
Supporting Information for "The Intrinsic 150-day
Periodicity of the Southern Hemisphere Extratropical
Large-Scale Atmospheric Circulation"

Sandro W. Lubis1 * and Pedram Hassanzadeh1

1Rice University, Houston, TX, 77005, USA

Contents of this file

1. Text 1 to 6

2. Figures S1 to S7

3. Tables S1 to S4

*Current address: Pacific Northwest

National Laboratory, Richland, WA, 99354,

USA

October 20, 2022, 4:38pm



X - 2 :

1. Calculation of Feedback Strengths bij from Data

The feedback strengths in the coupled EOF1-EOF2 reduced-order model (Eqs. (4)-(5))

are estimated using the method introduced in Lubis and Hassanzadeh (2021), which is

based on the lagged-regression method of Simpson, Shepherd, Hitchcock, and Scinocca

(2013). We first define regℓ(x(t), y(t)) = sum(x(t + ℓ)y(t)) for any time-series x(t) and

y(t) and a time lag ℓ. As discussed in the main text, m̃j is the random component of

the eddy forcing, independent from the zonal-mean flow, i.e., independent from z1 or z2

(Simpson et al., 2013). Therefore, regℓ(m̃j, zk) ≈ 0 (for j, k=1,2) at positive lags ℓ longer

than eddy lifetime (note that positive lags mean zk leads). To find the values of b11 and

b12, each term in the linear feedback equation m1 = m̃1 + b11z1 + b12z2 is lag-regressed, at

some positive lag ℓ > 7 days, onto z1 and then separately onto z2, to arrive at the linear,

coupled system [
regℓ(z1, z1) regℓ(z2, z1)
regℓ(z1, z2) regℓ(z2, z2)

] [
b11
b12

]
=

[
regℓ(m1, z1)
regℓ(m1, z2)

]
(1)

where regℓ(m̃1, z1) ≈ 0 and regℓ(m̃1, z2) ≈ 0 are used. Similarly, we lag-regressed each

term in the linear feedback equation m2 = m̃2 + b21z1 + b22z2 onto z1 and then z2, to

obtain [
regℓ(z1, z1) regℓ(z2, z1)
regℓ(z1, z2) regℓ(z2, z2)

] [
b21
b22

]
=

[
regℓ(m2, z1)
regℓ(m2, z2)

]
. (2)

In the method introduced in Simpson et al. (2013) for the single-EOF1 model LH01,

b12 = 0, therefore, b11 can be computed directly from regℓ(z1, z1) and regℓ(m1, z1). Here,

we solve the system of equations (S1) to find b11 and b12. Similarly, the system of equations

(S2) is solved to find b21 and b22.

The proper time lag ℓ to use in Eqs. (S1)-(S2) should be chosen by looking for non-

zero mj zk cross-correlations at positive lags beyond eddy lifetime. Simpson et al. (2013)

suggested to average b11 values computed over a range of ℓ longer than the synoptic
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timescale, which was also used by Lubis and Hassanzadeh (2021) for bjk. Here, in an

approach similar to the one used by Nie, Zhang, Chen, Yang, and Burrows (2014) and to

provide uncertainties for estimates of bjk, we compute a distribution of bjk by averaging

the values obtained for ℓ = ℓi to ℓ = ℓi+∆ℓ ≤ ℓo where ∆ℓ = 1, 2 . . . 8 days, and ℓi and ℓo

are chosen for each model/dataset based on where cross-correlations become zero at small

(∼ 7 − 8 days) and large (∼ 15 − 20 days) lag times. Table 2 of the paper reports the

mean and 25th and 75th percentiles of each bjk distribution and the range of ℓi to ℓo for

ERA5, two setups of the idealized GCM, and CESM-WACCM. In all cases, the 25th-75th

percentiles range is fairly narrow, indicating weak sensitivity to ℓ.

It is worth mentioning that all methods proposed in the literature for estimating eddy-

zonal flow feedbacks from data have at least one free parameter such as ℓ; this includes

the spectral methods of Lorenz and Hartmann (2001) and Ma, Hassanzadeh, and Kuang

(2017). However, the latter study showed, using a test case for which the true feedback

strength was known through the linear response function method of Hassanzadeh and

Kuang (2019), that the sensitivity of the calculated feedback strengths to reasonable

choices of these free parameters was weak in the methods of Lorenz and Hartmann (2001),

Simpson et al. (2013), and Ma et al. (2017), consistent with what is found here.

