
A stormwater management framework for predicting
first flush intensity and quantifying its influential

factors

Cosimo Russoa, Alberto Castrob, Andrea Gioiac, Vito Iacobellisc, Angela
Gorgoglioned,∗

aDepartment of Electronics and Information, Politecnico di Milano, 32 Piazza Leonardo
da Vinci, Milano, 20133, Italy

bDepartment of Computer Science, Universidad de la República, 565 Ave Julio Herrera y
Reissig, Montevideo, 11300, Uruguay

cDepartment Department of Civil, Environmental, Land, Building Engineering and
Chemistry, Politecnico di Bari, 126/b Via Amendola, Bari, 70126, Italy

dDepartment of Fluid Mechanics and Environmental Engineering, Universidad de la
República, 565 Ave Julio Herrera y Reissig, Montevideo, 11300, Uruguay

Abstract

Despite numerous applications of Random Forest (RF) techniques in the

water-quality field, its use to detect first-flush (FF) events is limited. In

this study, we developed a stormwater management framework based on

RF algorithms and two different FF definitions (30/80 and M(V) curve).

This framework can predict the FF intensity of a single rainfall event for

three of the most detected pollutants in urban areas (TSS, TN, and TP),

yielding satisfactory results (30/80: accuracyaverage = 0.87; M(V) curve:

accuracyaverage = 0.75). Furthermore, the framework can quantify and rank

∗Corresponding author: 565 Ave Julio Herrera y Reissig, Montevideo, 1300, Uruguay.
Email addresses: cosimo.russo@mail.polimi.it (Cosimo Russo),

acastro@fing.edu.uy (Alberto Castro), andrea.gioia@poliba.it (Andrea Gioia),
vito.iacobellis@poliba.it (Vito Iacobellis), agorgoglione@fing.edu.uy (Angela
Gorgoglione)

Preprint submitted to Journal of Environmental Management February 3, 2022



the most critical variables based on their level of importance in predicting

FF, using a non-model-biased method based on game theory. Compared to

the classical physically-based models that require catchment and drainage

information apart from meteorological data, our framework inputs only in-

clude rainfall-runoff variables. Furthermore, it is generic and independent

from the data adopted in this study, and it can be applied to any other

geographical region with a complete rainfall-runoff dataset. Therefore, the

framework developed in this study is expected to contribute to accurate FF

prediction, which can be exploited for the design of treatment systems aimed

to store and treat the FF-runoff volume.

Keywords: pollutant first flush, 30/80, M(V) curve, random forest,

SWMM, feature importance
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1. Introduction

Worldwide, urbanization has led to an intensification of anthropogenic

activities accompanied by an increase in impervious surfaces (Egodawatta

et al., 2009; Dams et al., 2013; Guan et al., 2015). During a precipitation

event with a particular duration and intensity, the first portion of the runoff

contribution washes away such impervious surfaces, generating wastewater

that is more concentrated in pollutants (Di Modugno et al., 2015; Liu et al.,

2016). The so-called "first flush" (FF) has been recognized as a typical

phenomenon of urban areas since it represents one of the most critical non-

point source pollutions. Therefore, it can negatively impact the quality of
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receiving water bodies (Gorgoglione et al., 2021). Hence, the analysis and

control of urban stormwater runoff have become key factors to protect surface

water quality.

Consequently, model simulation and assessment represent a critical proce-

dure to estimate the strength of the FF effect in urban areas and understand

its characteristics. With this aim, complex physically-based models with

high resolution have been developed (i.e., SWMM, InfoWorks, STORM).

Overall, they show good performance in predicting pollutant concentration

(Gorgoglione et al., 2016; Hur et al., 2018), but their application is limited by

data availability (Rodríguez et al., 2021). In fact, they require meteorolog-

ical data, information about catchment and drainage system characteristics

as input. Recently, data-driven models, such as machine-learning models,

have been attractive alternatives, particularly for those regions characterized

by data scarcity, since they are more flexible, "quick learners," and they per-

form better in multi-source data prediction (Sun and Scanlon, 2019). Among

such models, random forest (RF) has been widely adopted to tackle environ-

mental matters (Creaco et al., 2016; Jeung et al., 2019; Perera et al., 2019;

Wang et al., 2021). It is an ensemble learning method based on decision trees

("weak learners") used for both classification and regression. Therefore, it

has the capability not only to predict whether a rainfall event would generate

FF but also, in case it does, to predict the exact pollution charge. However,

machine-learning-model outcomes should always be interpreted with extra

care since they do not have any knowledge about the mechanistic processes

they are simulating.

The dynamic and random nature of urban runoff quality is demonstrated
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to be driven by multiple variables (features) (Gorgoglione et al., 2020a). Nu-

merous studies have been undertaken to quantify such relationships. Li and

Barrett (2008), Lee et al. (2011), and Gorgoglione et al. (2019b) have demon-

strated that the FF phenomenon is particularly influenced by the antecedent

dry period (ADP ), total rainfall (TR), and runoff volume (RV ), among the

rainfall-runoff variables, and by the percentage of impervious area and the

watershed slope, among the catchment characteristics. Gnecco et al. (2005)

and Kang et al. (2006) have also highlighted the importance of maximum

rainfall intensity (Imax) and rainfall duration (D) for FF occurrence. On

the other hand, recently, Perera et al. (2019) demonstrated that total rain-

fall depth has the highest importance in FF prediction, while ADP and

impervious area fraction have relatively low influence. As far as we know,

the feature-importance analysis carried out in previous studies is limited

to feature-importance quantification, which can lead to biased findings de-

pending on the model adopted ("model biased") since it is not able to gain

deep insights into the processes of complex models. Compared with other

methods, Shapley Additive exPlanations (SHAP), including a new class of

additive feature-importance measures, presents enhanced computational per-

formance and a better alignment with human interpretation (Lundberg and

Lee, 2017). For these reasons, lately, SHAP has been considered a power-

ful model-interpretation technique adopted in several studies (Zhong et al.,

2021; Padarian et al., 2020; Cross et al., 2020; Uusitalo et al., 2015; Wang

et al., 2021).

