References
Agliardi, F., Scuderi, M. M., Fusi, N., & Collettini, C. (2020).
Slow-to-fast transition of giant creeping rockslides modulated by
undrained loading in basal shear zones. Nature Communications ,11 (1), 1–11. https://doi.org/10.1038/s41467-020-15093-3.
Amatya, P., Kirschbaum, D., Stanley, T., & Tanyas, H. (2021). Landslide
mapping using object-based image analysis and open source tools.Engineering Geology , 282 , 106000.
https://doi.org/10.1016/j.enggeo.2021.106000.
Baum, R., & Reid, M. (2000). Ground water isolation by low-permeability
clays in landslide shear zones. Landslides in Research, Theory and
Practice. Thomas Telford, London , 139–144.
Bayer, B., Simoni, A., Mulas, M., Corsini, A., & Schmidt, D. (2018).
Deformation responses of slow moving landslides to seasonal rainfall in
the Northern Apennines, measured by InSAR. Geomorphology ,308 , 293–306. https://doi.org/10.1016/j.geomorph.2018.02.020.
Bekaert, D. P., Karim, M., Linick, J. P., Hua, H., Sangha, S., Lucas,
M., et al. (2019). Development of open-access Standardized InSAR
Displacement Products by the Advanced Rapid Imaging and Analysis (ARIA)
Project for Natural Hazards. In AGU Fall Meeting Abstracts (Vol.
2019, pp. G23A-04).
Bekaert, D. P., Handwerger, A. L., Agram, P., & Kirschbaum, D. B.
(2020). InSAR-based detection method for mapping and monitoring
slow-moving landslides in remote regions with steep and mountainous
terrain: An application to Nepal. Remote Sensing of Environment ,
249, 111983. https://doi.org/10.1016/j.rse.2020.111983.
Bennett, G. L., Roering, J. J., Mackey, B. H., Handwerger, A. L.,
Schmidt, D. A., & Guillod, B. P. (2016). Historic drought puts the
brakes on earthflows in Northern California. Geophysical Research
Letters , 43 (11), 5725–5731.
https://doi.org/10.1002/2016GL068378.
Bennett, G. L., Miller, S. R., Roering, J. J., & Schmidt, D. A. (2016).
Landslides, threshold slopes, and the survival of relict terrain in the
wake of the Mendocino Triple Junction. Geology , 44 (5),
363–366. https://doi.org/10.1130/G37530.1.
Bhattacharya, P., & Viesca, R. C. (2019). Fluid-induced aseismic fault
slip outpaces pore-fluid migration. Science , 364 (6439),
464–468. https://doi.org/10.1126/science.aaw7354.
Bogaard, T. A., & Greco, R. (2016). Landslide hydrology: from hydrology
to pore pressure. Wiley Interdisciplinary Reviews: Water ,3 (3), 439–459. https://doi.org/10.1002/wat2.1126.
Booth, A. M., McCarley, J. C., & Nelson, J. (2020). Multi-year,
three-dimensional landslide surface deformation from repeat lidar and
response to precipitation: Mill Gulch earthflow, California.Landslides , 1–14. https://doi.org/10.1007/s10346-020-01364-z
Bunn, M., Leshchinsky, B., & Olsen, M. J. (2020). Estimates of
three-dimensional rupture surface geometry of deep-seated landslides
using landslide inventories and high-resolution topographic data.Geomorphology , 367, 107332.
https://doi.org/10.1016/j.geomorph.2020.107332.
Buzzanga, B., Bekaert, D. P., Hamlington, B. D., & Sangha, S. S.
(2020). Toward sustained monitoring of subsidence at the coast using
insar and gps: An application in Hampton roads, Virginia.Geophysical Research Letters , 47 (18), e2020GL090013.
https://doi.org/10.1029/2020GL090013.
Calabro, M., Schmidt, D., & Roering, J. (2010). An examination of
seasonal deformation at the Portuguese Bend landslide, southern
California, using radar interferometry. Journal of Geophysical
Research: Earth Surface (2003–2012) , 115 (F2).
https://doi.org/10.1029/2009JF001314.
Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y., & Avouac,
J.-P. (2019). Stabilization of fault slip by fluid injection in the
laboratory and in situ. Science Advances , 5 (3), eaau4065.
https://doi.org/10.1126/sciadv.aau4065.
Carey, J. M., Massey, C. I., Lyndsell, B., & Petley, D. N. (2019).
Displacement mechanisms of slow-moving landslides in response to changes
in porewater pressure and dynamic stress. Earth Surface Dynamics ,7 (3), 707–722. https://doi.org/10.5194/esurf-7-707-2019.
Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti,
A., et al. (2019). Perspectives on the prediction of catastrophic slope
failures from satellite InSAR. Scientific Reports , 9 (1),
1–9. https://doi.org/10.1038/s41598-019-50792-y.
Cicoira, A., Beutel, J., Faillettaz, J., & Vieli, A. (2019). Water
controls the seasonal rhythm of rock glacier flow. Earth and
Planetary Science Letters , 528 , 115844.
https://doi.org/10.1016/j.epsl.2019.115844.
Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates,
surface faulting hazard and risk in Mexico City with 2014–2020
Sentinel-1 IW InSAR. Remote Sensing of Environment , 253 ,
112161. https://doi.org/10.1016/j.rse.2020.112161.
Coe, J. A., Ellis, W. L., Godt, J. W., Savage, W. Z., Savage, J. E.,
Michael, J., et al. (2003). Seasonal movement of the Slumgullion
landslide determined from Global Positioning System surveys and field
instrumentation, July 1998–March 2002. Engineering Geology ,68 (1), 67–101. https://doi.org/10.1016/S0013-7952(02)00199-0.
Cohen-Waeber, J., Bürgmann, R., Chaussard, E., Giannico, C., &
Ferretti, A. (2018). Spatiotemporal Patterns of Precipitation-Modulated
Landslide Deformation from Independent Component Analysis of InSAR Time
Series. Geophysical Research Letters , 45(4), 1878-1887.
https://doi.org/10.1002/2017GL075950.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., & Gili, J. A. (2005).
Prediction of ground displacements and velocities from groundwater level
changes at the Vallcebre landslide (Eastern Pyrenees, Spain).Landslides , 2(2), 83–96. https://doi.org/10.1007/s10346-005-
0049-1
Dehls, J. F., Larsen, Y., Marinkovic, P., Lauknes, T. R., Stødle, D., &
Moldestad, D. A. (2019). INSAR. No: A National Insar Deformation
Mapping/Monitoring Service In Norway–From Concept To Operations. InIGARSS 2019-2019 IEEE International Geoscience and Remote Sensing
Symposium (pp. 5461–5464).
https://doi.org/10.1109/IGARSS.2019.8898614.
Dille, A., Kervyn, F., Handwerger, A. L., d’Oreye, N., Derauw, D.,
Bibentyo, T. M., et al. (2021). When image correlation is needed:
Unravelling the complex dynamics of a slow-moving landslide in the
tropics with dense radar and optical time series. Remote Sensing
of Environment , 258 , 112402.
https://doi.org/10.1016/j.rse.2021.112402.
Dong, L., Leung, L. R., Lu, J., & Gao, Y. (2019). Contributions of
extreme and non‐extreme precipitation to California precipitation
seasonality changes under warming. Geophysical Research Letters ,46 (22), 13470–13478. https://doi.org/10.1029/2019GL084225.
Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard
errors, confidence intervals, and other measures of statistical
accuracy. Statistical Science , 54–75.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., et al. (2007). The shuttle radar topography mission. Reviews
of Geophysics , 45 (2). https://doi.org/10.1029/2005RG000183.
Finnegan, N. J., Broudy, K. N., Nereson, A. L., Roering, J. J.,
Handwerger, A. L., & Bennett, G. (2019). River channel width controls
blocking by slow-moving landslides in California’s Franciscan mélange.Earth Surface Dynamics , 7 (3), 879–894.
https://doi.org/10.5194/esurf-7-879-2019
Finnegan, N. J., Perkins, J. P., Nereson, A. L., & Handwerger, A. L.