Finally, it should be pointed out that in the reanalysis data, Lubis and Hassanzadeh

(2021) found b13 and b23 to be small and statistically insignificant, indicating that EOF3

does not exert feedbacks onto EOF1 or EOF2 and is uncoupled from them. Therefore, the

coupled EOF1-EOF2 model (Eqs. (4)-(5)) is enough for the current Southern Hemisphere

large-scale circulation.
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2. Analytical Solution of the Coupled EOF1-EOF2 Reduced-Order Model,

Eqs. (4)-(5)

The analytical solution of the coupled system Eqs. (4)-(5) in the deterministic limit is

discussed in detail in Lubis and Hassanzadeh (2021). Briefly, we set m̃j = 0 and re-write

the equations as a system of ordinary differential equations (ODEs) in the matrix form:

ż = Az, (3)

where

z =

[
z1
z2

]
, (4)

A =

[
b11 − 1

τ1
b12

b21 b22 − 1
τ2

]
. (5)

The solution of this system is

z = c1e
λ1tv1 + c2e

λ2tv2, (6)

where v and λ are the eigenvectors and the eigenvalues of matrix A, respectively, and c1

and c2 are some constants that depend on the initial conditions. The eigenvalues λ of A

are

λ1,2 = −1

2

(
1

τ1
+

1

τ2
− b11 − b22

)
± 1

2

√{(
1

τ1
− 1

τ2

)
− (b11 − b22)

}2

+ 4b12b21. (7)

It is clear from Eq. (S7) that whether Eqs. (4)-(5) admit purely decaying or decaying-

oscillatory solutions depends on the sign of the term under the square root, leading to the

criterion in Eq. (6).

If Eq. (6) is not satisfied, then there is no oscillation and z just decays exponentially

according to

z = c1e
(−σ1t)v1 + c2e

(−σ2t)v2. (8)

where σ1,2 = −λ1,2 > 0 are the decay rates. This solution corresponds to the non-

propagating annular modes and is characterized by overly persistent and dominant z1
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(see Lubis and Hassanzadeh (2021) for more details). If Eq. (6) is satisfied, then a

decaying-oscillatory solution of the form

z = c1e
(−σt)e(iωt)v1 + c2e

(−σt)e(−iωt)v2 (9)

exists, where decay rate σ (Eq. (S10)) and oscillation frequency ω (Eq. (7)) are the real

and imaginary parts of λ1,2 = −σ ± iω from Eq. (S7):

σ =
1

2

(
1

τ1
+

1

τ2
− b11 − b22

)
, (10)

This solution corresponds to the propagating annular modes and is characterized by

strongly coupled z1 and z2 of comparable persistence and dominance (see Lubis and Has-

sanzadeh (2021)). Note that under the reasonable simplification τ1 ≈ τ2 (see Table 2),

the criterion in Eq. (6) reduces to (b11 − b22)
2 < −4b12b21 as the necessary and sufficient

condition for the existence of the propagating regime. It is clear from this equation (or

from Eq. (6)) that a necessary (but not sufficient) condition is

b12b21 < 0. (11)

Equation (S11) shows that non-zero cross-EOF feedbacks of opposite sign are necessary

for the propagating regime, a condition that is clearly satisfied in ERA5, idealized GCM

with propagating regime, and CESM-WACCM (Table 2).

3. Spectral Analysis of Time-Series

For the spectral analyses in Figs. 1, 3, S1 and S2, we divide the time-series into 1052-

day segments that overlap by 500 days and are windowed by a Hanning window (Lorenz

& Hartmann, 2001; Ma et al., 2017). With this approach, the spectral estimates in Figs.

1a, 1b, 1c, and 1d (black curves) have ∼29, ∼190, ∼190 and ∼190 degrees of freedom,

respectively. To test the statistical significance of each spectrum, the “red-noise” spectral
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estimate Pred (f) at frequency f is calculated as:

Pred(f) =
σ2(1−R2)

1 +R2 − 2R cos(2πf)
, (12)

where R is the lag-1 autocorrelation coefficient of the time-series and σ2 is the variance

(Jenkins, 1968). Prior to the spectral analysis, the anomalies are detrended to remove

a linear trend, and smoothed using a 21-day centered moving average to avoid high-

frequency noises, similar to Sheshadri and Plumb (2017). As a result, the red noise would

shift from the centroid of the spectru because of the filtered anomaly field (see Fig. 2 in

Ventrice et al. (2013) for a similar example).