Based on these considerations, the objective of this study is to develop

a stormwater management framework able to: i) predict the FF occurrence,
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taking into account rainfall-runoff variables; ii) in case a precipitation event

generates FF for a particular pollutant, predict the FF intensity; and iii) rank

and interpret the rainfall-runoff variables in terms of their level of importance

in predicting FF with a non-model-biased method, as SHAP (feature impor-

tance analysis).

The findings of this study are expected to contribute to the development

of accurate and reliable stormwater-quality models in areas characterized by

data scarcity, and, therefore, generate effective stormwater treatment design.

2. First flush definitions

In the last decades, several researchers have studied the FF phenomenon

(Sartor et al., 1974; Alley and Smith, 1981; Egodawatta et al., 2007), and

its definition is still a topic subject to debate. In the literature, numerous

formulations have been proposed to assess the FF occurrence. Saget et al.

(1996) stated that an event generates FF when at least 80% of the pollutant

load is washed off by the first 30% of the runoff volume. Helsel et al. (1979),

followed by Geiger (1984), introduced a dimensionless representation of the

phenomenon. This representation, known asM(V ) curve, consists of drawing

the curve that gives the variation of the cumulative pollutant load (
∑
Mi)

divided by the total pollutant load (M) in relation to the cumulative volume

(
∑
Vi) divided by the total volume (V ). Given n measurements of flow rate

Qi and concentration Ci with a time interval (∆ti), and by assuming that

Qi and Ci vary linearly between two measurements, the M(V) curve can be

defined as follows (1, 2) Bertrand-Krajewski et al. (1998):
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M(t) =

∑n
i=1CiQi∆ti

M
=

∑
Mi

M
(1)

V (t) =

∑n
i=1Qi∆ti
V

=

∑
Vi
V

(2)

Even though this method was useful for comparing pollutant mass with

the corresponding flow rate of different rainfall events, Helsel et al. (1979)

and Geiger (1984) simply defined FF occurrence when the M(V) curve lies

above the 1:1 line, representing an excessive pollutant discharge in the first

portion of the runoff event. Bertrand-Krajewski et al. (1998) improved such

M(V) curve definition by introducing four classes of FF intensity. It is known

that every M(V) curve can be fitted approximately by a power function

(Di Modugno et al., 2015):

M(t) = V (t)b (3)

where the coefficient b can be obtained as follows:

b =
lnM(t)

lnV (t)
(4)

FF intensity varies depending on the b value. Four classes of FF intensity

can be identified (Table 1 and Figure 1).

In this study, both the 30/80 and the improved M(V) curve methods

were considered to define FF. In this way, we will also test the performance

of the stormwater management framework in a two-class scenario (30/80)

and in a multiclass one (M(V) curve).
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Table 1: M(V) curve first flush definition: four classes of first flush intensity.

# Class Intensity b values

0 no FF b > 1

1 weak FF 0.862 < b ≤ 1

2 medium FF 0.185 < b ≤ 0.862

3 strong FF 0 < b ≤ 0.185

Figure 1: Four classes of first flush intensity defined by b coefficients.
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3. Materials and Methods

3.1. Study area

An urban residential watershed located in Southern Italy, Sannicandro di

Bari (SB), was selected as the study site (Figure 2). It has a surface equal

to 31.24 ha, an average slope equal to 1.56%, and its average elevation is 169

m above sea level. The land-use information of this area was obtained from

the land use map of 2011 downloaded from SIT.Puglia (2021). 70% of the

entire catchment is covered by impervious surfaces (e.g., streets, roofs), while

green areas cover only 3.80% of the watershed (e.g., gardens, parks). From

the climatic point of view, the study site is characterized by a mean annual

temperature equal to 15.0 °C and a mean annual rainfall equal to 586 mm.

The entire stormwater drainage network is 1.96 km long. It collects runoff

into a concrete rectangular channel (dimensions: 1.20 m × 1.70 m), whose

discharge is represented in Figure 2 (equipment location).

3.2. Data collection

The dataset adopted in this study includes three data sources: observa-

tions, simulations, and generations. In the following sections, an in-depth

description of each of them is provided.

3.2.1. Observation subset

Hereafter, we will call "observations" those five events monitored at SB

with complete rainfall, runoff, and water quality records. The monitoring

station, whose location is represented in Figure 2, consisted of a rain gauge

(ISCO 674 model) to record the precipitation, a bubble flowmeter (ISCO 730

model) to monitor flow rate, and an automatic sampler with 24 bottles of
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Figure 2: Urban study site with its drainage network and equipment location.