(2021). Unsaturated Flow Processes and the Onset of Seasonal Deformation
in Slow‐Moving Landslides. Journal of Geophysical Research: Earth
Surface , 126 (5), e2020JF005758.
https://doi.org/10.1029/2020JF005758
Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing
climate. Earth-Science Reviews , 162 , 227–252.
https://doi.org/10.1016/j.earscirev.2016.08.011.
Hahm, W. J., Rempe, D. M., Dralle, D. N., Dawson, T. E., Lovill, S. M.,
Bryk, A. B., et al. (2019). Lithologically controlled subsurface
critical zone thickness and water storage capacity determine regional
plant community composition. Water Resources Research ,55 (4), 3028–3055. https://doi.org/10.1029/2018WR023760.
Handwerger, A. L., Roering, J. J., & Schmidt, D. A. (2013). Controls on
the seasonal deformation of slow-moving landslides. Earth and
Planetary Science Letters , 377 , 239–247.
https://doi.org/10.1016/j.epsl.2013.06.047.
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., &
Bürgmann, R. (2019). A shift from drought to extreme rainfall drives a
stable landslide to catastrophic failure. Scientific Reports ,9 (1), 1569. https://doi.org/10.1038/s41598-018-38300-0.
Handwerger, A. L., Fielding, E. J., Huang, M.-H., Bennett, G. L., Liang,
C., & Schulz, W. H. (2019). Widespread initiation, reactivation, and
acceleration of landslides in the northern California Coast Ranges due
to extreme rainfall. Journal of Geophysical Research: Earth
Surface , 124 (7), 1782–1797.
https://doi.org/10.1029/2019JF005035,
Handwerger, A. L., Booth, A. M., Huang, M. H., & Fielding, E. J.
(2021). Inferring the Subsurface Geometry and Strength of Slow‐Moving
Landslides Using 3‐D Velocity Measurements From the NASA/JPL UAVSAR.Journal of Geophysical Research: Earth Surface , 126(3),
e2020JF005898. https://doi.org/10.1029/2020JF005898.
Hapke, C. J., & Green, K. R. (2006). Coastal landslide material loss
rates associated with severe climatic events. Geology ,34 (12), 1077–1080. https://doi.org/10.1130/G22900A.1.
Huang, M.-H., Fielding, E. J., Liang, C., Milillo, P., Bekaert, D.,
Dreger, D., & Salzer, J. (2017). Coseismic deformation and triggered
landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy.Geophysical Research Letters , 44 (3), 1266–1274.
https://doi.org/10.1002/2016GL071687.
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina,
P., et al. (2017). The Maoxian landslide as seen from space: detecting
precursors of failure with Sentinel-1 data. Landslides , 15(1),
123-133. https://doi.org/10.1007/s10346-017-0915-7.
Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and
pore pressure feedback. Journal of Geophysical Research: Earth
Surface , 110 (F2). https://doi.org/10.1029/2004JF000268.
Iverson, R. M., & Major, J. J. (1987). Rainfall, ground-water flow, and
seasonal movement at Minor Creek landslide, northwestern California:
Physical interpretation of empirical relations. Geological Society
of America Bulletin , 99 (4), 579–594.
https://doi.org/10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2.
Iverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B.,
Vallance, J. W., et al. (2015). Landslide mobility and hazards:
Implications of the 2014 Oso disaster. Earth and Planetary Science
Letters , 412 , 197–208.
https://doi.org/10.1016/j.epsl.2014.12.020.
Jacquemart, M., & Tiampo, K. (2021). Leveraging time series analysis of
radar coherence and normalized difference vegetation index ratios to
characterize pre-failure activity of the Mud Creek landslide,
California. Natural Hazards and Earth System Sciences ,21 (2), 629–642. https://doi.org/10.5194/nhess-21-629-2021.
Jennings, C. W., Gutierrez, C., Bryant, W., Saucedo, G., Wills, C. J.,
Milind, P., et al. (2010). Geologic Map of California. California
Geological Survey, California Department of Conservation. Retrieved from
https://cadoc.maps.arcgis.com/apps/mapviewer/index.html?layers=9eba56d981df4f839769ce9a2adc01f4
Jibson, R. W. (2006). The 2005 La Conchita, California, landslide.Landslides , 3 (1), 73–78.
https://doi.org/10.1007/s10346-005-0011-2.