In Fig. S1, sensitivity of the zonal index z1 power spectrum to different choices of time

period, segment length, and overlap are examined. While there is some sensitivity at

higher frequencies, the ∼ 150 day peak is overall robust. The main sensitivity is with

respect to change in time period, but in all cases, the peak exists and its timescale agrees

with the theoretical prediction periodicity.

4. Stochastic Prototype

In Fig. S4, synthetic data from numerical integrations of a stochastic prototype is pre-

sented. The prototype is presented in detail in Lubis and Hassanzadeh (2021). Briefly,

the stochastic prototype consists of Eqs. (4)-(5) with time-series m̃1 and m̃2 modeled as

second-order autoregressive (AR2) noise processes, following Simpson et al. (2013), and

values of τ1, τ2, b11, b12, b21, and b22 prescribed (Table S2). For the control (CTL) experi-

ment, these values are chosen close to the observed ones in the Southern Hemisphere. In

the other three experiments, values of b12 and b21 are varied to change whether a propa-

gating or non-propagating regime exists (based on Eq. (6)) or to change the periodicity

of the propagation.
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5. Bartlett Test: Standard Errors of Cross Correlations

The standard error of the estimated cross-correlation rXY (ℓ) between two stationary

normal time-series {Xt} and {Yt} (t ∈ [0 T ]) at lag ℓ can be computed as (Bartlett,

1978)

var {rXY (ℓ)} =
1

T − |ℓ|

∞∑
g=−∞

[ρX(g)ρY (g)] , (13)

where ρX(g) and ρY (g) are the autocorrelation function of {Xt} and {Yt}, respectively.

The null hypothesis is rXY (ℓ) = 0, and it is rejected at the 5% significance level if

|rXY (ℓ)| > 2×
√

var {rXY (ℓ)}.

6. One-point Lag-correlation Map

The one-point lag-correlation maps in Figs. 4-5 are computed following Son and Lee

(2006). Briefly, we choose the position of the maximum negative wind anomalies of EOF2

at low latitudes as the base latitude. Then the Pearson’s correlation coefficient between

zonal-mean zonal wind anomalies at lag time l and latitude ϕ are computed with respect

to the zonal-mean zonal wind anomalies at the base latitude.
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Figure S1. Periodicity in the Southern Annular Mode (SAM) in ERA5 reanalysis with

respect to various changes in the methodology: different time periods (1950-1978, 1979-

2013, and 1950-2020), different window lengths (1052, 1536, and 1920 days), and different

overlaps (500, 768, and 960 days). See the caption of Fig. 1 for more details. Overall, the

observed 150-day periodicity is robust across various changes in the methodology and is

well predicted by the reduced-order model (Eq. (7)). Change in the predicted periodicity

is due to slight changes in the strength of the feedbacks in different periods (not shown).
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(a) MERRA2 (b) NCEP1

(c) NCEP2

Figure S2. Periodicity in the Southern Annular Model (SAM) of three other reanalysis

products. Same as Fig. 1 but for (a) MERRA2, (b) NCEP1, and (c) NCEP2. See Table

S1 for the mean and 25th to 75th percentiles of the theoretically predicted frequency

distribution from Eq. (7). See Materials and Methods for more information about each

reanalysis dataset and the spectral analysis of time-series.
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ERA5(a)

(c)

GCM with propagating regime(b)

GCM with non-propagating regime

θ (days)


Figure S3. Dependence of the calculated eigenvalues λ of the leading POP/DMD modes

on the choice of time lag θ. (a) ERA5, (b) idealized GCM with the propagating regime,

and (c) idealized GCM with the non-propagating regime. Longer time lags are tested in

the idealized GCM given the abundance of data and longer zonal index autocorrelation

times.
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Experiment 3

Experiment 4

Experiment 2

Experiment 1

(b12,b21) x 1.5

(b12,b21) x 2.0

(b12,b21)  x 1.0

(b12,b21)  x 0.0

predicted from theory

Figure S4. Power spectra of z1 from synthetic data of the stochastic prototypes for

different combinations of cross-feedbacks (b12 and b21 relative to those in the Control

experiment are changed; see Table S2). The thin vertical lines mark the theoretically

predicted frequency from Eq. (7). For all cases shown in this figure, except for panel (c)

and the black line in panel (d), the criterion for the existence of the propagating annular

mode (Eq. (6)) is satisfied and Eq. (7) accurately predicts the periodicity.