0.5 L each to measure water quality. The latter was evaluated with the stan-

dardized methods reported in Baird et al. (2017). A detailed description of

the data-collection process and the equipment used can be found in Di Mod-

ugno et al. (2015). A total of five rainfall-runoff events were monitored: 10

Nov 2006, 22 Nov 2006, 1 Dec 2006, 24 Jan 2007, and 10 Feb 2007. The

water-quality variables considered for this study were total suspended solids

(TSS), total nitrogen (TN), and total phosphorus (TP). This is justified by

the fact that nitrogen and phosphorus are the main nutrients presented in

urban wash-off (Gorgoglione et al., 2021; Yang and Lusk, 2018), and their

adsorption to sediment particles or loose soil is the primary form by which

their offsite movement takes place; therefore, TSS were also considered for

this study. A summary of the observed rainfall-runoff events (antecedent dry

9



Table 2: Summary of the rainfall-runoff information of the observation subset.

Event ADP (days) TR (mm) ED (min) Imax (mm/h) Iave (mm/h) RV (m3) RP (m3/s)

10 Nov 2006 6 2.4 50 24 0.94 113.49 0.04

22 Nov 2006 11 4.3 112 6 1.10 148.86 0.04

1 Dec 2006 18 5.9 251 12 0.93 286.88 0.05

24 Jan 2007 19 1.6 37 12 0.76 111.62 0.05

10 Feb 2007 6 12.9 398 36 1.57 460.11 0.05

period (ADP ), total rainfall (TR), event duration (D), maximum rainfall

intensity (Imax), average rainfall intensity (Iave), runoff volume (RV ), runoff

peak (RP )) with the corresponding water-quality data (minimum, maximum,

event mean concentration (EMC), event mean load (EML)) are reported

in Tables 2 and 3, respectively. The following equations were adopted to

calculate EMC and EML (Gorgoglione et al., 2018, 2021):

EMC =

∑n
i=1CiVi
V

(5)

EML =
n∑

i=1

CiVi = EMC · V (6)

where Ci is the average pollutant concentration at time step i [mg/L],

Vi is the runoff volume during time increment i [L], V is the total runoff

volume per event [L], and n is the total number of samples collected during

a precipitation event.

3.2.2. Simulation subset

Thereafter, "simulations" will be those events characterized by recorded

rainfall (precipitation data described in Section 3.2.1) and simulated dis-

charge and water quality. The Storm Water Management Model (SWMM)
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Table 3: Summary of the water-quality information of the observation subset.

Event
TSS TN TP

min

(mg/L)

max

(mg/L)

EMC

(mg/L)

EML

(kg)

min

(mg/L)

max

(mg/L)

EMC

(mg/L)

EML

(kg)

min

(mg/L)

max

(mg/L)

EMC

(mg/L)

EML

(kg)

10 Nov 2006 224.0 420.0 19.54 21.32 7.0 8.3 0.47 0.59 0.70 1.00 0.05 0.06

22 Nov 2006 124.0 2160.0 86.40 231.44 3.6 14.0 0.45 1.73 0.24 2.96 0.11 0.25

1 Dec 2006 6.0 217.0 6.04 51.00 - - - - - - - -

24 Jan 2007 177.0 807.0 47.96 73.66 5.4 10.0 0.48 0.91 0.65 0.99 0.03 0.07

10 Feb 2007 541.0 2090.0 40.00 410.06 6.3 13.0 0.25 2.42 2.08 3.63 0.08 1.02

was adopted for water quantity and quality simulations (Rossman, 2015).

SWMM was successfully implemented, calibrated, and validated at SB in our

previous work (Di Modugno et al., 2015). For this study, the five observed

precipitations, along with the drainage and watershed characteristics, were

the input of the SWMM model. Therefore, a total of five simulations were

obtained, simulated flow rate and pollutant concentration were collected and

constituted the simulation subset. Further information about the adopted

model and how it simulates pollutant build-up/wash-off and transport pro-

cesses are reported in the Supplementary Materials.

3.2.3. Generation subset

From now on, we will call "generations" those events characterized by

synthetic rainfall, obtained by the Iterated Random Pulse (IRP) model (de-

veloped by Veneziano and Iacobellis (2002)), and simulated flow rate and

pollutant concentration, produced by SWMM model. Specifically, the IRP

model was implemented at SB catchment and it generated a 15-year-long

rainfall time series with 15 minutes of aggregation. Based on the regional

regulation (RegionePuglia, 2013), a criterion of 48 h of ADP was adopted

to identify single rainfall events. As a result, 567 synthetic precipitation
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events were detected and used as input of the calibrated SWMM model to

simulate the correspondent discharge and pollutant concentration (TSS, TN,

and TP). A thorough description of the IRP model and its implementation

in the study area can be found respectively in Veneziano et al. (2002) and

Gorgoglione et al. (2016, 2019b).

It is important to highlight that SWMM and IRP models are exploited in

this study as data generators. The objective is to build a proper dataset to

assess the management framework capability in predicting the FF occurrence

along with its intensity. As mentioned before, both models were properly

validated for the study area in our previous works (Di Modugno et al., 2015;

Veneziano and Iacobellis, 2002).

