 259 

have to be evaluated in future studies. 260 
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 368 

Figure 1. Overview of the area of investigation. (a) Google Earth© view of the Val Bondasca, 369 

with approximate outline of the area affected by the Piz Cengalo (46.29475° N, 9.602056° E) 370 

rock avalanche and subsequent debris flows; (b) Detail of the release area, August 25, 2017; (c) 371 

Detail of the deposits, August 30 2017. © Photos VBS swisstopo Flugdienst. 372 
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Figure 2. Seismic network and data (left) The AlpArray network of broad band stations. (right) 375 

Selected signals (vertical component HHZ) recorded by AlpArray stations located at different 376 

distances from event LQ2 (see table 1), occurred on August 23, 2017 (i.e., the main Piz Cengalo 377 

rock avalanche event).    378 
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 381 

Figure 3. Likelihood of Landquake Location (LLL) based on the arrival time of seismic signals 382 

recorded by AlpArray stations. This basic analysis of the seismic data is used to constrain the 383 

approximate location where a landslide event has occurred. (a) LLL over the entire AlpArray 384 

network (b) Zoom on the areas with high likelihood. The area 0.95<LLL<1.0 is used to confine 385 

the change detection analysis. True location of the Piz Cengalo event (white star) is also shown. 386 
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 389 

Figure 4. Results of the change detection analysis. The red polygon shows the area identified as 390 

potential landquake location for the main Landquake event (i.e., LQ1-LQ4) identified by 391 

processing the Sentinel-1 pre- and post-event, while the gray polygon is the area hit by the rock 392 

avalanche (cf. Walter et al., 2019). The white star and the yellow star show the locations of the 393 

largest segments for LQ5 and LQ6, respectively, identified within the Bondasca valley.The black 394 

dots show the epicentral locations provided by SED (see Table 1).  395 
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Event 

ID 

 

Date/Time (UTC) 

 

ML 

 

MD* 

 

ML/MD 

 

Vol (Mm3) 

LQ1 2017-08-21T09:29:09 2.3 3.03 0.75 0.078 - 0.167 

LQ2 2017-08-23T07:30:27 3.0 3.71 0.80 1.65 - 2.61 

LQ3 2017-08-23T09:03:57 1.3 2.86 0.45 0.02 - 0.14 

LQ4 2017-08-23T09:36:16 2.1 3.22 0.65 0.12 - 0.50 

LQ5 2017-09-15T20:04:36 2.3 3.26 0.70 0.23 - 0.41 

LQ6 2017-10-10T02:58:41 1.1 2.65 0.41 0.014 - 0.035 

Table 1. Summary of the landquakes analyzed in this study and associated to the Piz Cengalo 398 

slope failure. ML are estimated by SED, while average magnitude duration (MD) and volumes 399 

are computed following Manconi et al., 2016, by considering the event duration on all triggered 400 

AlpArray stations. Note that all LQ events have ML/MD have ML/MD less or equal to 0.8, i.e. 401 

they can be discerned from earthquake events which typically have ML/MD ~ 1. 402 