October 20, 2022, 4:38pm



X - 14 :

Figure S5. Patterns of EOF1, EOF2, and zonal-mean zonal wind climatology in two

setups of an idealized GCM. (a)-(b) Setup with the propagating regime. (c)-(d) Setup

with the non-propagating regime. Shading shows the EOF patterns, which are obtained

by regressing the Southern Hemisphere daily zonal-mean zonal wind onto z1 (PC1, left)

and z2 (PC2, right). The contour lines show the climatological zonal-mean zonal wind

with an interval of 5 m/s. Numbers in the parentheses show the variance explained by each

EOF. The ratio of EOF1/EOF2 explained variances and the climatological jet structure

in (a)-(b), but not in (c)-(d), are consistent with the rule of thumb for the existence of

the propagating regime of annular modes: ratio <2 and double jet are associated with

the propagating regime (Son & Lee, 2006; Son et al., 2008). See Materials and Methods

for details of each idealized GCM setup and the EOF analysis.
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MERRA2 NCEP1 NCEP2

Figure S6. Periodicity in the dynamical modes of the zonal-mean Southern Hemi-

sphere extratropical large-scale circulation. Same as Fig. 2 but for year-round MERRA2

(a)-(b), NCEP1 (c)-(d), and NCEP2 (e)-(f). Periodicity of each mode is 2π/λI ∼150

days. Periodicity of the leading POP/DMD mode in each dataset closely matches the

theoretically predicted ones through Eq. (7); see Table S1. See Materials and Methods

for more information about each reanalysis dataset and the POP/DMD calculations.
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MERRA2(a)

(c)

NCEP1(b)

NCEP2

θ (days) 

Figure S7. Dependence of the calculated eigenvalues λ of the leading POP/DMD

modes on the choice of time lag θ. (a) MERRA2, (b) NCEP1, and (c) NCEP2.

October 20, 2022, 4:38pm



: X - 17

Table S1. Periodicity of SAM in three other reanalysis datasets: MERRA2, NCEP1, and

NCEP2. The second column shows the periodicity predicted by the theoretically derived Eq. (7)

given the estimates of bjk and τj from data. The 25th and 75th percentiles provide a measure

of the uncertainty with respect to the choice of lag time l in estimating bjk (see Materials and

Methods). The third column shows the periodicity associated with the peak of z1 spectrum in

Figs. S2a-c. The last column shows the periodicity of the leading POP/DMD mode, computed

as 2π/λI , where λI is the imaginary part of the eigenvalue (Eq. (A9)). See Appendix for more

details about the POP/DMD calculations.

Data
Periodicity predicted by Eq. (7)

(25th, mean,75th)
(days)

Periodicity at the
peak of z1 spectrum

(days)

Periodicity of the
leading POP/DMD mode

(days)
MERRA2 (143.2, 150.1, 155.5) 150.3 149.5
NCEP1 (141.5, 151.8, 157.8) 150.3 148.8
NCEP2 (141.8, 149.8, 156.5) 150.3 152.8
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Table S2. Feedback strengths and damping timescales prescribed in 4 numerical experiments

with the stochastic prototypes to produce the synthetic data for Fig. 1d. See Materials and

Methods for details of the stochastic prototype. In all experiments, τ1=τ2=8 days is used. The

bjk values for the control (CTL) experiment are chosen close to the observed ones (Table 2).

Next to the last column shows the periodicity at the peak of z1 specrum in Fig. 1d for each

experiment. The last column shows the periodicity predicted by the theoretically derived Eq.

(7) for the given values of bjk and τj. Experiment 4 is in the non-propagating regime, i.e., the

criterion in Eq. (6) is not satisfied (simply because b12 b21=0).

Prescribed feedback strengths (day−1)Data
b11 b12 b21 b22

Periodicity at the peak
of z1 spectrum (day)

Periodicity predicted
by Eq. (7) (day)

Experiment 1
(CTL) 0.0485 0.0737 -0.0277 0.0142 150.3 149.2

Experiment 2 0.0485 CTL×1.5 CTL×1.5 0.0142 95.6 95.5
Experiment 3 0.0485 CTL×2.0 CTL×2.0 0.0142 70.1 70.7
Experiment 4 0.0485 0.0 0.0 0.0142 - -
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Table S3. List of 24 Coupled Model Intercomparison Project Phase 5 (CMIP5) models used

in this study. We use all available ensemble members from CMIP5 historical simulations for the

period 1960-2005 for Figs. 6-7.