3.3. Data analysis

Prior to model implementation, the exploratory data analysis (EDA) was

carried out (whose results are reported in section 4.2). It had the objective of

detecting possible outliers, understanding the pollutant behavior in our study

area, and selecting appropriate rainfall-runoff characteristics for model devel-

opment with the aim of preventing correlated variables from overshadowing

critical relationships between rainfall-runoff characteristics and the FF phe-

nomenon (Gorgoglione et al., 2018). To compute EDA, the Python package

pandas-profiling was used. Since the processes under study are non-linear, we

adopted the Spearman index to evaluate the existence of correlations among

the variables taken into account. For confirming and/or adding extra infor-

mation, the Kendall and Phik indices were computed as well. A description

of these three indices is provided in the Supplementary Materials. Correla-

tion coefficients can be plotted in a correlation heatmap, a graph in which
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variables are associated pairwise and the strength of each correlation is rep-

resented by the darkness of the color: the darker the color, the higher the

correlation (closer to 1 or -1).

Furthermore, prior to model development, we normalized the input vari-

ables to deal with their different measurement-units scale and give equal

weight to each of them (Gorgoglione et al., 2020b). Since no outliers were

detected in our dataset and all input variables were positive, the MinMaxS-

caler class from the sklearn.preprocessing package was used for min-max nor-

malization, which brings all the variables to the interval [0, 1].

3.4. Random forest classifier

RF is a supervised learning algorithm able to represent non-linear rela-

tionships (Breiman, 2001). It is an ensemble method, i.e., it is composed of

many weak learners (decision trees) that are used to predict a class (classi-

fication) or a value (regression). Its response is the most predicted class in

case of classification, or the average of the predicted values in case of regres-

sion. This study will exploit the RF capability as a classifier, using a random

forest classifier (RFC).

To reduce model variance, ensemble algorithms like RF, use bootstrap

aggregating (bagging) methods (Breiman, 1996). Such methods build several

instances of random subsets of the original training set and then aggregate

their individual predictions to form a final prediction. Furthermore, when

building such instances, RF also randomizes the set of model features. By

randomizing the construction procedure of the weak learner and then making

an ensemble out of it, model variance is reduced. The injected randomness

decouples the prediction error of individual weak learners. By taking an
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average of those predictions, some errors can cancel out. For this reason,

bagging methods work best with strong and complex models (RF vs. decision

tree) (Breiman, 2001).

The occurrence of FF and its intensity were predicted using RFCs. Par-

ticularly, the occurrence (two classes: no and yes FF) was predicted with

both FF definitions (30/80 and M(V) curve), while the intensity was pre-

dicted with the M(V) curve classification (four classes: no, low, medium,

and strong FF) (Table 1). Both FF definitions were considered and an-

alyzed independently. For each of them, the three pollutants (TSS, TN,

and TP) were considered individually, for a total of six RFCs. The Python

class sklearn.ensemble.RandomForestClassifier, from the sklearn package Pe-

dregosa et al. (2011), was used for the implementation of the RFC algorithm.

3.5. Model cross-validation and testing

The RFCs were cross-validated with 75% of the rainfall-runoff events

(training set) and then tested using the remaining 25% of the dataset (testing

set). The two subsets were randomly selected for the two processes (cross-

validation and testing) with the aim of minimizing the potential bias that

may be introduced in the model assessment.

We randomly divided data into k groups (folds) of approximately equal

size for running the cross-validation process. The first fold is used as the

validation set and the rest as the training set. Then repeat k times and find

the average of the k loss-function values. Considering the input matrix, we

adopted 5-fold cross-validation.

During cross-validation, a hyperparameter tuning process that aims at

obtaining a reliable model is executed. In general, exploring the entire
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hyperparameter-domain space is not feasible; therefore, several methods that

use sampling and/or heuristics are employed. We used the open-source

Python library Optuna for hyperparameter optimization, which aims to bal-

ance the sampling and pruning algorithms. In Akiba et al. (2019), authors

introduced it under a new design constituted by three criteria: i) define-

by-run programming, which allows the user to construct the search space

in a dynamic way; ii) efficient implementation, which focuses on the opti-

mal functionality of sampling strategies as well as pruning algorithms; iii)

easy-to-setup, versatile architecture that can be deployed for several types

of tasks. Optuna is also framework agnostic, i.e., it can be easily integrated

with any of the machine learning frameworks (e.g., Scikit-Learn).

In this study, we considered the following hyperparameters for model

cross-validation: i) the number of decision trees in the forest (n_estimators),

ii) the maximum depth of each tree in the forest (max_depth), iii) the maxi-

mum number of features that a tree can consider (max_features). n_estimators

is related to the bagging process by controlling the number of instances in

the ensemble. max_depth controls the decision-tree growth: the deeper the

tree, the more splits it has and it captures more information about the data.

max_features is related to the randomization of model features and repre-

sents the number of features to consider when looking for the best split.

To prevent over-fitting, a regularization mechanism was applied to RF.

Most regularization parameters prune the trees with different rules. In this

case, the parameter used for pruning was max_depth.

After identifying the best hyperparameters for the forest, the final scoring

was calculated by exploiting a new RF on the training dataset using the best
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hyperparameters found and evaluating it on the testing dataset.