Jones, J., Jones, C. E., & Bekaert, D. P. (2021). Value of InSAR for
Monitoring Land Subsidence to Support Water Management in the San
Joaquin Valley, California. Journal of the American Water
Resources Association. 1– 7. https://doi.org/10.1111/1752-1688.12942.
Keefer, D. K., & Johnson, A. M. (1983). Earth flows: morphology,
mobilization, and movement. https://doi.org/10.3133/pp1264.
Kelsey, H. M. (1978). Earthflows in Franciscan melange, Van Duzen River
basin, California. Geology , 6 (6), 361–364.
https://doi.org/10.1130/0091-7613(1978)6<361:EIFMVD>2.0.CO;2.
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner,
E., & Volken, M. (2017). Factors controlling velocity variations at
short‐term, seasonal and multiyear time scales, Ritigraben rock glacier,
Western Swiss Alps. Permafrost and Periglacial Processes ,28 (4), 675–684. https://doi.org/10.1002/ppp.1953.
Kilburn, C. R., & Petley, D. N. (2003). Forecasting giant, catastrophic
slope collapse: lessons from Vajont, Northern Italy.Geomorphology , 54 (1), 21–32.
https://doi.org/10.1016/S0169-555X(03)00052-7.
Lacroix, P., Dehecq, A., & Taipe, E. (2020). Irrigation-triggered
landslides in a Peruvian desert caused by modern intensive farming.Nature Geoscience , 13 (1), 56–60.
https://doi.org/10.1038/s41561-019-0500-x.
Lacroix, P., Handwerger, A. L., & Bièvre, G. (2020). Life and death of
slow-moving landslides. Nature Reviews Earth & Environment ,
1–16. https://doi.org/10.1038/s43017-020-0072-8.
Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion
controlled by hillslope material. Nature Geoscience , 3(4),
247–251. https://doi.org/10.1038/ngeo776.
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y.,
Albino, F., et al. (2020). LiCSAR: An automatic InSAR tool for measuring
and monitoring tectonic and volcanic activity. Remote Sensing ,12 (15), 2430. https://doi.org/10.3390/rs12152430.
Liu, X., Zhao, C., Zhang, Q., Yin, Y., Lu, Z., Samsonov, S., et al.
(2021). Three-dimensional and long-term landslide displacement
estimation by fusing C-and L-band SAR observations: A case study in
Gongjue County, Tibet, China. Remote Sensing of Environment ,267 , 112745. https://doi.org/10.1016/j.rse.2021.112745.
Lundgren, P., Girona, T., Bato, M. G., Realmuto, V. J., Samsonov, S.,
Cardona, C., et al. (2020). The dynamics of large silicic systems from
satellite remote sensing observations: The intriguing case of Domuyo
volcano, Argentina. Scientific Reports , 10 (1), 1–15.
https://doi.org/10.1038/s41598-020-67982-8.
Mackey, B. H., & Roering, J. J. (2011). Sediment yield, spatial
characteristics, and the long-term evolution of active earthflows
determined from airborne LiDAR and historical aerial photographs, Eel
River, California. Geological Society of America Bulletin ,123 (7–8), 1560–1576. https://doi.org/10.1130/B30306.1.
Mackey, B. H., Roering, J. J., & McKean, J. (2009). Long-term
kinematics and sediment flux of an active earthflow, Eel River,
California. Geology , 37 (9), 803–806.
https://doi.org/10.1130/G30136A.1.
Malet, J.-P., Maquaire, O., & Calais, E. (2002). The use of Global
Positioning System techniques for the continuous monitoring of
landslides: application to the Super-Sauze earthflow
(Alpes-de-Haute-Provence, France). Geomorphology , 43 (1),
33–54. https://doi.org/10.1016/S0169-555X(01)00098-8.
Matsuura, S., Asano, S., & Okamoto, T. (2008). Relationship between
rain and/or meltwater, pore-water pressure and displacement of a
reactivated landslide. Engineering Geology , 101 (1–2),
49–59. https://doi.org/10.1016/j.enggeo.2008.03.007.