Model # Institution Model Experiment Atmospheric Model
Resolution (Lon x Lat)

1 bcc-csm1-1-m historical 1.59◦ x 1.59◦
2 BCC bcc-csm1-1 historical 3.96◦ x 3.96◦
3 BNU BNU-ESM historical 3.96◦ x 3.96◦
4 CCCma CanESM2 historical 2.81◦ x 2.81◦
5 NCAR CCSM4 historical 1.25◦ x 0.94◦
6 CMCC-CM historical 1.06◦ x 1.06◦
7 CMCC CMCC-CMS historical 2.64◦ x 2.64◦
8 CNRM-CERFACS CNRM-CM5 historical 1.98◦ x 1.98◦
9 CSIRO-QCCCE CSIRO-Mk3-6-0 historical 1.93◦ x 1.93◦
10 LASG-CESS FGOALS-g2 historical 2.81◦ x 2.81◦
11 GFDL-CM3 historical 2.50◦ x 2.00◦
12 GFDL-ESM2G historical 2.50◦ x 2.00◦
13

NOAA-GFDL
GFDL-ESM2M historical 2.50◦ x 2.00◦

14 HadGEM2-CC historical 2.25◦ x 2.25◦
15 MOHC HadCM3 historical 2.50◦ x 3.75◦
16 INM INM-CM4 historical 2.00◦ x 1.50◦
17 MIROC-ESM historical 2.81◦ x 2.81◦
18 MIROC MIROC-ESM-CHEM historical 3.96◦ x 3.96◦
19 MPI-ESM-LR historical 1.88◦ x 1.87◦
20 MPI-ESM-MR historical 1.88◦ x 1.87◦
21

MPI-M
MPI-ESM-P historical 1.88◦ x 1.87◦

22 MRI-CGCM3 historical 1.59◦ x 1.59◦
23 MRI MRI-ESM1 historical 1.59◦ x 1.59◦
24 NCC NorESM1-M historical 2.50◦ x 1.89◦
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Table S4. List of 20 Coupled Model Intercomparison Project Phase 6 (CMIP6) models used

in this study. We use all available ensemble members from CMIP6 historical simulations for the

period 1960-2005 for Figs. 6-7.

Model # Institution Model Experiment Atmospheric Model
Resolution (Lon x Lat)

1 CSIRO-ARCCSS ACCESS-ESM1-5 historical 2.25◦ x 2.25◦
2 BCC-CSM2-MR historical 1.13◦ x 1.13◦
3 BCC BCC-ESM1 historical 2.81◦ x 2.81◦
4 CAMS CAMS-CSM1-0 historical 1.13◦ x 1.13◦
5 CCCma CanESM5 historical 2.81◦ x 2.81◦
6 NCAR CESM2-WACCM historical 1.25◦ x 0.94◦
7 CNRM-CM6-1 historical 1.40◦ x 1.40◦
8 CNRM-CERFACS CNRM-ESM2-1 historical 1.40◦ x 1.40◦
9 NOAA-GFDL GFDL-CM4 historical 1.25◦ x 1.00◦
10 NASA-GISS GISS-E2-1-G historical 2.50◦ x 2.00◦
11 MOHC HadGEM3-GC31-LL historical 1.88◦ x 1.25◦
12 INM INM-CM5-0 historical 2.50◦ x 2.50◦
13 IPSL IPSL-CM6A-LR historical 2.50◦ x 1.26◦
14 NIMS-KMA KACE-1-0-G historical 1.88◦ x 1.25◦
15 MIROC6 historical 1.98◦ x 1.98◦
16 MIROC MIROC-ES2L historical 2.80◦ x 2.80◦
17 MPI-M MPI-ESM1-2-LR historical 1.88◦ x 1.87◦
18 MRI MRI-ESM2-0 historical 1.59◦ x 1.59◦
19 NCC NorESM2-LM historical 2.50◦ x 1.88◦
20 MOHC UKESM1-0-LL historical 1.88◦ x 1.25◦
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