To evaluate the learner’s performance, two loss functions were used. In

a classification problem, the accuracy is defined as the number of correctly

classified samples (i.e., true positives (TP ) and false negatives (FN)) divided

by the total number of samples (TOTs) (Eq.7). This value represents the

percentage of correctly classified samples. It gives an immediate and intuitive

representation of how the model behaves.

accuracy =
TP + FN

TOTs
(7)

A more informative value that behaves well even in the case of unbalanced

classes is the F1 score, defined as follows (Eq. 8):

F1score =
1∑

l∈L |ŷl|
∑
l∈L

|ŷl|F1(yl, ŷl) (8)

where L is the maximum number of classes (l), y and ŷ represent the

observed and predicted values respectively, yl and ŷl are the subset of y and

ŷ that belong to the class l, and F1 is defined as follows (Eq. 9):

F1 = 2 ∗ P ∗R
P +R

(9)

where P is the precision (Eq. (10)) and R is the recall (Eq. (11)). In

both Eqs. (10) and (11), TP is the number of true positives, FP the false

positives, and FN the false negatives.

P =
TP

TP + FP

(10)

R =
TP

TP + FN

(11)
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The F1 score was used as the objective function and the accuracy was

computed for validation. F1 score ranges between [0, 1], the closer to 1, the

better the model.

We used stratified and uniform models as baselines. The stratified model

generates predictions by respecting the training set’s class distribution; the

uniform model returns predictions uniformly at random.

3.6. Feature-importance analysis

SHAP was adopted to carry out the feature-importance analysis (Lund-

berg and Lee, 2017). It is based on the cooperative game theory solution,

Shapley Values (Shapley, 1997). The SHAP objective is to explain the pre-

diction of an instance by computing the contribution of each feature to the

prediction. SHAP is, therefore, a technique for estimating the expected

marginal contribution of a factor among all possible contributions. In this

study, we selected SHAP over the given feature importance calculated by RF

because i) it not only provides the contribution of each predictor but is also

able to compute the positive or negative relationship of each variable with

the output; ii) it is not "model biased," i.e., it can be calculated for any

machine-learning classification and regression model, allowing a fair compar-

ison among different models; iii) several studies on environmental matters

have recently proved its efficiency (Padarian et al., 2020; Uusitalo et al., 2015;

Zhong et al., 2021; Cross et al., 2020).

To run this analysis, the SHAP python package was used.

The stormwater management framework implemented in this study is

summarized in the flowchart reported in Figure 3. The first-flush analysis,

modeling, and feature-importance study were conducted using an Intel core
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i7 10th generation, 32GB RAM DDR4, and 1TB SSD.

4. Results

4.1. First flush analysis

An initial FF analysis was conducted to identify whether the 577 events

(observations + simulations + generations) generate or not FF on the basis

of the two definitions adopted in this study. For each event, this was done

for TSS, TN, and TP separately. As for the 30/80 classification, the result

of this analysis is binary: "FF yes" or "FF no," if the event generates or

does not generate FF, respectively. While, for the M(V) curve definition, the

outcome is one of the four classes represented in Table 1, which, not only

informs about the occurrence of FF but also, specifies its intensity (weak,

normal, strong) in case of FF existence. The output of this FF analysis will

be used as ground truth for the training/testing process of RFC.

In Figure 4, we reported the class distribution for 30/80 and M(V) curve

FF definitions. A class imbalance characterizes the dataset for both FF

classifications. In the 30/80 FF, for TSS and TP, almost 30% of the events

generates FF, while for TN, almost 70% of the events produces FF. For the

M(V) curve definition, Class 2 (medium FF) is the most populated one for

TSS (59%) and TP (72%), while the second most populated for TN (42%)

after Class 3 (strong FF) (52%); Class 1 (weak FF) is the least populated

for the three pollutants (8% for TSS, 1% for TN, 9% for TP).

4.2. Exploratory data analysis

The data matrix (577x13) was the input for the EDA, where 577 are the

rainfall events (observations + simulations + generations), and 13 are the
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Figure 3: Flowchart of the stormwater management framework implemented in the study.
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(a) TSS - 30/80 (b) TN- 30/80 (c) TP - 30/80

(d) TSS - M(V) curve (e) TN - M(V) curve (f) TP - M(V) curve

Figure 4: Sample distribution per FF class for 30/80 (a, b, c) and M(V) curve (d, e, f)

FF definitions.
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rainfall-runoff and water quality variables (ADP , TR, RV , RP , D, Iave,

Imax, EMCTSS, EMCTN , EMCTP , EMLTSS, EMLTN , and EMLTP ).

The EDA revealed significant correlations among the input/output vari-

ables. This information was not only used for gaining useful insights about

the pollutant behavior in our study area (output variables), but also for ex-

cluding some of the input variables for the modeling part to reduce model

complexity and to prevent them from overshadowing critical relationships

between rainfall characteristics and the wash-off process.

In Figure 5, the correlation heatmap calculated with Spearman coefficient

is represented. In this regard, two variables were considered to be signifi-

cantly correlated if the Spearman coefficient was grater than 0.95 (p− value

= 0.05). As for the input variables, TR and RV showed the highest direct

correlation (0.99), followed by Imax and RP (0.97). Other strong relation-

ships that confirm the previous ones are between Imax and Iave (0.90), Iave

and TR (0.89), Iave and RP (0.88), Iave and RV (0.88). However, the latter

are lower than 0.95. Based on these results, the variables TR and Imax were

excluded from the modeling process since they are respectively represented

by RV and RP .

As for the output variables, interesting insights were revealed. A high in-

verse correlation was detected between EMLTN respectively with TR (-0.84)

and RV (-0.84). While, EMLTSS and TP show direct strong relationships

with TR (0.83 and 0.82 respectively) and RV (0.83 and 0.82 respectively).