McSaveney, M. J., & Griffiths, G. A. (1987). Drought, rain, and
movement of a recurrent earthflow complex in New Zealand.Geology , 15 (7), 643–646.
https://doi.org/10.1130/0091-7613(1987)15<643:DRAMOA>2.0.CO;2.
Merriam, R. (1960). Portuguese Bend landslide, Palos Verdes Hills,
California. The Journal of Geology , 68 (2), 140–153.
https://doi.org/10.1086/626649.
Milillo, P., Sacco, G., Martire, D. D., & Hua, H. (2021).
Neural-network pattern recognition experiments toward a full-automatic
detection of anomalies in InSAR time-series of surface deformation.Frontiers in Earth Science , 1132.
https://doi.org/10.3389/feart.2021.728643.
Minchew, B. M., & Meyer, C. R. (2020). Dilation of subglacial sediment
governs incipient surge motion in glaciers with deformable beds.Proc. R. Soc. A. , 476 (2238).
https://doi.org/10.1098/rspa.2020.0033.
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W.
J., Noël, B., & Usher, M. (2014). Distinct patterns of seasonal
Greenland glacier velocity. Geophysical Research Letters ,41 (20), 7209–7216. https://doi.org/10.1002/2014GL061836.
Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R.,
& Hooper, A. (2020). LiCSBAS: an open-source InSAR time series analysis
package integrated with the LiCSAR automated Sentinel-1 InSAR processor.Remote Sensing , 12 (3), 424.
https://doi.org/10.3390/rs12030424.
Murphy, C. R., Finnegan, N. J., & Oberle, F. K. J. (2022). Vadose Zone
Thickness Limits Pore-fluid Pressure Rise in a Large, Slow-moving
Earthflow. e2021JF006415. https://doi.org/10.1029/2021JF006415.
Nereson, A. L., & Finnegan, N. J. (2019). Drivers of earthflow motion
revealed by an 80 yr record of displacement from Oak Ridge earthflow,
Diablo Range, California, USA. Geological Society of America
Bulletin . https://doi.org/10.1130/B32020.1.
Nereson, A. L., Davila Olivera, S., & Finnegan, N. J. (2018). Field and
Remote‐Sensing Evidence for Hydro‐mechanical Isolation of a Long‐Lived
Earthflow in Central California. Geophysical Research Letters ,45 (18), 9672–9680. https://doi.org/10.1029/2018GL079430.
Persad, G. G., Swain, D. L., Kouba, C., & Ortiz-Partida, J. P. (2020).
Inter-model agreement on projected shifts in California hydroclimate
characteristics critical to water management. Climatic Change ,
162(3), 1493-1513. https://doi.org/10.1007/s10584-020-02882-4.
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce,
D. W. (2017). Precipitation in a warming world: Assessing projected
hydro-climate changes in California and other Mediterranean climate
regions. Scientific Reports , 7 (1), 1–10.
https://doi.org/10.1038/s41598-017-11285-y.
Raspini, F., Bianchini, S., Ciampalini, A., Del Soldato, M., Solari, L.,
Novali, F., et al. (2018). Continuous, semi-automatic monitoring of
ground deformation using Sentinel-1 satellites. Scientific
Reports , 8 (1), 1–11.
https://doi.org/10.1038/s41598-018-25369-w.
Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep
critical zone architecture: a historical review and four testable
hypotheses. Earth Surface Processes and Landforms , 42(1),
128–156. https://doi.org/10.1002/esp.4052.
Robeson, S. M. (2015). Revisiting the recent California drought as an
extreme value. Geophysical Research Letters , 42 (16),
6771–6779. https://doi.org/10.1002/2015GL064593.
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR
scientific computing environment. In Synthetic Aperture Radar,
2012. EUSAR. 9th European Conference on (pp. 730–733).
Rutter, E., & Green, S. (2011). Quantifying creep behaviour of
clay-bearing rocks below the critical stress state for rapid failure:
Mam Tor landslide, Derbyshire, England. Journal of the Geological
Society , 168 (2), 359–372.
https://doi.org/10.1144/0016-76492010-133.
Scheingross, J. S., Minchew, B. M., Mackey, B. H., Simons, M., Lamb, M.
