loading page

Growth and global persistence of stratospheric sulfate aerosols from the 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption
  • +10
  • Marie Boichu,
  • Raphael Grandin,
  • Luc Blarel,
  • Benjamin Torres,
  • Yevgeny Derimian,
  • Philippe Goloub,
  • Colette Brogniez,
  • Isabelle Chiapello,
  • Oleg Dubovik,
  • Théo Mathurin,
  • Nicolas Pascal,
  • Maximilien Patou,
  • Jérôme Riedi
Marie Boichu
CNRS/Université de Lille, Laboratoire d'Optique Atmosphérique, CNRS

Corresponding Author:[email protected]

Author Profile
Raphael Grandin
Université de Paris, Institut de physique du globe de Paris, CNRS
Author Profile
Luc Blarel
CNRS/Université de Lille, Laboratoire d'Optique Atmosphérique, CNRS
Author Profile
Benjamin Torres
Université de Lille, Laboratoire d'Optique Atmosphérique, CNRS
Author Profile
Yevgeny Derimian
University of Lille
Author Profile
Philippe Goloub
Lille University
Author Profile
Colette Brogniez
Univ. Lille, CNRS
Author Profile
Isabelle Chiapello
CNRS, Univ. Lille, Laboratoire d'Optique Atmosphérique
Author Profile
Oleg Dubovik
CNRS, Universite Lille-1
Author Profile
Théo Mathurin
University of Lille, CNRS, CNES, UMS 2877 -- ICARE Data and Services Center
Author Profile
Nicolas Pascal
University of Lille, CNRS, CNES, UMS 2877 -- ICARE Data and Services Center
Author Profile
Maximilien Patou
University of Lille, CNRS, CNES, UMS 2877 -- ICARE Data and Services Center
Author Profile
Jérôme Riedi
Laboratoire d'Optique Atmosphérique
Author Profile

Abstract

Stratospheric sulfate aerosols play a key role on atmospheric chemistry and Earth's radiation budget, but their size distribution, a critical parameter in climate models, is generally poorly-known. We address such gap for the 2022 Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruption by exhaustively analyzing a set of satellite observations (TROPOMI, IASI, AHI, CALIOP) together with photometric ground observations from the worldwide open-access AERONET network. We document a rapid growth of HT-HH sulfate aerosols in the days following eruption, faster than observed for 1991 Pinatubo eruption, likely due to the exceptional hydration of the stratosphere by this phreatomagmatic eruption. An unusual aerosol fine mode (peak radius in 0.3-0.5 µm) is identified at 20 stations of the southern hemisphere until May 2023 (time of writing). Nevertheless, 1.4 years after eruption, HT-HH sulfate aerosols remain smaller than Pinatubo particles. Smaller aerosols backscatter more efficiently visible light and sediment more slowly than larger particles, implying stronger and longer-lasting negative radiative forcing.
30 Oct 2023Submitted to ESS Open Archive
08 Nov 2023Published in ESS Open Archive
16 Dec 2023Published in Journal of Geophysical Research: Atmospheres volume 128 issue 23. 10.1029/2023JD039010