It can be observed that, in our study area, TP has a higher particle-bound

component than TN, which, instead, tends to reduce its concentration when

precipitation and, therefore, runoff increase (dilution process). Moreover, the
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Figure 5: Correlation heatmap computed with Spearman coefficient.

amount of TSS in stormwater is determined by weathering or displacement

processes (high-energy processes) that mobilize suspended solids and make

them available to be washed off. Therefore, the higher TR and RV , the

greater EMLTSS.

Further correlation results obtained from other non-linear coefficients,

Kendall and Phik, confirmed the relationships found in Figure 5. These

correlation heatmaps are reported in Appendix B.

4.3. Classification of first flush events

Six classifiers were independently developed (2 FF definitions × 3 pollu-

tants). For each of them, the matrix (577 x 6) was the input, where 577 are

the rainfall events and 6 are the input/output variables (five inputs: ADP ,

RV , RP , D, Iave; one of the output: FF TSS 30/80, FF TN 30/80, FF TP
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30/80, FF TSS M(V), FF TN M(V), FF TP M(V)).

As mentioned earlier, the input/output variables were min-max normal-

ized to deal with the different order of magnitudes and avoid biased model-

ing results. Afterward, the RFCs were cross-validated by using 75% of the

dataset (training dataset). Three hyperparameters were tuned during the

model cross-validation: n_estimators, max_features, max_depth. The range

of variation and the values chosen for these parameters are shown in Table 4.

Since n_estimators control the number of trees in the forest, a high value of

this hyperparameter was chosen for all the classifiers to reduce the variance of

the ensemble models (n_estimators > 1000). To improve the generalization

capability of the algorithms, we wanted to prevent fully grown trees by keep-

ing good model performance. Therefore, we chose low max_depth values.

By only considering a random subset of features in each tree, the entropy of

the forest increases, further reducing the variance. This is the reason why

the max_features hyperparameter is generally lower than the total number

of variables.

5-fold cross-validation, run in the Optuna framework, was adopted for the

hyperparameter optimization, using the F1 score as the objective function.

The average F1 score of the five experiments was returned as the final result.

The Optuna was set up to maximize the objective function, performing 500

experiments with early stopping of 100 runs in case the F1 score was not

improved. The six best classifiers found were then tested with the remaining

25% of the data (testing dataset). The correspondent results are reported in

Table 5.

For the three pollutants and both FF definitions, the F1 score and accu-
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Table 4: Hyperparameter optimization and best values chosen.

Hyperparameter Description Range of variation FF definition Pollutant Value chosen

n_estimators The number of trees in the forest. [1,+∞)

30/80

TSS 1900

TN 1200

TP 1800

M(V) curve

TSS 1400

TN 1700

TP 1500

max_features
The number of features to consider when

looking for the best split.

[1, n]

with n = # of input

variables (5 in our

case)

30/80

TSS 3

TN 5

TP 4

M(V) curve

TSS 4

TN 2

TP 4

max_depth
The maximum depth that each tree is

allowed to reach.

[1,m]

with m = # of dataset

samples (577 in our

case)

30/80

TSS 6

TN 4

TP 8

M(V) curve

TSS 16

TN 6

TP 28

Table 5: RFCs results for 30/80 and M(V) curve FF definitions, for TSS, TN, and TP.

FF definition Pollutant
Baselines Results

F1 score

stratified

Accuracy

stratified

F1 score

uniform

Accuracy

uniform
F1 score Accuracy

30/80

TSS 0.24 0.60 0.33 0.48 0.79 0.88

TN 0.63 0.50 0.65 0.57 0.92 0.89

TP 0.32 0.67 0.32 0.48 0.71 0.83

M(V) curve

TSS 0.42 0.42 0.27 0.23 0.65 0.67

TN 0.42 0.41 0.31 0.23 0.83 0.83

TP 0.59 0.58 0.24 0.19 0.73 0.75
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racy are higher than those obtained if the stratified and uniform predictors

were used (baselines). Overall, all the predictions were very satisfactory

(accuracyaverage = 0.87 for the 30/80 FF definition, accuracyaverage = 0.75

for the M(V) curve FF definition). Slightly lower performance was found for

the M(V) curve classification compared to the 30/80 one due to the class

imbalance detected (Figure 4).

4.4. Feature importance for classification model

Based on the best RFC models, the SHAP values were computed for

the input variables of each model, and the key features for predicting FF

occurrence were identified. Figure 6 shows the feature ranking for the three

pollutants and for the 30/80 and M(V) curve FF definitions. The different

colors in Figure 6 depict the classes described in section 2 and represented

in Figure 4.

Based on the mean absolute SHAP values, it is important to remark that,

independently from the FF definition adopted and the pollutant considered,

Iave is always the most important or among the most significant predictors

of FF occurrence. In particular, it is the most critical predicting variable

for TSS and TP FF, followed by RP for TSS (30/80) and by D for TP (for

both definitions) and for TSS (M(V) curve). In comparison, D is the most

significant predictor in TN FF occurrence, followed by ADP (30/80) and

Iave (M(V) curve). For TSS and TP, ADP is the least important variable

for model prediction for both FF definitions, along with RP only for M(V)

curve definition. While, for TN, RP always has the lowest importance.

It is essential to highlight that each variable has a different weight on each

class, particularly for M(V) curve FF definition. This may be affected by the
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data distribution in each class (Figure 4). In any case, Class 2 (medium FF)

is always well represented for the three pollutants. Class 0 (no FF) is also

well characterized for TSS and TP; while Class 3 (strong FF) is also well

pictured for TN.