P., & Hensley, S. (2013). Fault-zone controls on the spatial
distribution of slow-moving landslides. Geological Society of
America Bulletin , 125 (3–4), 473–489.
https://doi.org/10.1130/B30719.1.
Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009).
Relations between hydrology and velocity of a continuously moving
landslide—evidence of pore-pressure feedback regulating landslide
motion? Landslides , 6(3), 181-190.
https://doi.org/10.1007/s10346-009-0157-4.
Schulz, W. H., Smith, J. B., Wang, G., Jiang, Y., & Roering, J. J.
(2018). Clayey landslide initiation and acceleration strongly modulated
by soil swelling. Geophysical Research Letters , 45 (4),
1888–1896. https://doi.org/10.1002/2017GL076807.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K.,
Sattar, A., et al. (2021). A massive rock and ice avalanche caused the
2021 disaster at Chamoli, Indian Himalaya. Science ,373 (6552), 300–306. https://doi.org/10.1126/science.abh4455.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin,
X., et al. (2020). Monitoring rock glacier kinematics with satellite
synthetic aperture radar. Remote Sensing , 12 (3), 559.
https://doi.org/10.3390/rs12030559.
Swain, D. L. (2021). A shorter, sharper rainy season amplifies
California wildfire risk. Geophysical Research Letters , 48,
e2021GL092843. https://doi.org/10.1029/2021GL092843.
Swain, D. L., Tsiang, M., Haugen, M., Singh, D., Charland, A.,
Rajaratnam, B., & Diffenbaugh, N. S. (2014). The extraordinary
California drought of 2013/2014: Character, context, and the role of
climate change. Bulletin of the American Meteorological Society ,95 (9), S3.
Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018).
Increasing precipitation volatility in twenty-first-century California.Nature Climate Change , 1.
https://doi.org/10.1038/s41558-018-0140-y.
Swirad, Z. M., & Young, A. P. (2021). Automating coastal cliff erosion
measurements from large-area LiDAR datasets in California, USA.Geomorphology , 107799.
https://doi.org/10.1016/j.geomorph.2021.107799.
Terzaghi, K. (1951). Mechanism of Landslides . Harvard University,
Department of Engineering.
Viesca, R. C., & Rice, J. R. (2012). Nucleation of slip‐weakening
rupture instability in landslides by localized increase of pore
pressure. Journal of Geophysical Research: Solid Earth , 117(B3).
https://doi.org/10.1029/2011JB008866.
Wang, S.-Y. S., Yoon, J.-H., Becker, E., & Gillies, R. (2017).
California from drought to deluge. Nature Climate Change ,7 (7), 465–468. https://doi.org/10.1038/nclimate3330.
Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E., & Logan,
J. (2019). Characterizing the catastrophic 2017 Mud Creek landslide,
California, using repeat structure-from-motion (SfM) photogrammetry.Landslides , 1–19. https://doi.org/10.1007/s10346-019-01160-4.
Wills, C. J., Manson, M. W., Brown, K. D., Davenport, C. W., & Domrose,
C. J. (2001). Landslides in the Highway 1 Corridor: Geology and Slope
Stability along the Big Sur Coast between Point Lobos and San Carpoforo
Creek, Monterey and San Luis Obispo Counties, California.California Department of Transportation Project F99TL34 .
Wills, C. J., Roth, N. E., McCrink, T. P., Short, W. R., DeGraff, J., &
Shakoor, A. (2017). The California landslide inventory database. InProc. Third North American Symp. on Landslides, Roanoke, VA,
Association of Environmental and Engineering Geologists (pp. 666–674).
Xu, Y., Schulz, W. H., Lu, Z., Kim, J., & Baxtrom, K. (2021). Geologic
controls of slow-moving landslides near the US West Coast.Landslides , 1–13. https://doi.org/10.1007/s10346-021-01732-3.
Young, A. P. (2015). Recent deep-seated coastal landsliding at San
Onofre State Beach, California. Geomorphology , 228 ,
200–212. https://doi.org/10.1016/j.geomorph.2014.08.005.
Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR
time series analysis: Unwrapping error correction and noise reduction.Computers & Geosciences , 133 , 104331.
https://doi.org/10.1016/j.cageo.2019.104331.