It is worth remarking that sediments transport plays a critical role in

the TP mobilization from impervious surfaces at our study area. This is

justified by the fact that the same rainfall-runoff variables influence TSS and

TP FF prediction. TN shows a different behavior from TSS, confirming its

low particle-bound component. These results confirmed the ones obtained

with the EDA.

5. Discussion

5.1. Model performance

The first contribution introduced by this study is represented by the pre-

diction of FF intensity (weak, medium, strong) based on the M(V) curve

definition. The average accuracy for the three pollutants under study is

equal to 75% for the six RFCs. Such level of accuracy is a good step for-

ward, considering that the current approach for predicting pollutant FF is

based on a graphical representation. Therefore, FF classes have respectively

25% accuracy in prediction considering the four classes defined by the M(V)

curve FF definition, or 50% accuracy regarding the 30/80 FF definition (two

classes). Furthermore, Perera et al. (2019) found an accuracy of 71% for

predicting TSS FF occurrence in a two-class scenario (FF yes or FF no).

We were able to improve such prediction reaching an accuracy of 88%. An-

other aspect to take into account is the comparison of data requirements for
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(a) TSS - 30/80 (b) TN - 30/80

(c) TP - 30/80 (d) TSS - M(V) curve

(e) TN - M(V) curve (f) TP - M(V) curve

Figure 6: SHAP values for 38/80 FF definition: (a) TSS, (b) TN, and (c) TP, and for

M(V) curve FF definition: (d) TSS, (e) TN, and (f) TP.
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RF with a classical physically-based model, such as SWMM. The SWMM

inputs include rainfall and other meteorological data, catchment characteris-

tics, and drainage system information along with storage/treatment system

characteristics. The inputs of the RF models implemented in the manage-

ment framework simply include rainfall-runoff variables. Based on SHAP

outcomes, considering that rainfall variables are the most significant predic-

tors of pollutant FF occurrence, it may be possible that RF model inputs can

be limited to rainfall characteristics without significantly decreasing model

performance.

5.2. Influencing variables for FF prediction

This study also identified and quantified the most important variables in

predicting sediment and nutrient FF in urban areas by adopting a non-model

biased method. Such capability of SHAP was demonstrated by the fact that,

independently from the FF definition (30/80 or M(V) curve) used, the re-

sults yielded were very similar. In fact, it was found that Iave was always the

most important predictor of TSS and TP FF occurrence. In contrast, D was

the most critical predictor for TN FF. The latter was also proved by Jeung

et al. (2019), who stated that TN showed a strong correlation with rainfall

duration, but the range in importance rate was wider than the ones found

for the other variables. Therefore, the correlation TN-rainfall characteristics

always requires further research compared to other pollutants. Numerous

studies also demonstrated that there is a higher correlation between rainfall

characteristics (more than runoff characteristics) and TSS and TP FF ex-

istence. Perera et al. (2019) found that TSS FF was mainly influenced by

rainfall depth and maximum rainfall intensity. Jeung et al. (2019) proved
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the strong relationship existing between rainfall intensity and TSS and TP

concentration. Despite the low SHAP values of ADP , confirmed by several

authors (Perera et al., 2019; Jeung et al., 2019), the impact of such variable

cannot be neglected since its influence on pollutant FF has been proved in

past researches (Lee et al., 2011; Sartor et al., 1974; Gorgoglione et al., 2019a)

and it was then found for the EMLTN prediction.

5.3. Environmental management applications

The stormwater management framework developed in this study repre-

sents the first step towards a robust mathematical FF definition, which is

still a topic under debate. The current approach for predicting pollutant FF

is based on a graphical representation that adopts hydrograph and poluto-

graph referred to the same rainfall event. This work provides new insights

into FF prediction, adopting a new management framework based on RF and

rainfall-runoff characteristics. It is important to highlight that the dataset

used for this study was properly built to test the application of the frame-

work developed. Even though it is based on data from our case study, the

framework can be applied to other geographical regions with a complete

rainfall-runoff dataset. Therefore, the management framework developed is

generic and independent from the data adopted in this study. The outcomes

of this study are expected to contribute to accurate FF predictions, which

can be exploited for the design of treatment systems aimed to store and treat

the FF-runoff volume. This approach can aid in reducing the space required

and, therefore, the correspondent construction and maintenance costs.
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6. Conclusions

This study developed a stormwater management framework based on the

RF algorithm and two different FF definitions (30/80 and M(V) curve). Such

framework was able to predict rainfall events that generate FF and, in case

they produce FF, it can also predict its intensity. The framework was devel-

oped for TSS, TN, and TP. Normalized rainfall-runoff variables were consid-

ered as model input, including ADP , RV , RP , D, and Iave. For the three

pollutants and for both FF definitions, the predictions were very satisfactory

(accuracyaverage = 0.87 for the 30/80 FF definition, accuracyaverage = 0.75

for the M(V) curve FF definition).

Furthermore, exploiting a non-model biased method (SHAP), the frame-

work ranked the model input variables to investigate their importance in

predicting pollutant FF. It was found that Iave was always the most critical

predictor of TSS and TP FF occurrence. While D was the most critical

variable for TN FF. For TSS and TP, ADP is the least important variable

for model prediction for both FF definitions. For TN, RP always has the

lowest importance. These outcomes show that, in our study area, sediment

transport plays a key role in the TP mobilization from the impervious por-

tion of the watershed. Furthermore, the results also highlight that, instead of

studying the role of an individual variable, analyzing the interactions among

variables can return more robust predictions.

This study demonstrated the potential of the stormwater management

framework developed as a tool to estimate FF and help to better understand

stormwater quality processes in urban areas. Since computing resources and

algorithms have quickly advanced in the last decade, machine learning meth-
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ods are expected to be more frequently adopted in hydro-environmental stud-

ies particularly when a rapid analysis and solution are required with a limited

number of observations.

7. Research data and software availability

The stormwater management framework developed for this work is freely

available at https://gitlab.com/fing-hydroinformatics/first-flush-rfc.

It was implemented in Phyton3 using Conda (two scripts, one for Linux and

one for Windows, can be found to generate the software environment with

all its requirements). This framework can be run in any general-purpose

computer.

The water quality dataset described in this article can be accessed from

https://gitlab.com/fing-hydroinformatics/first-flush-rfc/-/tree/

main/data.
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Appendix A. Supplementary Materials

Appendix A.1. SWMM model description and implementation

SWMM simulates the hydrograph and pollutograph for a real storm event

(for a single and long-term event) based on the rainfall and other mete-

orological inputs, and system characteristics (catchment, conveyance, and

storage/treatment) for urban and peri-urban watersheds. SWMM has been

designed in blocks or operating units. Each block can be used individually

or in a cascade, and an executive block coordinates its outputs. The runoff

block, as well as the transport block, were utilized for this study. By using in-

let hydrographs generated from the runoff unit, the transport block executes

the flow and pollutant routing through the drainage network.

To simulate the runoff from urban surfaces, the kinematic-wave equation

was chosen. Furthermore, the water losses taken into account were repre-

sented by the depression storage on the impervious portion of the watershed

and the infiltration process. The latter was modeled by evaluating, for each

subcatchment, the percentage of the impervious and pervious area obtained

from the land-use map. The infiltration model adopted in this work was

based on Horton’s equation, whose parameter values have been chosen ac-

cording to the representative values reported in the literature in relation to

soil type. Eight parameters of the runoff block of SWMM were used to cal-
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ibrate the hydraulic-hydrologic model: the depth of depression storage on

impervious (Dstore − Imperv) and pervious (Dstore − Perv) portions of

the subcatchment, Manning’s coefficient for overland flow over the impervi-

ous (N−Imperv) and pervious (N−Perv) portions of the subcatchment, the

percent of the impervious area without depression storage (%ZeroImperv),

and the infiltration parameters of Horton’s equation.

Pollutant build-up within a land-use category is described by a mass per

unit of subcatchment area. The amount of build-up is a function of the

number of dry weather days antecedent to the rainfall event. The build-up

function follows a growth law that asymptotically approaches a maximum

limit:

Ma(dadp) =
Accu

Disp
· A · Pimp(1− eDisp·dadp) (A.1)

where Ma(dadp) represents the pollutant build-up during the antecedent

dry period [kg/ha]; Disp is the parameter that measures the disappearance

of accumulated solids due to the action of wind or vehicular traffic [1/d];

Pimp is the impervious area fraction; Accu the parameter that characterizes

the solids build-up rate [kg/(ha d)]; Accu
Disp
· A · Pimp presents the maximum

asymptotic limit of the build-up curve. The pollutant wash-off over different

land uses takes place during wet periods, and it is described by the differential

equation:

dMd(t)

dt
= −Arra · i(t)wash ·Ma(t) (A.2)

where dMd(t)
dt

is the wash-off load rate [kg/h]; Arra is the wash-off coeffi-

cient [mm−1]; i(t) is the runoff rate [mm/h]; wash is the wash-off exponent,
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a parameter that controls the influence of rainfall intensity on the amount

of leached pollutants. Four parameters of the runoff block were identified

for the calibration of the water-quality model. For the build-up function:

the parameter that characterizes the solids build-up rate (Accu) and the pa-

rameter that identifies the disappearance of accumulated sediments due to

the wind or vehicular traffic (Disp). For the wash-off function: the wash-off

coefficient (Arra) and the wash-off exponent (wash).

Appendix A.2. Exploratory data analysis: indices and results

Spearman, Kendall and Phik coefficients are able to capture non-linear

correlations. Spearman exploits monotonicity, while Kendall measures ordi-

nal associations. Both coefficients have values in domain [−1, 1], where -1

indicates a perfect negative correlation, +1 a perfectly positive correlation,

and 0 no correlation. The formulas are defined in equations A.3 and A.4,

respectively.

ρ = 1− 6
∑
d2i

n(n2 − 1)
(A.3)

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

) (A.4)

For Spearman’s ρ, di is the difference between the two ranks of each

observation, and n is the number of observations. For Kendall’s τ , the

definition of concordant and discordant pairs is needed: a pair of values

(xi, yi), (xj, yj), i < j is concordant if xi < xj and yi < yj or if xi > xj and

yi > yj.
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Figure A.7: Correlation heatmap computed with Kendall coefficient.

The Phik coefficient Baak et al. (2020) is also a non-linear correlation co-

efficient that was refined to work consistently with continuous and categorical

variables.

The corresponding correlation heatmaps are reported in Figures A.7 and

A.8
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Figure A.8: Correlation heatmap computed with Phik coefficient.
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